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Abstract: Internet of Things environments may generate massive volumes of time series data, with specific charac-
teristics that must be considered to facilitate its storage. The Apache Cassandra NoSQL database provides
compaction strategies that improve data pages’ organization, benefiting the storage and query performance for
time series data. This study exploits the temporal characteristics of IoT data, and proposes an engine called
C*DynaConf based on the TWCS (Time Window Compaction Strategy), which dynamically changes its com-
paction parameters according to configurations previously defined as optimal, considering current metadata
and metrics from the database. The results show that the engine’s use brought a 4.52% average gain in
operations performed compared to a test case with optimal initial configuration that changes the scenario’s
characteristics change over time.

1 INTRODUCTION

Internet of Things (IoT) sensor data can be classified
as a peculiar example of a time series and they have
specific features that can be exploited by the database
to improve its performance and reduce the require-
ments of storage space (Li et al., 2012; Savaglio et al.,
2019). These data are on a massive scale, they are
ordered and retrieved by the temporal key, have a
low frequency of update, and expire after a certain
time (Dias et al., 2018). Relational databases, in gen-
eral, are not the best fit for storing massive data, es-
pecially coming from IoT applications (Zhu, 2015;
Vongsingthong and Smanchat, 2015). Some studies
point to NoSQL databases as a solution (Zhu, 2015;
Oliveira et al., 2015; Kiraz and Toğay, 2017).

To improve the data organization, NoSQL
databases must have compaction strategies for their
data pages. This operation reads and merges the data
pages on disk resulting in a new page (Ghosh et al.,
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2015). It also allows the sequential reading and writ-
ing of data, which is more efficient than manipulat-
ing fragmented data (Kona, 2016). Furthermore, the
compaction strategies deallocate the space reserved
for deleted data (Warlo, 2018).

The Apache Cassandra database derived the com-
paction functionality from BigTable (Wu et al., 2018).
The configuration of the parameters that define the be-
havior of Cassandra’s compaction strategies is defined
before the execution and performed manually. How-
ever, it is challenging for users to manually manage
the strategy because they must know the most effi-
cient settings in advance. An inappropriate configu-
ration can result in higher query response times and
lower throughput for the NoSQL database in IoT en-
vironments. An automatic configuration mechanism
can therefore benefit the system’s performance and
usability.

This paper aims to present the C*DynaConf, an
auto-tuning mechanism for the parameters of the Cas-
sandra database’s compaction strategy, focused on
IoT data, which seeks to maximize the throughput and
minimize the response time. The C*DynaConf must
change the system settings according to the relation
between reading and writing operations and the data’s
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lifetime.
The rest of this paper is organized as follows: Sec-

tion 2 presents the theoretical background and re-
views the related work. Then, Section 3 describes
the C*DynaConf auto-tuning mechanism. Section 4
introduces the execution environment, its configura-
tions, and details about the test cases. Section 5 brings
the analysis of the results. Section 6 concludes and
considers future works.

2 THEORETICAL BACKGROUND

The Apache Cassandra is one of the most popular
NoSQL databases (Gujral et al., 2018). Some of its
characteristics make it suitable for the storage of IoT
data. It supports high data insertion rates and avail-
ability (Wu et al., 2018), has a data model adequate
to sequential data regardless of type and size (Lu and
Xiaohui, 2016), uses data compaction strategies that
exploit the characteristics of IoT-like data to improve
storage and management (Datastax, 2018), and has a
configuration that limits the data TTL (time-to-live)
(Carpenter and Hewitt, 2016).

In Cassandra’s storage, data is stored in memory
in structures called Memtables and flushed to the disk
when the Memtables reach their maximum size or
age (the difference between the current time and the
time when they were created), or by user command
(Ghosh et al., 2015). Once this data goes to the disk,
it is received persistently in structures called SSTa-
bles (Chang et al., 2008). They do not accept changes
and deletions, and their structures consist of ordered
arrays containing keys and values (Hegerfors, 2014).
The key used in SSTable arrays for searching and or-
dering is called the clustering key.

