
Artificial Neural Networks Jamming on the Beat

Alexey Tikhonov1 and Ivan P. Yamshchikov2 a

1Yandex, Berlin, Germany
2Higher School of Economics, St. Petersburg, Russia

Keywords: Music Generation, Beat Generation, Generation of Polyphonic Music, Artificial Neural Networks.

Abstract: This paper addresses the issue of long-scale correlations that is characteristic for symbolic music and is a
challenge for modern generative algorithms. It suggests a very simple workaround for this challenge, namely,
generation of a drum pattern that could be further used as a foundation for melody generation. The paper
presents a large dataset of drum patterns alongside with corresponding melodies. It explores two possible
methods for drum pattern generation. Exploring a latent space of drum patterns one could generate new
drum patterns with a given music style. Finally, the paper demonstrates that a simple artificial neural network
could be trained to generate melodies corresponding with these drum patters used as inputs. Resulting system
could be used for end-to-end generation of symbolic music with song-like structure and higher long-scale
correlations between the notes.

1 INTRODUCTION

In recent years, there have been many projects dedi-
cated to neural network-generated music. For an ex-
tended survey of such methods see (Briot et al., 2019).
However there were several attempts to automate the
process of music composition long before the era of
artificial neural networks. The well-developed theory
of music inspired many heuristic approaches to auto-
mated music composition. The earliest idea that we
know of dates as far back as the nineteenth century,
see (Lovelace, 1843). In the middle of the twentieth
century, a Markov chain approach for music composi-
tion was developed in (Hiller and Isaacson, 1959), this
approach became relatively popular and was revisited
and improved in many followings works, see, for ex-
ample, (Hill, 2011). (Lin and Tegmark, 2017) have
demonstrated that music, as well as some other types
of human-generated discrete time series, tends to have
long-distance dependencies that cannot be captured
by models based on Markov-chains. Recurrent neu-
ral networks (RNNs) seem to be better at processing
data series with longer internal dependencies (Sun-
dermeyer et al., 2015), such as sequences of notes in
tune, see (Boulanger-Lewandowski et al., 2012).

Indeed, a variety of different recurrent neural net-
works such as hierarchical RNN, gated RNN, Long-
Short Term Memory (LSTM) network, Recurrent

a https://orcid.org/0000-0003-3784-0671

Highway Network, etc., were successfully used for
music generation in (Chu et al., 2016), (Colombo
et al., 2016), (Johnson, 2017a), (Wu et al., 2019),
(Lattner and Grachten, 2019). Google Magenta re-
leased a series of projects dedicated to music gener-
ation. In particular, one should mention a music vae
model (Roberts et al., 2018) that could be regarded
as an extension of drum rnn1. It is important to dis-
tinguish the generative models like music vae and the
generative models for music that use a straightforward
language model approach and predict the next sound
using the previous one as an input. For example,
(Choi et al., 2016) used a language model approach to
predict the next step in a beat with an LSTM. Varia-
tional autoencoder (VAE), see (Bowman et al., 2016)
and (Semeniuta et al., 2017), on the other hand, al-
lows us to construct a latent space in which each point
corresponds to a melody. Such spaces obtained with
VAE or any other suitable architecture are of particu-
lar interest for different tasks connected with compu-
tational creativity since they can be used both to study
and classify musical structures, as well as to generate
new tunes with specified characteristics.

Generation of polyphonic music is more challeng-
ing that generation of a single melody line. (Lyu
et al., 2015) uses a set of parallel, tied-weight recur-
rent networks designed to be invariant to transposi-
tions. (Johnson, 2017b) generate music in two steps.

1https://github.com/tensorflow/magenta

Tikhonov, A. and Yamshchikov, I.
Artificial Neural Networks Jamming on the Beat.
DOI: 10.5220/0010461200370044
In Proceedings of the 6th International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2021), pages 37-44
ISBN: 978-989-758-505-0
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

37

First, a chord LSTM predicts a chord progression
based on a chord embedding. A second LSTM then
generates polyphonic music from the predicted chord
progression. (Chuan and Herremans, 2018) present
an approach for predictive music modeling and mu-
sic generation that incorporates domain knowledge in
its representation. Majority of the polyphonic meth-
ods that we know of still face certain difficulties with
temporal structure of the generated tunes. These prob-
lems are fundamentally connected with properties of
recurrent networks when applied in an end-to-end set-
ting.

