
Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over
Heterogeneous Devices with Reliable Message Delivery

Vandré Leal Cândido a and Flávio de Oliveira Silva b

Faculty of Computing, Federal University of Uberlândia, Brazil

Keywords: Runlet, Internet of Things, AMQP, RabbitMQ, Interactivity, Reliability.

Abstract: IoT uses different hardware and software components in a mixed environment, and for the management of
the devices, interoperability and reliability are key issues. Interactive job execution is another important con-
cept for the management in different scenarios. The literature lacks a tool with such characteristics. This
work fills the gap in the state-of-the-art by introducing a tool that achieves interactive job execution over a
network of heterogeneous devices with reliable message delivery. The tool leverages the power of the pro-
tocol Advanced Message Queuing Protocol (AMQP) and the message broker RabbitMQ. AMQP is an open
standard Machine-to-Machine (M2M) publish/subscribe messaging protocol optimized for high-latency and
unreliable networks that enables client applications to communicate with conforming messaging middleware
brokers. RabbitMQ is an open-source message broker that supports various message protocols. The architec-
ture of Runlet is discussed in detail, including the reasoning behind architectural decisions. The evaluation
is conducted through an experimental approach that assesses interactivity and reliability on a testbed of de-
vices composed of single-board ARM computers and laptop devices. The experimental results show that the
application offers interactivity under different scenarios and provides reliable message delivery after node and
server failures.

1 INTRODUCTION

The heterogeneous and dynamic nature of the Inter-
net of Things (IoT) creates challenges that go beyond
the traditional computer-based network model. These
challenges are commonly related to the unpredictable
mixture of devices with individual capabilities that
may pose a barrier to achieving interoperability and
managing devices in the context of IoT (Elkhodr et al.,
2016).

The IEEE describes interoperability as “the abil-
ity of two or more systems or components to ex-
change information and to use the information that
has been exchanged” (Geraci et al., 1991). Achiev-
ing interoperability is indispensable for devices across
different networks and a difficult task given the IoT’s
competitive nature and rapidly evolving wireless tech-
nologies. This commonly results in integration is-
sues where heterogeneous devices cannot communi-
cate with one another (Elkhodr et al., 2016).

In addition to that, IoT solutions need to handle
unique management scenarios that go beyond the tra-

a https://orcid.org/0000-0001-7737-8878
b https://orcid.org/0000-0001-7051-7396

ditional capabilities of remote control, monitoring,
and maintenance of devices. For example, a sys-
tem that supports remote monitoring of tasks across
a fleet of heterogeneous devices may highly benefit
from a tool that offers the ability to monitor and trou-
bleshooting errors in real-time.

This work fills the gap in the state of the art by pre-
senting a tool that achieves interactive job execution
over a network of heterogeneous devices with reliable
message delivery. The tool, named Runlet, grants the
user the capability of interacting with the shell from
any connected device during job execution, which is
particularly useful in a scenario that requires user in-
put for successful script execution. A few potential
use areas include Continuous Integration (CI), Con-
tinuous Delivery (CD), and remote monitoring and
management of devices.

Runlet is a cross-platform application that runs
across many architectures and operating systems. It
uses both the protocol AMQP and the broker Rab-
bitMQ for reliable message delivery. The protocol
AMQP is an open standard M2M publish/subscribe
messaging protocol optimized for high-latency and
unreliable networks that enables client applications to

260
Cândido, V. and Silva, F.
Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over Heterogeneous Devices with Reliable Message Delivery.
DOI: 10.5220/0010467702600267
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 260-267
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



communicate with middleware brokers. RabbitMQ
is an open-source lightweight message broker that
supports various messaging protocols and can be de-
ployed on-premises and in the cloud.

An experimental evaluation assesses interactivity
and reliability on a testbed of heterogeneous devices
ranging from single-board ARM computers to laptop
devices. The results show that Runlet is interactive
under different use cases and that message delivery is
reliable after node and server failures.

This paper is organized as follows. Section 2 eval-
uates the related work. Section 3 describes the ap-
plication and the reasoning behind architectural deci-
sions. Section 4 describes the experimental evaluation
used to evaluate interactivity and reliability. Finally,
Section 5 presents our conclusions.