When a record in an SSTable is changed, the
new value is stored in a Memtable, and the previous
value, held in the SSTable, remains at it is. When the
database reads the altered data, it joins the Memtable
data to the SSTable data before displaying it to the
user (Eriksson, 2014). If a Memtable with data from
a changed record is flushed on disk, there will be data
from this record in more than one SSTable, generat-
ing an access cost to two SSTables in the moment of
the reading. This gets worse as the changes in a single
record increase (Chang et al., 2008).

Moreover, the data deletion does not change the
Memtables or SSTAbles already stored. A logical
deletion occurs – that is, a null flag is added to the
deleted cell – in a new MemTable. The cell or row
excluded is called tombstone (Carpenter and Hewitt,
2016). The data deleted from Cassandra receive a pa-
rameter called a grace period, representing the min-

imal time needed to delete the data. However, the
definitive exclusion of deleted data does not occur au-
tomatically when the tombstone reaches the grace pe-
riod. The data deallocation and recovery of the disk
space only happen with the SSTable compaction.

When a record passes through many changes,
there will be many versions of it in the database,
spread on different disk pages. The database period-
ically must perform an operation called compaction,
which merges these disk pages into new ones through
a merge-sort algorithm (Ghosh et al., 2015). This
operation should not be mistaken with algorithms
for data compression and compaction. In this com-
paction, insertions and upsertions that changed the
same data are discarded, leaving only the most re-
cent operation, with the most up-to-date version of
the data. The compaction operation has a cost, but it
is worthwhile because the subsequent read operations
become faster.

Different compaction strategies define what pages
must be merged and the moment when this must
occur (Lu and Xiaohui, 2016). The objectives of
these strategies in Cassandra are to allow the NoSQL
databases to access fewer SSTables to read data and
to use less disk space (Hegerfors, 2014; Ghosh et al.,
2015; Eriksson, 2014; Apache Software Foundation,
2020).

Among Cassandra’s compaction strategies, the
TWCS (Time Window Compaction Strategy) stands
out for managing IoT-like data (Jirsa and Eriksson,
2016; Apache Software Foundation, 2020). It ex-
ploits the characteristics of time-series data and uses
time-window-based compaction. Data inserted in the
same time-window stay together and contiguously be-
cause they have more chance of being retrieved to-
gether. Some TWCS parameters are relevant to this
work. The compaction window size defines the
time window size in which the SSTables will be com-
pacted. The compaction window unit is the time
unit (minutes, hours, or days) (Jirsa and Eriksson,
2016). The min threshold and max threshold pa-
rameters define, respectively, the minimal and max-
imum number of SSTables in disk needed to start a
compaction operation.

The TWCS performs the compaction considering
the adjacency between pages, being adequate to store
IoT data, commonly inserted in contiguous time inter-
vals. This means that if disordered insertions do not
occur, only one data page in the disk will have the data
at a specific moment. Thereafter time interval queries
require fewer disk pages to be accessed. Because of
these advantages, this proposal uses the TWCS strat-
egy.
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2.1 Related Works

Among the studies related to auto-tuning in databases,
few are dedicated to the configuration of compaction
strategies since it is a specific problem of some
NoSQL databases. Sathvik (2016) analyzed Cassan-
dra’s performance, changing the configuration of the
Memtables and a table called Key-Cache, which re-
sides in memory and stores pointers to retrieve the
SSTable data swiftly. However, the study does not an-
alyze the performance after changing the compaction
strategy parameters, neither studies IoT scenarios.

In Lu and Xiaohui (2016), stress scenarios were
executed, and metrics were analyzed. It was con-
cluded that the DTCS (Date-Tiered Compaction Strat-
egy) is adequate for use with time series, resulting
in better performance when compared to other com-
paction strategies available in Cassandra.

