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Abstract: This exploratory study analyses the feasibility of implementing an early-alert system of academically 
vulnerable students using anomaly detection techniques for cases in which the number of struggling students 
is small in comparison to the total student population. The paper focuses on a semi-supervised approach to 
anomaly detection where a first stage made up of an ensemble of unsupervised anomaly detectors contributes 
features to a second-stage binary classifier. Experiments are carried out using several semesters of college 
data to compare the predictive performance of this semi-supervised approach relative to stand-alone 
classification-based methods. 

1 INTRODUCTION 

In the last fifteen years the domain of academic and 
learning analytics has flourished, with many 
initiatives and projects being put in place to analyze 
and monitor the academic performance of students. 
Higher education has benefited from these 
implementations, that help students improve their 
academic performance and their chances of academic 
success, as well as aiding academic institutions in 
reducing student attrition, an issue that has direct 
impact on both the reputation and bottom line of 
colleges and universities. Most of these systems use 
predictive modeling and machine learning techniques 
to build models that help identify academically 
vulnerable students using student academic data, 
student demographic data, and student activity in the 
course (Arnold & Pistilli, 2012; Benablo et al., 2018; 
Jayaprakash et al., 2014; Lauría et al., 2016, 2019; 
Martins et al., 2019; Romero et al., 2013; Sheshadri 
et al., 2019; Zafra & Ventura, 2012). 

The early alert of students at risk of poor 
performance and academic failure has the virtue of 
enabling early intervention, and early intervention 
enhances the chances of student success, as has been 
repeatedly demonstrated in the literature as well as 
through our work (Dodge et al., 2015; Harackiewicz 
& Priniski, 2018; Herodotou et al., 2019; Jayaprakash 
et al., 2014; Lauría et al., 2013; Lauría & Baron, 
2011; Smith et al., 2012; Yao et al., 2019). 

Different machine learning algorithms have been 
used by researchers to help improve the accuracy of 
their models, ranging from traditional statistical 
approaches like logistic regression (Campbell, 2007), 
to decision trees (Guleria et al., 2014), Support Vector 
Machines (Cardona & Cudney, 2019; Pang et al., 
2017), Bayesian methods (Hamedi & Dirin, 2018), 
neural nets (Calvo-Flores et al., 2006; Okubo et al., 
2017), the XGBoost algorithm (Chen & Guestrin, 
2016; Hu & Song, 2019) and stack ensembles (Lauría 
et al., 2018). 

All of these approaches have a common theme: 
implement a supervised learning framework, where 
models learn from past data and supervised learning 
is accomplished by labeling the data with the student 
performance in the form of numeric or letter grades, 
which can give way to regression or multiclass 
classification; or more typically through the recoding 
of the grades by establishing a minimum satisfactory 
threshold, such that students that perform below that 
threshold are considered at risk. The task of detecting 
struggling students can then be framed as a binary 
classification problem. Historically, this is the 
approach that has been followed by most institutions 
implementing early detection systems. The approach 
is valid, relevant, and relatively easy to implement in 
those institutions with moderate or large numbers of 
academically vulnerable students, as in that case the 
proportions of students in good standing and at 
academic risk are comparable in size -there is not a 
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large difference in proportions- and therefore the 
success of the implementation is influenced by the 
quality of the training data, the accuracy of the 
algorithms used to train the models, and their 
reliability in terms of the bias-variance trade-off 
(successful algorithms try to keep low bias, while 
keeping variance at bay). 