2 RELATED WORK

There are several studies that evaluate messaging pro-
tocols and distributed message brokers. However, to
the best of our knowledge, there is no other academic
study pursuing the goal of performing interactive job
execution across a fleet of network devices with reli-
able message delivery.

A selection of academic studies is presented next,
ranging from monitoring systems to surveys that eval-
uate messaging protocols and message brokers. How-
ever, no mention is made of interactive job execution
in none of the studies.

(Krishna and Sasikala, 2019) introduces a health-
care monitoring system that monitors patients’ vitals
in real-time and sends the information to a web server
for persistence and decision-making. Sensors are con-
nected to a Raspberry Pi that acts as a gateway and
sends the data to a server using AMQP through the
board’s Wi-Fi.

(Liang and Chen, 2018) introduces the design of a
real-time data acquisition and monitoring system for
medical data on smart campuses. The design includes
both AMQP and RabbitMQ for data exchanging and
the HL7 protocol to facilitate information manage-
ment via standard-compliant messages. The HL7
standard applies to the exchange of medical records
before different medical systems, which is also the
main difference between this study and (Krishna and
Sasikala, 2019) given that both introduce a similar
concept for healthcare monitoring.

(Kostromina et al., 2018) presents a concept for
a resilient meteorological monitoring system using
AMQP. The system design considers the need for sta-
ble and resilient delivery of data without losses, even
in case of network outages and a predictive monitor-

ing system that monitors memory usage on single-
board computers to prevent system crashes caused
by lack of available memory. RabbitMQ is the se-
lected message broker since it implements the proto-
col AMQP and has features like federation, cluster-
ing, and persistence.

(Krishna and Sasikala, 2019) is the only study that
presents the prototype’s screen captures alongside this
study. Interactive job execution is not applicable in
none of the studies apart from Runlet, which is further
motivation for conducting this study.

3 RUNLET

This study aims to fill the lack of a tool for interactive
job execution by introducing an interactive job execu-
tion approach with reliable message delivery across
heterogeneous devices. The queuing protocol and the
message broker are two key elements discussed in this
section, which also details the architecture and rea-
soning behind technology choices.

Runlet is a cross-platform application that features
a daemon and a desktop manager. The desktop man-
ager includes both the daemon and a full-featured
GUI that provides an easy to use interface for manag-
ing jobs across a fleet of connected devices. The Ad-
vanced RISC Machine (ARM) distribution supports
ARMv6, ARMv7, and ARM64.

Next, we present the reasoning and choices for the
queuing protocol and the message broker. In the se-
quence, we present Runlet’s architecture.

3.1 The Queuing Protocol

CoAP and XMPP protocols are discarded due to some
of their characteristics described in the previous chap-
ter. XMPP does not provide any Quality of Ser-
vice (QoS) options (Dhas and Jeyanthi, 2019), which
makes the protocol not suitable for Runlet, ensuring
reliable message delivery is a crucial aspect of the
application. CoAP seems like a great option from
a resource usage and network bandwidth standpoint.
However, it is discarded due to its lack of support
for the publish/subscribe model (Karagiannis et al.,
2015). The publish/subscribe model is a must-have
for reaching optimal performance as job logs are up-
dated continuously.

MQTT is an excellent option and very similar to
AMQP in many aspects. They both have brokered ar-
chitectures, support the publish/subscribe model, use
TCP for transport and TLS/SSL for security, offer
QoS levels for reliability, with MQTT having the ad-
vantage of smaller header size (Dhas and Jeyanthi,

Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over Heterogeneous Devices with Reliable Message Delivery

261



2019). However, extra features provided by AMQP
made the trade-off advantageous despite the increased
overhead and latency. AMQP has the advantage
of having flexible message routing, reliable message
queues with fine-grained control over bindings, and
multiple types of exchanges (AMQP, 2020). After
a detailed analysis of the different protocols, we se-
lected the AMQP protocol.

3.2 The Message Broker

RabbitMQ is the selected broker for the following rea-
sons (RabbitMQ, 2020):

• Web management UI for short-term metric col-
lection and monitoring offers many administrative
features convenient for development.

• Built-in support for using long-term metric visu-
alization tools such as Prometheus and Grafana in
production.

• Concise documentation and tutorials.