Kona (2016) investigates, using Cassandra, met-
rics related to the performance of compaction met-
rics. This work compares the strategies DTCS, STCS
(Size-Tiered Compaction Strategy), and LCS (Lev-
eled Compaction Strategy) in an intensive writing en-
vironment. It is concluded that the DTCS strategy is
not the best for the simulated scenario, losing in per-
formance to the LCS. However, in the analyzed case,
the data does not have the characteristics of a time-
series. It is worth mentioning that the DTCS strategy
is deprecated, and the TWCS replaced it.

Ravu (2016) simulated Cassandra’s behavior in
three workload situations, one write-intensive, one
read-intensive, and one balanced, with the same num-
ber of readings and writings. The DTCS strategy pre-
sented better results for the read-intensive workload,
even though the data does not have time-series char-
acteristics. For the write-intensive scenario, the LCS
strategy showed a better performance. At the time of
publication, the TWCS strategy was not available for
Cassandra yet.

In Xiong et al. (2017), positive results were ob-
tained with the HBase NoSQL database’s auto-tuning.
Ensemble learning algorithms were used to reach an
optimal configuration. Twenty-three configuration
parameters were analyzed in five specific scenarios,
and the parameters with a higher impact on the per-
formance were identified. The auto-tuning compo-
nent increased the throughput by 41% and reduced
the latency by 11%. However, works similar to this
were not found using Cassandra, and none of the five
scenarios had specific IoT characteristics.

Katiki Reddy (2020) proposes a new Random
Compaction Strategy (RCS), that improves the effi-
ciency of compaction, when compared to LCS and
STCS, in some scenarios, at a rate of 4 to 5 percent in

latency and operations per second. However, the sce-
narios were not IoT specific and were not compared
with the main strategy used in this article, which is
TWCS. Moreover, this new strategy has not been
adopted by the Cassandra community.

Table 1 summarizes the related works. None of
the related works implements an auto-tuning tool for
the Cassandra NoSQL database; neither are specific
for IoT data. Differently of them, our paper proposes
C*DynaConf, an auto-tuning software for IoT data
in NoSQL Cassandra database, which simplifies the
use of database compaction strategies, abstracting the
complexity of some parameters.

Table 1: Related Works.

Related Paper NoSQL Strategy
Sathvik (2016) Cassandra Does not apply
Lu and Xiaohui (2016) Cassandra DTCS, STCS

and LCS
Kona (2016) Cassandra DTCS, STCS

and LCS
Ravu (2016) Cassandra DTCS, STCS

and LCS
Xiong et al. (2017) HBase Does not apply
Katiki Reddy (2020) Cassandra RCS

3 C*DynaConf

C*DynaConf is auto-tuning software based on pre-
defined rules. It uses a table that stores the opti-
mal configuration points previously known. Based
on these points and the metadata obtained from the
database, it computes and applies near-optimal val-
ues for Cassandra’s compaction parameters. Figure
1 shows the C*DynaConf architecture. The meta-
data search component is responsible for reading the
column families’ settings configured with the TWCS
strategy in Cassandra and passing them to the pa-
rameter calculator. The retrieved metadata are the
compaction window size, the min threshold and
the TTL of the column family.

The metrics search component requests from Cas-
sandra the metrics that it uses to check the ratio be-
tween readings and writings for the column family
receiving the auto-tuning. C*DynaConf has a timer
that iterates its main routine execution every 30 sec-
onds. This frequency was chosen because it is suf-
ficient to subsidize the configuration without burden-
ing the database performance. The parameter calcu-
lator considers the metadata received and the metrics,
calculates the optimal points according to a table of
predefined optimal configuration points and compares
them to the table’s parameters. If the optimal configu-
ration is not set on the table, the program changes the
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Figure 1: C*DynaConf Architecture Diagram.

table settings with the new parameters.
C*DynaConf uses the TWCS compaction strat-

egy. It is developed in Java and uses some com-
ponents to simplify its construction. The Java
connection driver for Cassandra was developed by
DataStax®, which manages the connection to the
cluster nodes (DataStax, 2018). Another package
used is the Criteo Cassandra Exporter (Criteo, 2018),
which manages the metrics received through JMX and
carries out pre-computing to populate objects with
metrics defined in configuration files.