In this paper, we propose a straight-forward ap-
proach the addresses temporal challenges and could
be used for end-to-end generation of tracks with song
structure. We construct a latent explorable drum pat-
tern space with some recognizable genre areas. We
test two different smoothing methods are used on
the latent space of representations. The obtained
latent space is then used to sample new drum pat-
terns. We experiment with two techniques, namely,
variational autoencoder and adversarially constrained
autoencoder interpolations (ACAI) (Berthelot et al.,
2018). We also train a system that uses drum files
as inputs and generates melodies corresponding to
the input drum patterns. Such loops of melodies and
drums could be combined into longer song-like tracks
in the given tempo and tonality.

The contribution of this paper is three-fold: (1)
we publish a large dataset of drum patterns, (2) de-
velop an overall representation of typical beat pat-
terns mapped into a two-dimensional space, and (3)
demonstrate that a simple artificial neural network
could be trained to generate tunes corresponding to
the drum patterns.

2 DATASET

Most of the projects that we know of used small
datasets of manually selected and cleaned beat pat-
terns. One should mention a GrooveMonkee free loop
pack2, free drum loops collection3 and aq-Hip-Hop-
Beats-60–110-bpm4 or (Gillick et al., 2019).

Unfortunately, majority of these datasets are ei-
ther restricted to one or two specific genres or contain
very limited amount of midi samples that does not ex-
ceed a dozen per genre. This amount of data is not
enough to infer a genre-related latent space. Inferring
this space, however, could be of utmost importance.

2https://groovemonkee.com/collections/midi-loops
3https://www.flstudiomusic.com/2015/02/35-free-

drum-loops-wav-midi-for-hip-hop-pop-and-rock.html
4https://codepen.io/teropa/details/JLjXGK

Due to the interpolative properties of the model that
could work on such space, one can produce infinitely
diverse patterns that still adhere to the genre-specific
macro-structure. Groove MIDI (Gillick et al., 2019)
to a certain extent goes in line with the material pre-
sented in the papers yet it is not big enough for the
inference of the genre.

Here we introduce a completely new dataset of
MIDI drum patterns5 that we automatically extracted
from a vast MIDI collection available online. This
dataset is based on approximately two hundred thou-
sand MIDI files, and as we show later is big enough
to infer the macroscopic structure of the underlying
latent space with unsupervised methods.

2.1 Data Filtering

The pre-processing of the data was done as follows.
Since the ninth channel is associated with percussion
according to the MIDI standard, we assumed that we
are only interested in the tracks that have non-trivial
information in it. All the tracks with trivial ninth
channels were filtered out. This filtering left us with
almost ninety thousand tracks. Additional filtering
included an application of a 4/4 time signature and
quantization of the tracks. We are aware that such
pre-processing is coarse since it ultimately corrupts
several relatively popular rhythmic structures, for ex-
ample, waltzes, yet the vast majority of the rhythmic
patterns are still non-trivial after such pre-processing.
We believe that 4/4 time signature is not a prerequisite
for the reproduction of the results demonstrated here
and encourage researchers to experiment and publish
broad and diverse datasets of percussion patterns. In
order to reduce the dimensionality of the problem,
we have simplified the subset of instruments merging
the signals from similar instruments. For example,
all snares are merged into one snare sound, low and
low mid- toms into a low tom, whereas and high tom
and high mid-tom into a high tom. Finally, we had
split the percussion tracks into percussion patterns.
Every track was split into separate chunks based on
long pauses. If a percussion pattern that was thirty-
two steps long occurred at least three times in a row,
it was added to the list of viable patterns. Trivial pat-
terns with entropy below a certain minimal threshold
were discarded from the list of viable patters. Finally,
every pattern was checked to be unique in all its possi-
ble phase shifts. The resulting dataset includes thirty-
three thousand of unique patterns in the collection and
is published alongside this paper which is an order of
magnitude larger that midi available data sources.

5https://github.com/altsoph/drum space

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

38

Table 1: Pseudo-code that describes filtering heuristics used
to form the dataset of percussion patterns.