• Feature flag subsystem for upgradability.

ActiveMQ Artemis also comes with a web manage-
ment console, supports metric tools, and has well-
organized documentation and active community (Ac-
tiveMQ, 2020). Nonetheless, the decision ultimately
came down to a personal preference for RabbitMQ’s
management tool and built-in support to Prometheus
and Grafana in production. Qpid Broker-J and Qpid
C++ Broker, on the other hand, fall short on develop-
ment tools and lack support for metrics (Qpid, 2020).
The Qpid community is also not as active and engaged
as both RabbitMQ and ActiveMQ communities.

3.3 Architecture

This section details the conceptual architecture com-
posed of the following components: GUI, daemon,
server, database, and cloud storage. Fig. 1 shows the
conceptual architecture and communication flow be-
tween components.

3.3.1 GUI

The Graphical User Interface (GUI) is a cross-
platform application that runs on all major operat-
ing systems such as Mac, Linux, and Windows. It
provides a friendly interface for the management and
monitoring of devices and applies reactive program-
ming concepts to observe, compute, and react to
changes.

The GUI is built with JavaScript, HTML, and CSS
on top of well-adopted open-source libraries such
as Electron, React, TypeScript, MobX, Blueprint,

Figure 1: Runlet Conceptual Architecture.

Xterm.js, and Jest. Electron is a library developed
by GitHub for building cross-platform desktop appli-
cations by combining Chromium and Node.js into a
single runtime environment system (Electron, 2020).
Chromium is used for rendering pages, while the
Node.js API is used for lower-level system actions
such as managing process events and interacting with
the file system.

3.3.2 Daemon

The daemon, written in Golang, is responsible for job
orchestration and has an internal queue that executes
jobs in the received order, ’First In, First Out’ (FIFO),
as well as a parallelism controller that helps to prevent
CPU throttling by limiting the number of jobs that run
in parallel. It runs on machine startup as a background
process capable of recovering from crashes through a
process restart.

Each daemon communicates with the server di-
rectly. It acts both as a producer and a con-
sumer simultaneously, meaning that jobs are trig-
gered and executed from any active node in the net-
work. It supports the execution of selected methods
via Command-Line Interface (CLI) by appending the
term runlet to method names, which is useful for
script automation and remote access on devices with-
out a graphical interface.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

262



The daemon is also responsible for End-to-End
Encryption (E2EE) of logs, local disk persistence, and
data dispatch for cloud storage. Logs are first en-
crypted and persisted on the local disk for quick ac-
cess and then submitted to the cloud storage server.
Logs are only retrieved from the cloud when the local
copy is outdated, according to the rules:

1. If the Log Does Not Exist Locally: a local copy
is created from the remote copy and used for read-
ing operations.

2. If Log Exists Locally: the hash of the local copy
is sent to the server and compared with the hash
present in the metadata of the remote copy. The
remote copy replaces the hash’s local copy if it is
different, and the remote copy has a more recent
modification date. Otherwise, the local copy is
used for reading operations, avoiding unnecessary
updates.

3.3.3 Database

Runlet uses PostgreSQL, an open-source object-
relational database that uses the Structured Query
Language (SQL) language and is highly scalable both
in the amount of data it can manage and in the number
of concurrent users it accommodates (PostgreSQL,
2020). The database stores data from users and jobs.
It also provides relational operators to manipulate
data, is highly scalable in terms of data it can store
and supports many concurrent users.

However, the database does not store job logs.
They are shared between devices using RabbitMQ’s
messaging system. This decision reduces security
concerns related to leakage of sensitive information
that records may have and improves performance by
ensuring that updates are queued and delivered reli-
ably without the need for querying and storing large
amounts of data from a database.

3.3.4 Cloud Storage

A cloud-based solution is used exclusively for log
storing. This eliminates ownership costs associated
with managing a data storage infrastructure and en-
sures data durability, availability, and security.

Log storing is accomplished with MinIO, an open-
source distributed object storage server designed to be
cloud-native, performant, scalable, and lightweight.
The server runs as lightweight containers by external
orchestration services and is highly efficient in its use
of CPU and memory resources (MinIO, 2020).