Figure 2 presents the C*DynaConf flowchart. The
program starts receiving, through the command line,
the Keyspace k that must be monitored and the
name of some node of the cluster c. Afterwards,
C*DynaConf starts a loop – that is interrupted only
by the user – on which it verifies if there are col-
umn families with the TWCS strategy configured and,
if so, retrieves their metadata, from which are used
the compaction window size, the min threshold,
and the table TTL. Later, the mechanism will search
the metrics of the number of read and write opera-
tions, to define the proportion among them. Then, the
program calculates what scenario of optimal points is
closest to the execution environment. The table meta-
data is compared to the optimal configuration values
and changed if different through an ALTER TABLE
command. There is then a 30 second pause, and the
loop repeats.

3.1 Read/Write Ratio Metric

C*DynaConf changes the TWCS parameters accord-
ing to variations on the TTL and the proportion be-
tween reading and writing operations. The first is ob-

Start (c, k)

Connect to Cluster c, 

on Keyspace k

Search tables

with TWCS

Found?

Search for metadata: 
compaction window size, 

min threshold, table TTL

Search for metrics

Check if the configuration

conforms to the optimal

points 

Wait 30 seconds

Is optimal?

Cassandra

Apply optimal

configuration

Yes

No

Yes

No

Figure 2: Data Flow Diagram for C*DynaConf.
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tained from the table’s metadata. But the ratio must be
calculated based on metrics obtained from the cluster
nodes.

There is a set of metrics that measures the client
requests, called ClientRequest. In this set, there is a
Java object called Meter, that stores the read and write
metrics and the throughput of the second in execution,
and also an exponential weighted moving mean that
represents the mean values from the last 1, 5, and 15
minutes (Apache Software Foundation, 2016). The
exponential weighted moving mean is calculated, as-
signing higher weights to the most recently observed
measurements.

These metrics contain a history of the last minutes,
already summarized. If the program considers only
the throughput value of the moment when the meta-
data is searched, it would be subject to oscillations
from other sources, for example, pauses of the JVM
for Garbage Collection. The frequency of compaction
parameter changing would be much higher, increas-
ing the costs. The mean value of the last 5 minutes
was chosen because this value is enough to perceive
changes in the characteristics of an IoT environment.

The read metric ClientRequest.Read.Latency.
FiveMinuteRate1 and the write metric ClientRe-
quest.Write.Latency.FiveMinuteRate proved to be re-
liable during the experiments, representing the pro-
portion values as defined in the Cassandra Stress
Tool. These metrics are present in all nodes. Since
they are retrieved only every 30 seconds, the program
queries all nodes and add the reading and writing
taxes, and then calculates the proportion of readings.

This metric has a limitation. It is defined at server
level, that is, it is not specific to a certain table or
keyspace. Thus, its reliability as an indicator depends
on Cassandra receiving only requests for manipulat-
ing monitored tables. During the tests performed in
this research, the Cassandra Stress Tool only gener-
ated workload for one column family at a time.

4 EXECUTION ENVIRONMENT

The tests were executed in a cluster with ten virtual
machines with the same capacity: a core of the Intel
Xeon® processor; magnetic hard disks of 7200 rpm,
with 50GB of space; 3.2GB of RAM DDR3 memory;
and Gigabit Ethernet interface. Besides the ten cluster
nodes, an extra computer was employed for data gen-
eration and loading into the Cassandra cluster. This
node contains 40GB of disk space, one core of the

1Despite having latency in the name, this metric mea-
sures the throughput.

Intel Xeon® processor, and 2GB of RAM. All nodes
used the Ubuntu Linux version 16.04 as the operating
system, and Cassandra database version 3.11.1.