// Filtering original MIDI dataset
for new_track in MIDI_dataset do
if new_track[channel_9] is non-trivial

// Quantize with 4/4 signature
drum_track← new_track[channel_9].quantize()

// Merge different drums according to a predefined table
drum_track.merge_drums()

// Split drum track into chunks
for new_chunk in drum_track.split_by_pauses() do

if length(new_chunk) == 32 \
and new_chunk3 ∈ drum_track \
and entropy(new_chunk)>k

percussion_patterns.append(new_chunk)

// Filtering non-unique percussion patterns
for new_pattern in percussion_patterns do

// Create all possible shifts of a pattern
shifted_patterns← new_pattern.all_shifts()
//Search for patterns that duplicate and delete them
for pattern in percussion_patterns do

if pattern ∈ shifted_patterns
delete pattern

[new_pattern] + percussion_patterns

Figure 1: Some examples of two-dimensional representa-
tion for drum patterns.

2.2 Data Representation

The resulting dataset consists of similarly structured
percussion patterns. Each pattern has thirty-two-time
ticks for fourteen possible percussion instruments left
after the simplification. Each pattern could be repre-
sented as a 14×32 matrix with ones on the positions,
where corresponding instruments makes a hit. Figure
1 shows possible two-dimensional representations of
the resulting patterns.

We can also list all possible combinations of four-
teen instruments that can play at the same time tick.
In this representation, each pattern is described by

thirty-two integers in the range from 0 to 16383. Such
representation is straightforward and could be conve-
nient for processing fo the data with modern models
used for generation of discrete sequences (think of a
generative model with a vocabulary consisting of 214

words). The dataset final dataset is published in the
following format:

• the first column holds the pattern code that con-
sists of thirty-two comma-separated integers in
the range of [0,16383];

• the second column holds four comma-separated
float values that represent the point of this pattern
in the latent four-dimensional space, that we de-
scribe below;

• the third column holds two comma-separated float
values of the t-SNE mapping from the four-
dimensional latent space into a two dimensional
one, see details below.

The model that we describe further works with a
two-dimensional representation shown in Figure 1.

3 MODELS AND EXPERIMENTS

In this papers we experiment with different autoen-
coders. Let us first briefly clarify the underlying prin-
ciples of these architectures.

3.1 Autoencoders

Autoencoders are a broad class of structures that pro-
cess the input x ∈ Rdx through an ’encoder’ z = fθ(x)
parametrized by θ to obtain a latent code z ∈ Rdz .
The latent code is then passed through a ’decoder’
x̂ = gφ(z) parametrized by φ to produce an approx-
imate reconstruction x̂ ∈ Rd

x of the input x. In this
paper fθ and gφ are multi-layer neural networks. The
encoder and decoder are trained simultaneously (i.e.
with respect to θ and φ) to minimize some notion of
distance between the input x and the output x̂, for ex-
ample the squared L2 distance ||x− x̂||2.

Interpolating using an autoencoder describes the
process of using the decoder gφ to decode a mixture
of two latent codes. Typically, the latent codes are
combined via a convex combination, so that interpo-
lation amounts to computing x̂α = gφ(αz1+(1−α)z2)
for some α ∈ [0,1] where z1 = fθ(x1) and z2 = fθ(x2)
are the latent codes corresponding to data points x1
and x2. Ideally, adjusting α from 0 to 1 will produce
a sequence of realistic datapoints where each subse-
quent x̂α is progressively less semantically similar to
x1 and more semantically similar to x2. The notion

Artificial Neural Networks Jamming on the Beat

39

of ’semantic similarity’ is problem-dependent and ill-
defined.

VAE assumes that the data is generated by a di-
rected graphical model pθ(x|h) and that the encoder
is learning an approximation qφ(h|x) to the posterior
distribution pθ(h|x). This yields an additional loss
component and a specific training algorithm called
Stochastic Gradient Variational Bayes (SGVB), see
(Rezende et al., 2014) and (Kingma and Welling,
2014). The probability distribution of the latent vec-
tor of a VAE typically matches that of the training data
much closer than a standard autoencoder.

ACAI has different underlying mechanism. It uses
a critic network, as is done in Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014). The
critic is fed interpolations of existing datapoints (i.e.
x̂α as defined above). Its goal is to predict α from
x̂α. This could be regarded as a regularization proce-
dure which encourages interpolated outputs to appear
more realistic by fooling a critic network which has
been trained to recover the mixing coefficient from
interpolated data.