3.3.5 Server

The server is the central point of the architecture and
consists of a NestJS API, a RabbitMQ message bro-
ker, and metric tools Prometheus and Grafana for
monitoring. It orchestrates the communication be-
tween daemons and the message broker through an
API, persists data in the database, and files in the
cloud.

RabbitMQ is the message broker that handles
message exchanging between network devices. It has
two subcomponents: (1) a server operator where all
broker features are configurable, such as clustering,
high availability, persistence, and access control; and
(2) a web-based tool for external management, moni-
toring, and short-term visualization of broker events.

A topic exchange is created for each user. This
type of exchange is used for multicast routing of mes-
sages as it routes messages to one or many queues
bound with a matching binding key. All exchanges
are durable and survive broker restart. On the other
hand, queues are temporary and short-lived to re-
duce workload and avoid leaving unused queues be-
hind failed connections. They are both exclusive, and
auto-deleted, meaning that they are only used by their
declaring connections and are automatically deleted
when the last consumer is gone or cancels its sub-
scription.

Queues are also created following the single re-
sponsibility principle that dictates that each queue has
a single concern. That means that jobs end up having
multiple queues to control execution rather than hav-
ing a single queue for everything.

4 EXPERIMENTAL EVALUATION

This section describes the experiments that evaluate
Runlet in regards to interactivity and reliability. The
server, currently hosted on DigitalOcean, is a stan-
dard droplet with two (2) vCPUs, four (4) GB RAM,
fifty (50) GB SSD storage, and four (4) TB of data
transfer. A vCPU is a processing power unit that cor-
responds to a single hyperthread on a processor core
(DigitalOcean, 2020). The testbed of devices used
for the experiments is presented in table 1, including
device model, CPU, RAM, operating system, and a
nickname used for study reference.

4.1 Interactivity

Two (2) experiments are conducted to evaluate the
user’s capability to interact with job executions and
make decisions when requested.

Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over Heterogeneous Devices with Reliable Message Delivery

263



Table 1: Testbed Devices.

Nickname Device Model CPU RAM Operating System

win Dell G5 Intel Core i7-9750H
@ 2.60GHz 16GB Windows 10

mac Macbook Pro
Late 2013

Intel Core i5-4288U
@ 2.60GHz 8GB macOS Catalina 10.15.3

pi-1 Raspberry Pi
Model B Rev 2

Broadcom BCM2835
ARMv6 @ 700MHz 512MB Raspbian GNU/Linux 10

pi-2 Raspberry Pi 2
Model B Rev 1.1

Broadcom BCM2836
ARMv7 @ 900MHz 1GB Raspbian GNU/Linux 10

pi-3 Raspberry Pi 3
Model B Plus Rev 1.3

Broadcom BCM2837B0
ARMv7 @ 1.4GHz 1GB Raspbian GNU/Linux 9.11

The first experiment verifies the ability to trigger
a macOS job from a Windows manager. The job
is called brew-cask-upgrade and executes two com-
mands: (1)neofetch and (2) brew cu -a. neofetch
is a command-line system tool written in bash that
displays information about the operating system and
hardware (dylanaraps, 2020). brew cu -a is a com-
mand from a brew-cask-upgrade tool, a command-
line tool for upgrading outdated apps installed by
Homebrew Cask (buo, 2020). Homebrew Cask is a
tool that extends Homebrew and is used for instal-
lation and management of macOS applications dis-
tributed as binaries (Homebrew, 2020).

The second experiment shows how a Raspberry PI
can be remotely monitored using htop, which is an in-
teractive text-mode process viewer for Unix systems
(Muhammad, 2020). This viewer is highly config-
urable and gives the option to view information such
as CPU load, memory consumption, hostname, tasks,
load averages, and uptime.

4.2 Reliability

Reliability stands for the system’s ability to deliver
queued messages after failures. This study investi-
gated two types of failures: (1) node failure and (2)
server failure.

1. Node Failure: the number of nodes in the clus-
ter is downscaled from four (4) nodes to a single
node. This change does not cause any issues as
RabbitMQ tolerates individual nodes’ failure as
long as there are other known nodes in the clus-
ter at the time. It may also not affect queues as
the current infrastructure uses queue mirroring to
replicate queues across nodes.