But in those institutions, like ours, where the 
proportion of at-risk students in any given semester is 
small or very small compared to the students in good 
standing (our College, for example has historically 
remained below 7%, with mean values slightly above 
5%), the binary classification problem described in 
the previous paragraphs has the additional wrinkle of 
having to train models with a very high imbalance 
between both classes. Searching for potential at-risk 
students is like finding a needle in a haystack. 
Classifiers naturally tend to identify patterns in the 
majority class in detriment of the minority class. The 
small amount of training data tied to the minority 
class may limit the ability of the classification 
algorithms to produce reliable model parameter 
estimates (He & Garcia, 2009). Different approaches 
have been considered to address this issue, including 
the most popular one of balancing the training data 
through oversampling the minority class, 
subsampling the majority class, or a combination of 
both; but the topic of data balancing remains 
controversial in the machine learning community 
(Provost, n.d.). Still, results have been surprisingly 
good considering the difficulty of the problem, but 
evidently more research is needed. 

One possible consideration, and the one discussed 
in this paper, is to regard the minority class as an 
anomaly or outlier. Anomaly detection is the task of 
detecting patterns that deviate atypically from what is 
expected. A typical characteristic of anomalies or 
outliers is that they are rare occurrences. Although 
anomaly detection can be considered as an extreme 
case of imbalanced classification (Kong et al., 2020), 
there is not much research that considers the 
possibility of shifting the classification paradigm in 
highly imbalanced data settings to one of anomaly 
detection, or improving it with the aid of anomaly 
detection outcomes. The latter approach, especially 
useful in the presence of labeled data, uses the 
outcomes of unsupervised anomaly detector models -
called anomaly scores- as features to be added to the 
labeled training data in a subsequent binary 
classification stage, to try to improve the predictive 
performance of the classifier. This method has a 
recent implementation in the semi-supervised 
XGBOD algorithm (Zhao & Hryniewicki, 2018) and 
is the subject of this paper.  

In this paper we therefore investigate the 
following research questions: 
 Is a semi-supervised anomaly detection 

method a feasible approach for early detection 
of academically at-risk students? 

 How does this approach compare to stand-
alone classification methods? 

 

The paper makes two main contributions: 1) it 
describes a methodology for implementing a two-
stage semi-supervised anomaly detection algorithm 
in for early alert of small populations of struggling 
students, where an ensemble of unsupervised 
anomaly detection algorithms feeds a subsequent 
binary classifier; 2) it empirically compares the 
predictive performance of this approach with those of 
well-established and state of the art classification 
algorithms.  

We begin with a brief review of the extant 
literature on anomaly detection, its applications and 
algorithms, focusing on unsupervised anomaly 
detection methods currently in use. Then we explain 
the semi-supervised methodology we chose to apply 
anomaly detection in our specific domain. We follow 
with a description of the experimental setup, 
including details of the input data, and the algorithms 
used in each of the different experiments. We present 
and discuss the experiments’ results. Finally, we close 
the paper with comments on the limitations of the 
research and our conclusions. 

2 ANOMALY DETECTION: 
ALGORITHMS AND 
APPLICATIONS 

Anomaly detection has proven to be especially useful 
in a broad range of applications, including fraud 
detection, intrusion detection, fault detection, and 
identification of rare diseases in medical data. 
Outstanding values in credit card transactions may 
help analysts detect credit card fraud (Sharmila et al., 
2019). Anomalous traffic patterns in network data can 
help identify malicious attacks (García-Teodoro et 
al., 2009). And the automated analysis of medical 
images using outlier detection techniques can help 
detect brain tumors (Wang et al., 2020). 

As mentioned before, an anomaly or outlier is an 
observation that strongly deviates from the normal 
expectation. This means that an anomaly detection 
method should identify a decision function that 
separates normal from anomalous. But the task is 
challenging for several reasons: (i) the boundary 
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between normal and abnormal may not be clear cut; 
(ii) the notion and magnitude of an anomaly may be 
domain specific; (iii) data may be noisy; (iv) labeled 
data for training and validation purposes is usually 
scarce. 