3.2 Architecture

In this paper, we experiment with a network that
consists of a 3-layered fully connected convolutional
encoder, and a decoder of the same size. The en-
coder maps the beat matrix (32*14 bits) into four-
dimensional latent space. The first hidden layer has
sixty-four neurons; the second one has thirty-two.
The ReLU activations are used between the layers,
and a sigmoid maps the decoder output back into the
bit mask. Figure 2 shows the general architecture of
the network.

The crucial part of the model that is valid for fur-
ther experiments is the space of latent codes or the so-
called ’bottle-neck’ of the architecture shown in Fig-
ure 2. This is a four-dimensional space of latent repre-
sentations z ∈ R4. The structural difference between
the VAE and ACAI models with which we experiment
further occurs exactly in this bottle-neck. The archi-
tectures of the encoder fθ and decoder gφ are equiv-
alent. Effectively, VAE and ACAI could be regarded
as two smoothing procedures over the space of latent
codes.

3.3 Vizualization of the Obtained
Latent Space

To explore the obtained dataset, we have built an in-
teractive visualization that is available online6. and

6http://altsoph.com/pp/dsp/map.html

is similar to the one described in (Yamshchikov and
Tikhonov, 2018). This visualization allows us to nav-
igate the resulting latent space of percussion patterns.
Training patterns are marked with grey and generated
patterns are marked with red. For the interactive vi-
sualization, we use a t-SNA projection of the VAE
space since it has a more distinctive geometric struc-
ture, shown in Figure 3.

Moreover, this visualization, in some sense, vali-
dates the data representation proposed above. Indeed,
coarsely a third of tracks in the initially collected
MIDIs had genre labels in filenames. After training
VAE we used these labels to locate and mark the ar-
eas with patterns of specific genres. Closely looking
at Figure 3 that shows a t-SNE projection of the ob-
tained latent space, one can notice that the geometric
clusters in the obtained latent space correspond to the
genres of the percussion patterns. The position of the
genres on the Figure were determined by the mean
of coordinated of the tracks attributed to the corre-
sponding genre. One can see that related genres are
closer to each other in the obtained latent space and
the overall structure of the space is meaningful. For
example the cloud of ’Punk’ samples is located be-
tween ’Rock’ and ’Metal’ clouds, whereas ’Hip-Hop’
is bordering ’Soul’, ’Afro’ and ’Pop’. The fact that
VAE managed to capture this correspondence in an
unsupervised set-up (as a by-product of training with
a standard reconstruction loss) demonstrates that cho-
sen data representation is applicable to the proposed
task, and the proposed architecture manages to infer a
valid latent space of patterns.

As we have mentioned above, we compare two
different latent space smoothing techniques, namely,
VAE and ACAI. It is important to note here that the
standard VAE produces results that are good enough:
the space mapping is clear and meaningful, as we
have mentioned above. At the same time, the ACAI
space seems to be smoother, yet harder to visualize in
two dimensions.

Figure 4 illustrates this idea, showing the two-
dimensional t-SNE mapping of the latent spaces pro-
duced by both methods with patterns that correspond
to the genre METAL marked with red dots. One can
see that ACAI mapping of a particular genre is not as
dense as VAE. Due to this reason, we use t-SNE pro-
jection of VAE space for the interactive visualization
mentioned above and throughout this paper.

However, we argue that the latent space produced
with ACAI is better to sample from and discuss it in
detail further.

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

40

Figure 2: Basic scheme of an autoencoder used to produce a latent space of patterns.

Figure 3: t-SNE projection of the latent percussion space
produced by VAE. Different areas correspond to specific
genres. One can see a clear macro-structure with hip-hop,
soul an afro beats grouped closer together and with rock,
punk and metal in another area of the obtained space.

3.4 Generating the Beat

The majority of the auto-encoder based methods gen-
erates new samples according to the standard logic.
One can sample an arbitrary point from the latent
space and use the decoder to convert that point into a
new pattern. In the case of VAE one can also narrow
the area of sampling and restrict the algorithm in the
hope of obtaining beats that would be representative
of the style typical for that area. However, an objec-
tive metric that could be used for quality estimation of
the generated samples is still a matter of discussion.
Such objective estimations are even harder in this par-
ticular case since the patterns are quantized and con-
sist of thirty-two steps and fourteen instruments. In-
deed, virtually any sequence could be a valid percus-
sion pattern, and human evaluation of such tasks is
usually costly and, naturally, subjective. We invite the
reader to estimate the quality of the generated sam-
ples on her own using the demo mentioned above. At
the same time we propose a simple heuristical method

Table 2: Comparison of the two smoothing methods. ACAI
seems to be way more useful for sampling since it produces
a valid percussion pattern out of a random point in the la-
tent space more than 50% of the time and is three times
more effective than VAE based architecture. In terms of the
heuristic entropy filter, VAE performs even worse than AE,
generating a lot of ”dull” samples with entropy below the
threshold.