Some default configurations of Cassandra were
modified. The write timeout values were doubled, and
the reading timeout was increased fivefold. This was
necessary due to the high work level and low process-
ing and I/O power of the hardware available. More-
over, some parameters were modified to allow the
client to connect to different nodes via JMX to mon-
itor metrics, a feature not enabled by default. In the
keyspace configuration, the replication strategy em-
ployed was the SimpleStrategy, and the replication
factor was three.

Simulated data with IoT characteristics were used
to perform the tests. A common aspect of IoT data is
that they expire, and in all scenarios, the executions
enabled the parameter TTL in the column family. Ac-
cording to the chosen scenarios, the TTL varied be-
tween one and three hours. The grace period was de-
fined as 1800 seconds for all executions.

Figure 3 presents the data model in the Chebotko
notation (Chebotko et al., 2015). A universal unique
identifier type that identifies a sensor device was
chosen as partition key. There can be many mea-
suring services for every device, represented in the
service name field. In all scenarios tested in this
study, there is a fixed number of five services for each
sensor, which means five time-series for every device.
The observation time receives decreasing index-
ing because most recent data is more usually queried
and retrieved. The remaining fields receive the device
name and value, with the float type.

Figure 3: Column Family Scheme.

An IoT environment often performs more writings
than readings, and during the tests, we varied the read-
ing percentage from 1% to 30% of the total of opera-
tions. Three queries were defined in CQL (Cassandra
Query Language):

devdat: retrieves all data emitted by a certain de-
vice, passing its identifier. It is responsible for 40% of
the reading operations sent to the database during the
executions. This query has a limiter to retrieve 500
rows at most.
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SELECT * FROM iot_data
WHERE device_id = ?
LIMIT 500

lesrow: retrieves data from a specific time series,
passing as a parameter the device identifier and the
series name. It is responsible for 30% of the queries
and has a 500 rows limiter.
SELECT * FROM iot_data
WHERE device_id = ? AND service_name = ?
LIMIT 500

avgdat: calculates the average of the values observed
by a device measurement. Returns only one line, al-
though covering all registers in the database. It is re-
sponsible for 30% of the stress tool’s queries sent to
the database.
SELECT device_id, AVG(observed_value)
FROM iot_data
WHERE device_id = ? AND service_name = ?

Cassandra has an open-source tool called Cassandra-
Stress tool, capable of generating a pool of tests, with
the functionality of choosing the statistic distribution,
mean, and standard deviation of the generated data.
Version 4.0 of the tool was used and its code was
adapted specifically for the tests. It has several user
modes, and the one chosen , has the user inputting the
configurations through a YAML file. This file con-
tains the column family’s scheme and the value distri-
bution of every column. At this point, it is defined that
every device generates five time series, and, at each
operation, 60 values are inserted in every time series.
The queries are also defined in the file. All YAML
configuration files are available in (Dias, 2018).

The Cassandra-stress tool is multithread. It ex-
ecutes the same task with an increasing number of
threads, up to the point that there are two simulations
with a higher number of threads, on which they had a
loss of performance. In the initial stage of the tests,
some numbers of threads were tested for IoT data
reading and writing operations. The optimal through-
put value was reached with 24 threads in all prelimi-
nary tests, and this number of threads was used during
the research.

When executing the stress tool, it was decided to
run the stress process limited by time, using the pa-
rameter duration expressed in minutes. The opera-
tion finishes exactly when the defined time is reached.
This way, an execution with better configuration will
perform a higher number of operations.

The Cassandra-stress tool generates a log file that
contains values collected in intervals of 30 seconds
and, at the end of the execution, presents a consoli-
dated mean of the throughput, latency, and other exe-
cution metrics of the JVM’s Garbage Collector. Cas-
sandra provides metrics for performance evaluation.