Numerous anomaly detection algorithms have 
been developed, drawn from traditional statistics, 
machine learning and lately deep learning. Their 
formulation is determined by the problem domain, the 
characteristics of the data (structured / unstructured), 
and availability of labeled data. It is not the purpose 
if this paper to provide a survey of anomaly detection 
methods, we refer the audience to (Chandola et al., 
2009). In this paper we will focus on a set of 
unsupervised algorithms (unsupervised anomaly 
detection is the most common approach as it does not 
require labeled training data) and XGBOD as a semi-
supervised technique. The anomaly detection 
algorithms considered, given the structured nature 
and limited dimensionality of the data are the 
following: 
 K-nearest neighbors, (Knorr et al., 2000), 

referred to as KNN, a distance-based method, 
and closely related to the classifier of the same 
name. This family of methods assumes that 
normal observations occur close to each other 
whereas anomalies occur far away from their 
closest neighbors. 

 Isolation Forest (Liu et al., 2008) uses 
recursive partitioning to create a tree structure 
to isolate anomalous data points -anomalies 
are easier to isolate and therefore have shorter 
tree path length. The process is repeated over 
multiple random trees and an average path 
length is computed, which is used as the 
outlier detector decision function. 

 Local Outlier Factor, or LOF (Breunig et al., 
2000) computes a score (called local outlier 
factor) that measures the local deviation of the 
data point with respect to the surrounding 
neighborhood, and with it its degree of 
anomaly. 

 One-class SVM (Schölkopf et al., 2001) is an 
unsupervised extension of support vector 
machines that learns from a dataset containing 
data of only one class, and with it is able to 
identify anomalous data (outliers). 

Unsupervised anomaly detection algorithms are 
sensitive to noise. Therefore combining them in an 
ensemble typically provides more stable results, an 
approach that follows the well-established ensemble 
methodology in supervised learning (Lauría et al., 
2018; Zimek et al., 2014). The idea of extracting 
representations from the data through anomaly 

detection and inserting them as features in a 
classification setting was introduced by (Micenková 
et al., 2014) and (Aggarwal & Sathe, 2015). The 
XGBOD algorithm (Zhao & Hryniewicki, 2018) 
follows this same approach and derives its name from 
its use of the state of the art XGBoost classifier (Chen 
& Guestrin, 2016) in its second stage. In this paper 
we use XGBoost, but we also implement Random 
Forests (Breiman, 2001) and logistic regression as 
alternative second-stage classifiers with the purpose 
of widening the analysis of the predictive 
performance of this semi-supervised ensemble 
technique. We also consider different ways of 
combining multiple anomaly scores: averaging, 
maximization, straight forward use of all anomaly 
scores or feature selection (for details of the algorithm 
see section 3).  

3 SEMI-SUPERVISED METHOD 

We implement a two stage semi-supervised approach 
to train the models, with a first stage made up of an 
ensemble of anomaly detectors and a second stage 
given by a binary classifier.  

In training mode: (see Figure 1) 
 In Step(i) k anomaly detection algorithms 

1 ... kA A are applied on training dataset trnD  

and learn anomaly scores and decision 
functions algorithms 1 1 ,,  ...  k ksc df sc df .  

 In Step(ii) anomaly scores are chosen using 
some criterion 1(  .. )ksc sc : all scores, the 

average of the scores, the best anomaly score, 
or a feature selection of anomaly scores. In the 
original XGBOD paper, the selection of 
anomaly scores is made by using a metric that 
balances the accuracy and diversity of the 
ensemble of anomaly detectors See (Zhao & 
Hryniewicki, 2018) for details. 

 In Step(ii), data set trnD  is supplemented with 

the selected anomaly scores 1(  .. )ksc sc , 

resulting in ( )
1[ ; (  .. ); ]aug

trn kX sc sc yD . 

 Step(iii) Training Classifier: use data set
( )

1[ ; (  .. ); ]aug
trn kX sc sc yD as input data to 

train model M using classifier C . 
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Figure 1: Training mode. 

In prediction mode: 
 In Step(i), decision functions 1  ...  kdf df are 

applied on data set tstD  to compute predicted 

scores 1 .. kpsc psc . 