2. Server Failure: the single node is removed for
a brief period to observe how the broker reacts in
the absence of nodes. It does not cause any signifi-
cant issues to the server apart from becoming tem-

porarily unavailable as the broker is configured to
use lazy queues, a policy that moves messages
from a large number of queue types to disk as
early as possible and loads them in memory only
when requested. These messages are expected to
be retrieved from the disk after new nodes become
operational. All queues are also likely to return.

4.3 Discussion

This section describes the results obtained from ex-
periments. The results presented throughout this sec-
tion are supported by screenshots of executed jobs and
metrics from Prometheus and Grafana.

4.3.1 Interactivity

The first experiment triggers a job on a Windows
desktop manager to update system applications on a
macOS device using homebrew. Fig. 2 shows the
output of command (1) neofetch.

Figure 2: Output of (1) neofetch.

Fig. 3 shows an excerpt of the output generated by
(2) brew cu -a. The initial output lists all installed ap-

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

264



Figure 3: Output of (2) brew cu -a before confirmation [y].

Figure 4: Output of (2) brew cu -a after confirmation [y].

plications, including current and latest versions, and
a list of outdated apps. The option -a passed with
brew cu indicates that applications with the auto-
update functionality are also listed. The question ”Do
you want to upgrade 7 apps or enter [i]nteractive
mode [y/i/N]?” is shown after the list of outdated apps

and requires user interaction. Fig. 4 shows an ex-
cerpt of the upgrading process that takes place after
user confirmation [y]. The progress of each upgrade
is displayed individually, which helps to visualize the
overall progress.

Figure 5: Initial output of htop.

Figure 6: htop setup results for keyword ’runlet’.

The second experiment triggers a job on a Windows
desktop manager to display running processes of a
Raspberry PI using htop. Fig. 5 shows the initial out-
put of htop, which is a list of system processes includ-

Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over Heterogeneous Devices with Reliable Message Delivery

265



ing PID, user, percentage of CPU and memory used,
virtual memory, and time in execution. The bottom
bar has all the options that are available through func-
tion keys.

Fig. 6 shows all the options available under setup
when the key F2 is pressed. These options can cus-
tomize meters shown at the top and change display
options, colors, and active columns. Navigation using
arrow keys is done with no hassle as Runlet can cap-
ture all keyboard strokes. The key F10 can be pressed
at any time to indicate that the setup is done and return
to the previous screen.

4.3.2 Reliability

Reliability is investigated by observing the broker’s
behavior considering two failure events. The impact
is observed through a Grafana dashboard that moni-
tors the following metrics using Prometheus:

• Total number of nodes, queues, connections, and
channels.

• Per-node memory available.

• Messages published, delivered, and routed to
queues in a per-node and per-second granularity.

• Total number of queues, channels, and connec-
tions per node per second.

The first experiment investigates how the broker be-
haves to node failure by changing the cluster compo-
sition from four (4) nodes to a single node at about
16:15. Figure 7 shows that all messages, queues,
channels, and connections are kept in the remaining
node after removing three (3) nodes, meaning no mes-
sages are lost.

Grafana may use different colors to indicate the
same node across graph panels. For example, green
is designated for node one (1) on messages published,
delivered, and routed to queues, while yellow is des-
ignated to the same node for total queues, channels,
and connections.

A slight increase in memory consumption happens
on the remaining node as it starts to handle all the
load. The difference between the number of messages
published and routed to queues for delivery may be
attributed to messages routed to multiple queues. The
number of queues, channels, and connections varies
according to the workload of messages.

The second experiment investigates how the bro-
ker reacts to a server fail by removing the only active
node at about 16:25. Figure 8 shows that messages
stop being transmitted for about 5 minutes during the
fail, but the process resumes as soon as the node joins
the cluster again to take over. The node establishes all
the old connections and recovers persisted messages

Figure 7: Cluster after node failure.

Figure 8: Cluster after server failure.

and queues, resulting in no lost messages. The num-
ber of channels drops significantly as previous con-
nections and channels are closed. Grafana changes
the color from yellow to green to differentiate in-
stances of the same node.