Every node in the cluster generates its metrics, allow-
ing an individual evaluation, but they must be consoli-
dated for an integral assessment of the system. During
the research, two methods were used to retrieve the
metrics. One along the operation observation, to per-
form the database tuning and obtain optimal config-
uration points for the compaction strategy, and other
during the D*DynaConf operation.

It is not convenient for the proposed software to
read files in different network nodes. It can become
a costly task and demand file sharing for all nodes,
which means extra workload in a production environ-
ment. Instead of reading in the disk, C*DynaConf
captures the metrics through the connection driver,
using the JMX protocol. The metrics are the same,
but the method of retrieving them is different. The
periodicity on which C*DynaConf works is also 30
seconds. Therefore, the most used metrics along the
process were:

• Throughput: number of operations by second.

• Latency: time needed for the database system to
answer a request.

• Disk Space: total number of bytes needed to store
the data.

• Execution Time: for a certain number of insertions
and queries to be performed, the most efficient
configuration is the one that finishes first.

• Number of Touched Partitions: directly propor-
tional to the number of read and write operations
performed. The highest performing configuration
is the one that touches more partitions in a specific
period.

Besides the metrics cited above, C*DynaConf also
uses two exponentially weighted moving averages,
called ClientRequest.Read.Latency.FiveMinuteRate
and ClientRequest.Write.Latency.FiveMinuteRate.

4.1 Simulated IoT Scenario

To evaluate the effects of using C*DynaConf, it was
modeled a scenario where the variables observed by
the program change (Figure 4). These variables are
the TTL and the ratio between readings and writings.

An example that can illustrate the simulated sce-
nario is one of a smart city, with a fixed number of
sensors, at night. The control center would have as
the standard configuration the 1 hour TTL and, in
the evening, conditions are the same as in daytime:
the reading operations made by people are responsi-
ble by 10% of the operations. As the night falls, the
operation team would be reduced and, therefore, data
would need a bigger TTL, so that it could be read by a
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remote response team, before expiring. Moreover, at
this stage, Decision Support Systems would read and
load the Data Warehouses, raising the reading propor-
tion for 30%. In the third stage, which would start at
1 AM, monitoring would be made only by computers
and people would be paged only in case of some inci-
dent. At late night, the TTL would be of 3h in order
to the incident response team have enough time to be
ready and go to the control center, before data get ex-
pired. Over the late night, reading operations would
be done only by monitoring tools, and so the reading
proportion would be reduced do 3%. At dawn, the
daylight conditions would be resumed, just like stage
1.

The simulated scenario has four stages, the first
and the last being equal. They have a TTL defined
in 1h, a duration of 150 minutes and the proportion
of 90% writings and 10% readings. The second stage
takes 200 minutes, has TTL defined as 2h, and 30%
of the operations are readings. The third stage lasts
300 minutes, has a TTL of 3h and 3% of readings.

The experiments checked whether the auto-tuning
mechanism could generate a better scenario than a
manual configuration, even if this manual configura-
tion equals a configuration considered optimal before
the environment changes. The initial stage is config-
ured with the optimal parameters found at the tuning
step. The environment then changes its TTL condi-
tions and the ratio between write and read operations.
In the last stage, the initial conditions are used again.

4.2 Tuning of the TWCS Strategy

Some previous experiments were performed to ad-
just the TWCS strategy parameters to optimal perfor-
mance settings and support creating the C*DynaConf
auto-tuning component.

The compaction window size is the main
TWCS parameter and one of the variables considered
by C*DynaConf auto-tuning component. After the
compaction period, SSTables are not compacted by
TWCS anymore. Its minimum value is 1 minute, and
in this study, an interval from 1 to 80 minutes was
investigated in the experiments because, in prelimi-
nary tests, improvements were not observed after this
limit. Several tests were performed to find the op-
timal points, i.e., the settings with better results for
some configuration, changing the TTL, and the ra-
tio between readings and writings. The configurations
were analyzed considering the throughput, the mean
latency – mean response time between all the reading
and writing operations – and the number of touched
partitions. Table 2 summarizes the optimal points for
the C*DynaConf execution.