 In Step(ii) predicted anomaly scores are 
chosen using the same criterion 

1(  .. )kpsc psc  used during training mode. 

 In Step(iii), data set tstD  is supplemented with 

predicted anomaly scores 1(  .. )kpsc psc , 

resulting in ( )
1[ ; (  .. ); ]aug

tst kX psc psc yD . 

 Step(iv) In it, binary classification model M

is applied on data set ( )aug
tstD  to make 

predictions. The classifier reports predictions 
and probability of predictions ˆ ( ; )tst tsty prob . 

4 EXPERIMENT SETUP 

In the experiments we investigated whether the semi-
supervised ensemble approach described in section 3  
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Figure 2: Prediction mode. 

when compared to binary classifiers. The goal is to 
learn from the data in order to detect early on in the 
semester (6 weeks into a semester of 15 weeks) those 
students that are struggling in their course.  

4.1 Datasets 

For the purpose of this study we used four semesters of 
undergraduate 15-week courses, corresponding to Fall 
2018, Spring 2019, Fall 2019 and Fall 2020, enriched 
with student academic data, some demographics and 
course activity metrics collected from the LMS logs. 
Data was extracted from four sources: (i) student 
demographic and aptitude data; (ii) course related data 
and students’ final grades in those courses; c) student 
activity data logged by the LMS, corresponding to the 
first six weeks of each semester; (iv) a composite score 
aggregating grades on assignments, projects, exams 
and any other activities contributing to the student’s 
final grade in the first six weeks of the semester, logged 
by the LMS’s gradebook tool. Data was subsequently 
transformed and cleaned into a complete unit of 
analysis without missing values. 

The LMS activity data (number of LMS logins, 
number of access to LMS resources, and total activity 
over all LMS tools) was aggregated weekly into 
frequency values computed as ratios between the 
student activity and the average class activity, to 
account for potential variability among different 
courses. 
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Data was pre-processed and aggregated into a unit 
of analysis -students’ data in each course over four 
semesters. The binary label for each record in the unit 
of analysis was computed by recoding the student’s 
final grade in the course: those students with a final 
letter grade C or more were considered in good 
standing, whereas those students with less than a final 
letter grade C were considered academically 
vulnerable (at risk) students. Table 1 depicts the file 
structure of the unit of analysis.  

Table 1: File structure of the unit of analysis. 

Predictors Data type
Enrolment Numeric
Online Categorical
Age Numeric
GPA Numeric
Aptitude Score (SAT/ACT) Numeric
Gender Categorical
Class (Fresh, Soph, Jr, Sr) Categorical
LMS Total Activity (weeks 1-6) Numeric x 6
Login (weeks 1-6 + sum) Numeric x 6
Content Read (weeks 1-6 + sum) Numeric x 6
Gradebook Composite Score (wks 1-6) Numeric
Target feature: Academic_Risk (1=at risk; 0=good 
standing) 

 
The full unit of analysis contained data of all four 

semesters (Fall 2018 – Spring 2020) with the following 
proportions of good-standing and at-risk students (see 
Table 2): 

Table 2: Data per semester. 

Semester Total 
Count

Percent at 
risk 

Fall 2018  10809   6.6%
Spring 2019  14133   6.8%
Fall 2019  11089   6.1%
Spring 2020  17206   3.0%

4.2 Methods 

Each experiment was performed by randomly 
selecting a semester and subsequently partitioning the 
semester into training and testing data using an 80/20 
ratio. We selected 30 randomly chosen (semester, 
partition) pairs, creating 30 dataset pairs (training and 
testing) to perform experiment runs, using 4 anomaly 
detection methods with varying parameters, 3 
selection criteria for anomaly scores (all, average, 
max) and 3 binary classifiers. We also implemented a 
feature selection criterion of the anomaly scores prior 
to the XGBoost classifier as presented in the XGBOD 
original paper. 