5 CONCLUSIONS

This study introduces a tool that achieves interactive
job execution across heterogeneous devices using the
protocol AMQP and the message broker RabbitMQ.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

266



The approach fills a gap in the state-of-the-art, as con-
firmed by the findings in section 2. A few potential
use areas include Continuous Integration (CI), Con-
tinuous Delivery (CD), and remote monitoring and
management of devices.

The protocol AMQP was selected due to its flex-
ible message routing, reliable message queues, and
multiple exchange types. The message broker Rab-
bitMQ was selected based on a personal preference
for the built-in web management tool and support for
Prometheus and Grafana. This combination proved
very useful in the experimental evaluation as the bro-
ker could recover messages and queues after node and
server failures with no messages lost.

The architecture and motivation behind architec-
tural decisions are discussed in detail in section 3, in-
cluding a conceptual view that introduces all the com-
ponents. The experimental evaluation is conducted in
section 4. It shows that interactive job execution on
heterogeneous devices is achieved under various sce-
narios and that message delivery is reliable even after
node and server failures.

The application has been released on GitHub and
is easily found over the internet. The website with
more information is available at https://runlet.app.

The roadmap for future work includes an exper-
imental evaluation to benchmark scalability by mea-
suring message throughput and latency as the network
grows. Also, the analysis of the security measures that
are put in place to ensure data protection from cyber-
attacks.

REFERENCES

ActiveMQ, A. (2020). Apache activemq. https://activemq.
apache.org. [Online; accessed 15-December-2020].

AMQP (2020). Advanced message queuing protocol. https:
//www.amqp.org. [Online; accessed 15-December-
2020].

buo (2020). homebrew-cask-upgrade. https://github.com/
buo/homebrew-cask-upgrade. [Online; accessed 15-
December-2020].

Dhas, Y. J. and Jeyanthi, P. (2019). A review on internet
of things protocol and service oriented middleware.
In 2019 International Conference on Communication
and Signal Processing (ICCSP), pages 0104–0108.
IEEE.

DigitalOcean (2020). Droplets. https://www.digitalocean.
com/products/droplets. [Online; accessed 15-
December-2020].

dylanaraps (2020). neofetch. https://github.com/
dylanaraps/neofetch. [Online; accessed 15-
December-2020].

Electron (2020). Electron. https://electronjs.org. [Online;
accessed 15-December-2020].

Elkhodr, M., Shahrestani, S., and Cheung, H. (2016).
The internet of things: new interoperability, man-
agement and security challenges. arXiv preprint
arXiv:1604.04824.

Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane,
J., Wilson, P., Radatz, J., Yee, M., Porteous, H.,
and Springsteel, F. (1991). IEEE standard computer
dictionary: Compilation of IEEE standard computer
glossaries. IEEE Press.

Homebrew (2020). homebrew-cask. https://github.com/
Homebrew/homebrew-cask. [Online; accessed 15-
December-2020].

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., and
Alonso-Zarate, J. (2015). A survey on application
layer protocols for the internet of things. Transaction
on IoT and Cloud computing, 3(1):11–17.

Kostromina, A., Siemens, E., and Yurii, B. (2018). A con-
cept for a high-reliability meteorological monitoring
system using amqp. In Titel: Proceedings of the 6th
International Conference on Applied Innovations in
IT. Bibliothek, Hochschule Anhalt.

Krishna, C. and Sasikala, T. (2019). Healthcare monitoring
system based on iot using amqp protocol. In Interna-
tional Conference on Computer Networks and Com-
munication Technologies, pages 305–319. Springer.

Liang, Y. and Chen, Z. (2018). Intelligent and real-time data
acquisition for medical monitoring in smart campus.
IEEE Access, 6:74836–74846.

MinIO (2020). Minio. https://min.io. [Online; accessed
15-December-2020].

Muhammad, H. (2020). htop. https://hisham.hm/htop. [On-
line; accessed 15-December-2020].

PostgreSQL (2020). Postgresql. https://www.postgresql.
org. [Online; accessed 15-December-2020].

Qpid, A. (2020). Apache qpid. https://qpid.apache.org.
[Online; accessed 15-December-2020].

RabbitMQ (2020). Rabbitmq. https://www.rabbitmq.com.
[Online; accessed 15-December-2020].

Runlet: A Cross-platform IoT Tool for Interactive Job Execution Over Heterogeneous Devices with Reliable Message Delivery

267