Table 2: Compaction Window Size - Optimal points (min-
utes).

Scenarios TTL 1h TTL 2h TTL 3h
Reading 3% 2 12 35

Reading 10% 10 10 25
Reading 30% 22 35 60

Simulations were performed to find the most suitable
configurations for the min threshold, which default
value is 4, varying the values from 2 to 14 in a sce-
nario where 10% of the operations are readings. The
optimal values for min threshold, which will be ap-
plied in C*DynaConf, are: 6 when the TTL is set as
one hour, 8 when set as two hours, and 10 for a TTL
of three hours.

5 ANALYSIS OF THE RESULTS

The tests were executed three times with the static
configuration – without using C*DynaConf – to mit-
igate oscillations from the computing environment,
which is not isolated. The column family was cre-
ated with the initial configuration defined as optimal
in the tuning of the strategy. That is, the compaction
window size was defined as 10 minutes, and the min
threshold was defined as 6. Later, the scenario con-
figurations changed, but the configuration did not.

The tests using C*DynaConf were executed five
times. Similarly, in the static execution, the table was
created with the optimal values found during the ex-
ecutions described in Section 4.2. The average of the
three executions in the static scenario was calculated,
as well as the five executions using C*DynaConf.
This average is significant because the standard de-
viation of the number of partitions touched was less
than 2% of the mean, in both cases, being of 1.58% in
the static configuration, and 1.92% with the dynamic
configuration. Along the execution, the C*DynaConf
scenario touched 4.52% more partitions than the static
scenario, evidencing the efficiency of the auto-tuning
mechanism against a static configuration, even though
this static configuration is set to an optimal point.

It must be considered that, from the 800 minutes
of the execution scenario, 300 are executed with the
optimal configuration by the static configuration. This
happened because, of the four stages, the first and the
last, both with the duration of 150m, are equal and
the initial scenario is configured according to optimal
points previously simulated. Table 3 shows the av-
erage number of partitions touched during the execu-
tions with static and dynamic configuration. When
considering only the scenarios where a configuration
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TTL 1h, 10% Reads TTL 2h, 30% Reads TTL 3h, 30% Reads TTL 1h, 10% Reads
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Figure 4: C*DynaConf Test Scenario.

change occurred, the improvement reaches 9.12% in
the number of touched partitions.

Table 3: Average of Partitions Touched by Stage.

Stage Configuration Static Dynamic Gain
1 TTL 1h, 10% Reads 1.247.113 1.230.392 -1,34%
2 TTL 2h, 30% Reads 1.278.766 1.386.875 8,45%
3 TTL 3h, 3% Reads 2.022.161 2.215.174 9,54%
4 TTL 1h, 10% Reads 1.164.596 1.138.618 -2,23%

Total 5.712.636 5.971.059 4,52%

Since the number of touched partitions was higher us-
ing C*DynaConf, an improvement in the throughput
when using the mechanism is expected. The execu-
tion with the throughput closest to the average in ev-
ery group — with and without the auto-tuning – was
chosen to illustrate this behavior. Since the through-
put oscillates abruptly, the moving means with period
5 was used to smooth the curves, shown in Figure 5.

In Figure 5, the scenario’s stages are divided by
a black line. It can be perceived that the execu-
tion with dynamic configuration has higher through-
put in stages 2 and 3, where the configuration differ-
ence with the optimal points of compaction window
size and min threshold resulted in better perfor-
mance.

To better evaluate the stages of the scenario with
distinct parameter configurations, a section of the
curves of Figure 5 is presented in Figure 6. In these
two stages, an improvement of 9.3% in the execution
throughput when using C*DynaConf was perceived.

Regarding the latency, the execution with
C*DynaConf also performed better than the execution
of the static configuration. The execution latency for
every configuration is presented in Table 4. In the ex-
ecutions with the number of touched partitions closest
to the mean, the dynamic configuration latency had a
4.09% lower latency.