Additionally, we trained all three classifiers with 
balanced data for comparison purposes (see section 
4.2.3). This amounted to a total of 16 experiments 
repeated over 30 runs, for a total of 480 experiments 
(for details see section 4.3 and Table 3). 

4.2.1 Anomaly Detection Algorithms 

Four detection algorithms were used in the experiment: 
 KNN: K nearest Neighbours with mean, 

median and largest distance to the kth 
neighbour and with 
k=[1,2,3,4,5,6,7,8,9,10,15, ..,100]. 

 LOF: Local Outlier Factor with k=[1,2,34,5, 
6,7,8,9,10,15,..,100]. 

 IForest: Isolation Forest with number of base 
estimators = [10, 30, 50, 70, 100, 150, 200, 
250]. 

 OCSVM: One-class Support Vector Machines 
with radial basis kernel and different upper 
bound on the fraction of training errors. 

 

A total of 115 anomaly scores were added to each 
dataset. 

4.2.2 Classifiers  

We used three classification algorithms as second stage 
classifiers: 
 XGB: The XGBoost algorithm  
 RF: Random Forests 
 LOG: regularized logistic regression. 

 

The XGBoost classifier (Chen & Guestrin, 2016), 
a tree-based classification algorithm, is currently one 
of the most powerful supervised methods and a 
popular choice in Kaggle competitions. 

The Random Forests algorithm (Breiman, 2001) 
is a well-regarded ensemble learning technique that 
builds multiple random CART trees and outputs the 
most frequently predicted class. 

Logistic regression is the workhorse of traditional 
statistics and an effective classifier when dealing with 
data that holds both numeric and binary data. 

For both XGBoost and Random Forests we fixed 
the number of estimators to 600. We did not perform 
any further hyperparameter tuning, to reduce the 
computational cost of the experiment. 

4.2.3 Balanced Data 

For comparison purposes, the three classifiers were 
also trained with balanced data, after balancing the 
proportions of good-standing and at-risk students, for 
each of the 30 randomly generated datasets, The 
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SMOTE algorithm (Bowyer et al., 2011) was used for 
balancing the data. SMOTE (Synthetic Minority Over-
sampling Technique) is an oversampling method that 
augments the minority class by synthesizing new 
minority samples instead of using a simple duplication 
of samples. 

4.2.4 Computational Details 

The models were coded in Python 3.7 using several 
libraries. All the unsupervised anomaly detection 
algorithms were implemented using the PyOD library 
(Zhao et al., 2019). Although PyOD provides a turn-
key implementation of XGBOD, we decided to code 
our own version of the algorithm to have better 
control and add flexibility to the execution process, 
including other second-stage classifiers besides 
XGBoost, and different anomaly scores selection 
criteria. For the classifiers we used the Scikit-learn 
library (Pedregosa et al., 2011), including its API for 
XGBoost. The experiments were run on an Intel Xeon 
Silver server, 20 cores 3.00GHz, 2 threads per core, 
32GB RAM, 1 GPU (Quadro P4000 8GB). Parallel 
processing features were used when available for both 
the first stage (anomaly detection) and second stage 
(binary classification) algorithms to make use of the 
multi-core platform and with it reduce the execution 
time of the experiments.  

4.2.5 Assessment 

At prediction times the following predictive 
performance metrics were collected: 
 ROC_AUC: the AUC (area under the curve) 

of the receiver operating characteristics 
(ROC) curve, that plots TP rate vs FP rate, is 
the most widely used metric to summarize 
binary classification performance. Although it 
is still the most popular metric in imbalanced 
classification it has received criticism in the 
case of highly imbalanced settings as it can be 
overly optimistic due to unreliability of the 
estimates under class rarity (Fernández et al., 
2018). 

 PR_AUC: The AUC of the precision-recall 
curve assesses the performance of the 
classifier on the minority class and can 
therefore be more informative of the algorithm 
performance than the ROC AUC metric 
(Davis & Goadrich, 2006). 