Model % of patterns after filtering

AE 28%
VAE 17%
ACAI 56%
Empirical patterns 82%

that allows putting the quality of different architec-
tures into relative perspective.

Table 1 contains pseudo-code that was used for
the filtering of the original MIDI dataset. We suggest
using percussion related part of this filtering heuristic
to estimate the quality of generated percussion pat-
terns. Indeed one can generate a set of random points
in the latent space, sample corresponding percussion
patterns with the decoder, and then apply the filtering
heuristics. The resulting percentage of the generated
beats that pass the filter could be used as an estimate
of the quality of the model.

The percentage of the real MIDI files from the
training dataset that pass the final entropy filter could
be used as a baseline for both architectures.

To have a lower baseline, we also trained a clas-
sic auto-encoder without any smoothing of the latent
space whatsoever. The examples of the tracks gener-
ated by it are also available online7.

This simple heuristic filtering shows that VAE-
generated beats have a quality of about 17%. In
other words, on average, one out of six generated
beats passes the simple filter successfully. In the case
of ACAI, quality happens to be significantly higher.
Namely, 56% of the produced beats satisfy the filter-
ing conditions. More than half of the generated pat-

7https://github.com/altsoph/drum space

Artificial Neural Networks Jamming on the Beat

41

Figure 4: The beats from the area that corresponds to the genre metal on the VAE space projection (left) and the ACAI space
projection (right). VAE maps the tracks of the same genre closer together and therefore is beneficial for the visualization of
the latent space.

terns passed the filters.
In order to have a baseline to compare both meth-

ods, one can look at the percentage of empirical MIDI
files that pass through the last entropy-based filter.
One can see that in this context the patterns ran-
domly sampled with ACAI are comparable with the
empirical ones that were present in the original MIDI
dataset.

3.5 Jamming on the Beat

Filtering original data we could not help to notice
that there are melodic patterns attached to every drum
loop. These melody patterns were played by various
instruments designated in a midi file. We collected the
dataset of these melody loops and present them along
with the drum patterns. Every melody is encoded with
three different embeddings that we concatenate in the
input vector. These embeddings include the instru-
ment playing the melody, the tone and the octave. To
simplify the generation we do not include the length
of the note played, this could be easily amended with
an additional embedding for the length pf a note. For
a detailed description of the melody preprocessing we
address the reader to (Yamshchikov and Tikhonov,
2020).

These melody embedding are concatenated with
the flattened representation of the beat and form an
input vector, see Figure 5.

Let us briefly describe Figure 5. The input is rep-
resented as a 496 dimensional vector. It consist of
a flattened drum pattern encoded as a 32× 14 ma-
trix, see Section 2.2, concatenated with three 16-
dimensional embeddings of the instrument, tonality
and octave. This input vector is first projected with
496× 64 ReLu layer, that is processed through three

Figure 5: A simple melody generation that generates
melodies corresponding to the rhythm.

more 64×64 ReLu layers, and a final 64×8192 sig-
moid projection. The resulting 8192 vector is encod-
ing 64 time steps with 128 possible pitches on every
step.

As well as in other computational creativity tasks,
see, for example, (Agafonova et al., 2020), one could
significantly improve the results of the generation
with automated heuristic filtering. In the case of sym-
bolic music additional heuristic filtering of the gen-
erated melodies includes some basic rules that help
to harmonize obtained tunes, i.e. if the tune dynamic
exceeds the diapason of two octaves we filter it. Such
cases are very rare for a given instrument within as
relatively short drum loop. Another example of the
heuristic could be: if the relative length of notes in
a tune exceeds some fixed constant, say the shortest
time between to notes is ten times shorter that the
longest one, we could also filter that melody assur-
ing a relatively dense tune on the beat without pauses
lasting a half of the loop. These heuristics could be
tweaked and tinkered with. The resulting melody pat-
terns that we showcase in the repository are filtered
with the following list of heuristics. We filter the loop