Table 4: Average Latency (ms).

Stage Static Dynamic Gain
1 183,4 185,4 -1,09%
2 238,0 220,1 7,10%
3 189,4 172,1 9,13%
4 185,6 188,6 -1,62%

Total 199,7 191,6 4,09%

The latency also indicates another benefit for the en-
vironment using C*DynaConf. In contrast, the same
can not be said about the disk space, presented in
Figure 7. The graphic represents an execution with
static configuration and one with dynamic configura-
tion. The executions were chosen based on the num-
ber of touched partitions being closest to the mean.

In the first execution stage, where the configura-
tions are the same, the space increases in a similar
way for both scenarios. Later, in the stage where the
reading operations changed to 30%, the stored space
decreases. Simultaneously, the inserted data start to
expire, and the insertion throughput does not provide
input data at the same rate as previously. In the third
stage, the TTL increases to 3h, and the disk volume
increases and reaches its peak shortly before the stage
changes. In the third stage, the dynamic configuration
uses significantly more space than the static configu-
ration.

Taking the average of used space along the 800
minutes of execution, the test with C*DynaConf used
3.6% more space than the static configuration. How-
ever, the peak of used space – which can be consid-
ered the most relevant space indicator because it de-
termines the needed space – was 16.7% higher than in
the static environment. The configuration with better
throughput and response time used more disk space.
This kind of permutation between storage space effi-
ciency and response time performance is common to
computer science problems.

In the example scenario cited in 4.1 of a smart city,
the database server could afford an amount of 403.046
sensors collecting 5 observations each minute, using
C*DynaConf. This would represent an increase of
17.443 using the same database server, equivalent to
the database server used in the tests.

6 CONCLUSION

IoT environments can generate a high amount of data,
and the choice of storage mechanisms is critical to ob-
tain some value from this data. The rate of data cre-
ation can change over time because IoT environments
are often dynamic.

In this work, the C*DynaConf was developed.
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Figure 5: Moving Means with 5 Periods of Throughput.
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Figure 6: Moving Means of the Stages, with Different Parameters.
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Figure 7: Total Disk Space Used on the 10 Nodes, in GigaBytes.

This software allows the storage of IoT data in Cas-
sandra to be dynamic and have its configurations au-
tomatically adjusted according to some characteristics
of the received data. C*DynaConf configures, in real-
time and without manual intervention, the parameters
of TWCS. It reached a gain of 4.52% in the number
of performed operations in relation to the manual and
static configuration. Its use must be avoided when the
limit in disk space is more critical than the response
time since C*DynaConf increased the need for disk
space by 16.7%. The parameter calculation consid-

ers the similarity to previously simulated scenarios.
If the execution environment differs from the simu-
lated environments, the benefits to the performance
can be limited, or there can be some loss of perfor-
mance compared to a manual configuration.

As future works, an auto-tuning tools based on ar-
tificial intelligence would be a great advance. This
work was based on static rules, that were previously
computed and do not evolve over time.

In addition, the tuning tests should be executed
in other computing environments, isolated from other
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applications, and with hardware exclusively dedicated
to the tests. Cassandra has data compression features,
involving data compression algorithms to save disk
space. All tests performed in this work were per-
formed with the compression disabled in order not to
degrade the performance. Complimentary tests also
must be performed using compression algorithms to
verify the impact of this in the used disk space and re-
sponse time. The compaction and SSTable generation
operations involve many disk operations, which must
be affected by the SSTable fragmentation reflected
in the disk as a file. As future work, C*DynaConf
could check the node fragmentation level – i.e., the
number of file fragments – and, in case of high frag-
mentation, emit system calls to defragment the files.
Another possible improvement would be the use of a
real IoT dataset. The simulated data used in this work
was meant to reflect a natural environment. However,
the use of data generated in a production environment
should be used to validate the efficacy and efficiency
of C*DynaConf.
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