 Training and Prediction execution time, 
measured in seconds: this could be relevant, 
particularly for prediction, as the large 
ensemble of anomaly detectors can introduce 
a considerable overhead.  

Table 3: Predictive Performance Results.  

 ROC AUC PR AUC TRAIN TIME PREDICT TIME 

 Mean SE Mean SE Mean SE Mean SE 

XGB 0.9511 0.0012 0.5990 0.0219 1.78 0.06 1.35 0.06 

XGBOD 0.9502 0.0012 0.5946 0.0229 320.96 21.77 99.35 14.42 

ALL_XGB 0.9508 0.0012 0.5959 0.0217 320.31 26.51 99.27 7.78 

AVG_XGB 0.9514 0.0012 0.5998 0.0217 322.71 18.00 102.14 12.22 

BEST_XGB 0.9510 0.0012 0.5984 0.0219 315.24 21.47 95.19 11.06 

SMOTE_XGB 0.9430 0.0014 0.5346 0.0267 2.73 0.12 2.73 0.12 

RF 0.9433 0.0017 0.5914 0.0198 3.58 0.02 3.58 0.02 

ALL_RF 0.9246 0.0022 0.5523 0.0205 318.25 31.36 105.84 9.44 

AVG_RF 0.9435 0.0017 0.5912 0.0202 319.51 29.13 114.39 8.91 

BEST_RF 0.9433 0.0017 0.5918 0.0200 329.42 26.86 99.18 11.12 

SMOTE_RF 0.9426 0.0014 0.4900 0.0209 4.48 0.07 4.48 0.07 

LOG 0.9261 0.0028 0.5178 0.0206 1.12 0.02 1.12 0.02 

ALL_LOG 0.8513 0.0075 0.3007 0.0162 315.98 24.03 105.44 11.09 

AVG_LOG 0.8861 0.0075 0.3866 0.0213 314.58 26.37 96.24 8.56 

BEST_LOG 0.9023 0.0063 0.4501 0.0224 312.50 25.41 103.46 9.34 

SMOTE_LOG 0.9343 0.0019 0.5535 0.0211 1.93 0.03 1.18 0.03 
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4.3 Results and Discussion 

Table 3 displays the assessment of mean predictive 
performance of the different configurations of the 
semi-supervised approach considered (second stage 
trained by adding all anomaly scores, by adding the 
average anomaly score, by adding only the maximum 
anomaly score, and by using the feature selection 
criterion on the anomaly scores described in the 
XGBOD paper), as well as the mean predictive 
performance of the stand-alone classifiers trained 
with both the original training data, and after 
balancing the training data: 
 

 XGB, RF, LOG: no anomaly detection scores 
used by second stage classifier (stand-alone 
classifier, original training data) 

 ALL_XGB, ALL_RF, ALL_LOG: all 
anomaly detection scores were used by the 
second stage classifier. 

 AVG_XGB, AVG_RF, AVG_LOG: the 
average anomaly detection score was used by 
the second stage classifier. 

 BEST_XGB, BEST_RF, BEST_LOG: the 
maximum anomaly detection score was used 
by the second stage classifier. 

 XGBOD: the XGBOD algorithm with 
anomaly score feature selection as proposed 
by (Zhao & Hryniewicki, 2018). 

 SMOTE_XGB, SMOTE_RF, SMOTE_LOG: 
stand-alone classifiers trained after balancing 
the original training data (as described in 
section 4.2.3).  

 

For the XGBoost algorithm, adding the average 
anomaly score slightly improved both ROC_AUC 
and ROC_PR: ROC_AUC for AVG_XGB was 
0.9514 and PR_AUC was 0.5998, compared to 
ROC_AUC=0.9511 and PR_AUC=0.5990 for the 
XGBoost stand-alone classifier, trained without 
anomaly scores. The other approaches (XGBOD, 
ALL_XGB, BEST_XGB) degraded the performance 
instead of improving it. All algorithms performed 
better in both metrics than the balanced alternative 
(SMOTE_XGB). Random Forests had mixed results: 
AVG_RF performed slightly better only for 
ROC_AUC (0.935 vs 0.9433), but the rest of the 
approaches had either the same or worse performance 
metrics than RF. All classifiers performed better than 
the balanced alternative (SMOTE_RF), except 
ALL_RF for the ROC_AUC metric. 