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

42

out if:

• it has sounds on three or less steps out of 64 time
ticks;

• if there is a pause that is longer that 16 consecutive
ticks;

• it includes two notes within a tone or a semitone
from one another that are played at once;

• there are more than two octaves between the low-
est and the highest note in a loop;

• the loop includes less than three different notes;
• at some point of the loop there are four or more

notes played an once;
• the most frequent note in the loop makes up for

more than three quarters of all notes played in the
loop;

• the tonality detection heuristics detects a tonal-
ity that is different for the target tonality that was
given in the input.

We developed a stand-alone tonality detector that is
rather intuitive yet was not applied to the task of mu-
sic generation before. To improve usability of the
heuristics and reproducibility of the work that is espe-
cially important due to its explorative nature we pub-
lish our code online8. Tonality heuristics lists all pos-
sible tonalities. For every given melody we score the
notes and consecutive note pairs that correspond to
possible tonalities and choose the most probable one.
You could test the heuristic on the dataset of midi files
with labelled tonalities that is included in the reposi-
tory.

The main idea behind melody generation that we
wanted to illustrate here is that drum pattern could be
an organizing structural layer used to achieve certain
synchronisation on a longer time scale and therefor
simplifying the generation of longer song-like struc-
tures, based on an interplay of certain repetitive pat-
terns.

4 DISCUSSION

Deep learning enables the rapid development of var-
ious generative algorithms. There are various limita-
tions that hinder the arrival of algorithms that could
generate discrete sequences that would be indistin-
guishable from the corresponding sequences gener-
ated by humans. In some contexts, the potential of
such algorithms might still be limited with the avail-
ability of training data; in others, such as natural lan-
guage, the internal structure of this data might be a

8https://github.com/altsoph/tonika detector

challenge; finally, some of such tasks might be simply
too intensive computationally and therefore too costly
to use. However, percussion patterns do not have such
limitations. The structure of the data can be formal-
ized reasonably well and without significant loss of
nuance. In this paper, we provide thirty-three thou-
sand thirty-two step 4/4 signature percussion drums
and demonstrate that such a dataset allows training a
good generative model. We hope that as more and
more data is available for experiments, percussion
could be the first chapter to be closed in the book of
generative music.

Once the drum pattern progression is defined one
could use very intuitive generative methods in com-
bination with tonality filter to generate the melody
over the generated beat. The resulting loops could
be rearranged in any progression providing longer
macro structures. The level of novelty could be fur-
ther controlled through purely combinatoric parame-
ters of the song structure. These endeavours, however,
are mostly either heuristically motivated or anecdotal
rather than data-driven. Generative models capable
of smooth interpolations between different rhythmic
patterns represent another set of new research ques-
tions. Finally, nuances of percussion alongside with
the datasets and the models that could capture these
nuances, for example see (Gillick et al., 2019), need
further research.

Aside from the generation of the symbolic music
there are plenty of open questions regrading genera-
tion of sound fonts, intonation and dynamics both on
micro and macro levels of the melody progression.

5 CONCLUSION

This paper presents a new huge dataset of MIDI
percussion patterns that could be used for further
research of generative percussion algorithms. Ir
also presents corresponding melody patterns that are
aligned with the given percussion tracks. This dataset
could be further used for symbolic loop generation.

The paper also explores two autoencoder based ar-
chitectures that could be successfully trained to gen-
erate new MIDI beats. Both structures have simi-
lar fully connected three-layer encoders and decoders
but use different methods for smoothing of the pro-
duced space of latent representations. Adversarially
constrained autoencoder interpolations (ACAI) seem
to provide denser representations than the ones pro-
duced by a variational autoencoder. More than half of
the percussion patterns generated with ACAI passes
the simple heuristic filter used as a proxy for the re-
sulting generation quality estimation. To our knowl-

Artificial Neural Networks Jamming on the Beat

43

edge, this is the first application of ACAI to drum-
pattern generation.

The interactive visualization of the latent space is
available as a tool to subjectively assess the quality of
the generated percussion patterns.

Finally, the paper explores the possibility to gen-
erate melodies that correspond to the given input pat-
tern and demonstrates that this could be done with a
relatively straight-forward artificial neural network.