We ran the Wilcoxon signed test for both 
XGBoost and Random Forests comparing the metrics 
of the classifier trained without anomaly scores with 
each of the different methods for choosing anomaly 

scores, and the tests were not strong enough to 
identify significant differences (p>0.4 in all cases). 
There were though significant differences in all cases 
(p<0.001) between all unbalanced configurations and 
the balanced configurations for both XGBoost and 
Random Forests (SMOTE). 

For logistic regression, the addition of anomaly 
scores to the training data generally degraded the 
performance metrics. The balanced data approach 
also outperformed all other approaches, including 
training the model without anomaly scores: 
ROC_AUC was 0.9343 for SMOTE_LOG compared 
to 0.9261 for LOG. And PR_AUC was 0.5535 
compared to 0.5178 for LOG. 

Execution time exposes the overhead of running 
115 unsupervised anomaly detectors on the data 
before training the classifier or using it for prediction. 
Table 3 shows that it took about 3 seconds per outlier 
detector in training mode and a little less than a 
second per outlier detector in predict mode. Instead, 
the execution time of the binary classifiers was 
negligible in comparison. Training time is not an 
actual issue given that training does not typically 
happen in real time; but larger execution times in 
prediction mode could pose a problem. This is of 
course a relatively minor issue as it is dependent on 
the hardware platform used to train and implement 
the prediction models, but is worth mentioning when 
comparing the anomaly detection approach with 
binary classification approaches, which do not require 
the computation of added anomaly scores. 

5 CONCLUDING COMMENTS 

In summary, the anomaly detection models did not 
seem to be able to learn representations that 
efficiently contribute to the second-stage classifiers. 
It is a reasonable assumption that the effectiveness of 
the semi-supervised approach could be dependent on 
the domain in which it is applied. Anomalies are rare 
events by definition, but a small proportion of at-risk 
students may not necessarily qualify as a set of 
anomalies; the difference between good-standing and 
struggling students may not be big enough and 
therefore those struggling students may not 
necessarily qualify as outliers, the patterns of 
academic struggle being subtler, which in turn would 
require more fine tuning of the thresholds that 
determine anomaly scores. 

The current research has several limitations. We 
did not perform any hyperparameter tuning of the 
classifiers to limit the execution time of the 
experiments (XGBoost and Random Forest, would 
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have benefitted from performance tuning). Also, the 
study imposed four unsupervised outlier detection 
algorithms. They are among the most relevant 
algorithms for the type of data considered, and we did 
vary their parameters to produce multiple anomaly 
outcomes, but still, the choice was limited. Other 
algorithms could also be included to increase the 
variety of the outlier detectors. Subsampling could be 
applied to the data used to train the anomaly detection 
algorithms as proposed by (Aggarwal & Sathe, 2015). 
And anomaly scores resulting from the anomaly 
detection algorithms could be subjected to 
dimensionality reduction, consequently inducing 
features to be used by the second-stage classifier, 
rather than directly adding the anomaly scores as new 
features. 

The objective of the study is exploratory and has 
the purpose of exemplifying the approach applied to 
early detection of small populations of students at risk 
and providing a proof of concept, as well as 
empirically testing its performance. The results are 
non-conclusive as to the benefits of this approach, but 
nonetheless, the study is an initial application of the 
use of a semi-supervised framework int this domain 
that combines anomaly detection and binary 
classification. 

Hopefully, this paper will open a research avenue 
for other researchers and practitioners towards new 
methods in early detection of academically at-risk 
students using machine learning techniques. 
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