ACKNOWLEDGEMENTS

The authors would like to thank Valentina Barsuk for
her constructive advice and profound expertise.

REFERENCES

Agafonova, Y., Tikhonov, A., and Yamshchikov, I. P.
(2020). Paranoid transformer: Reading narrative
of madness as computational approach to creativity.
arXiv preprint arXiv:2007.06290.

Berthelot, D., Raffel, C., Roy, A., and Goodfellow, I.
(2018). Understanding and improving interpolation
in autoencoders via an adversarial regularizer. arXiv
preprint arXiv:1807.07543.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P.
(2012). Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic
music generation and transcription. In Proceedings
of the 29th International Coference on International
Conference on Machine Learning 2012, pages 1881–
1888.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. (2016). Generating sen-
tences from a continuous space. In 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21.

Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2019). Deep
learning techniques for music generation-a survey.

Choi, K., Fazekas, G., and Sandler, M. (2016). Text-based
lstm networks for automatic music composition. In
arXiv preprint.

Chu, H., Urtasun, R., and Fidler, S. (2016). Song from pi: A
musically plausible network for pop music generation.
In arXiv preprint.

Chuan, C.-H. and Herremans, D. (2018). Modeling tempo-
ral tonal relations in polyphonic music through deep
networks with a novel image-based representation. In
AAAI, pages 2159–2166.

Colombo, F., Muscinelli, S. P., Seeholzer, A., Brea, J., ,
and Gerstner, W. (2016). Algorithmic composition
of melodies with deep recurrent neural networks. In
arXiv preprint.

Gillick, J., Roberts, A., Engel, J., Eck, D., and Bamman,
D. (2019). Learning to groove with inverse sequence
transformations. arXiv preprint arXiv:1905.06118.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.

Hill, S. (2011). Markov melody generator. Computer Sci-
ence Department, University of Massachusetts Low-
ell, Published on Dec, 11.

Hiller, L. and Isaacson, L. (1959). Experimental Music.
Composition with an Electronic Computer. McGraw-
Gill Company.

Johnson, D. D. (2017a). Generating polyphonic music us-
ing tied parallel networks. International Conference
on Evolutionary and Biologically Inspired Music and
Art, pages 128–143.

Johnson, D. D. (2017b). Generating polyphonic music us-
ing tied parallel networks. In International conference
on evolutionary and biologically inspired music and
art, pages 128–143. Springer.

Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes. In arXiv preprint.

Lattner, S. and Grachten, M. (2019). High-level control of
drum track generation using learned patterns of rhyth-
mic interaction. In 2019 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics
(WASPAA), pages 35–39. IEEE.

Lin, H. W. and Tegmark, M. (2017). Critical behavior in
physics and probabilistic formal languages. Entropy,
19(7):299.

Lovelace, A. (1843). Notes on l menabrea’s sketch of the
analytical engine by charles babbage, esq. In Taylor’s
Scientific Memoirs.

Lyu, Q., Wu, Z., Zhu, J., and Meng, H. (2015). Modelling
high-dimensional sequences with lstm-rtrbm: Appli-
cation to polyphonic music generation. In Twenty-
Fourth International Joint Conference on Artificial In-
telligence.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate infer-
ence in deep generative models. ICML, pages 1278–
1286.

Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck,
D. (2018). A hierarchical latent vector model for
learning long-term structure in music. arXiv preprint
arXiv:1803.05428.

Semeniuta, S., Severyn, A., and Barth, E. (2017). A hybrid
convolutional variational autoencoder for text gener-
ation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 627–637.

Sundermeyer, M., Schlüter, R., and Ney, H. (2015). Lstm
neural networks for language modeling. Interspeech,
pages 194–197.

Wu, J., Hu, C., Wang, Y., Hu, X., and Zhu, J. (2019).
A hierarchical recurrent neural network for symbolic
melody generation. IEEE Transactions on Cybernet-
ics, 50(6):2749–2757.

Yamshchikov, I. and Tikhonov, A. (2018). I feel you:
What makes algorithmic experience personal? In EVA
Copenhagen.

Yamshchikov, I. P. and Tikhonov, A. (2020). Music genera-
tion with variational recurrent autoencoder supported
by history. SN Applied Sciences, 2(12):1–7.

COMPLEXIS 2021 - 6th International Conference on Complexity, Future Information Systems and Risk

44

