
A Domain Specific Language to Provide Middleware for Interoperability
among SaaS and DaaS/DBaaS through a Metamodel Approach

Babacar Mane1, Ana Patricia Magalhaes2,3, Gustavo Quinteiro1, Rita Suzana Pitangueira Maciel1

and Daniela Barreiro Claro1

1Formalisms and Semantic Applications Research Group (FORMAS), Federal University of Bahia – DCC – IME,
Av. Adhemar de Barros, Ondina, 40170-110, Salvador, Bahia, Brazil

2Department of Exact Sciences and Earth, State University of Bahia, 2555 Silveira Martins st. Cabula, Bahia, Brazil
3Post Graduate Program in Computing and Systems, Salvador University, 251 Dr. Jose Peroba st., Bahia, Brazil

Keywords: Metamodel, Cloud Computing, Model Driven Development, Interoperability.

Abstract: Cloud Computing (CC) is a paradigm that manages a pool of virtualized resources at infrastructure, platform,
and software levels to deliver them as services over the Internet. Cloud Platforms are heterogeneous, and
therefore cloud users may face interoperability and integration issues regarding consumption, provisioning,
management, and supervision resources among distinct clouds. Due to the lack of standards in such a hetero-
geneous environment, an organization may face a lock-in situation. A middleware can minimize the effort to
overcome lock-in problems. The MIDAS middleware ensures semantic interoperability between Software as
a Service (SaaS) and Data as a Service (DaaS), and at the same times provides data integration between DaaS.
Currently, MIDAS runtime implementations rely on Cloud Foundry, Amazon Web Services, OpenShift and,
Heroku providers. To avoid ambiguity in MIDAS development and deployment an unambiguous definition of
MIDAS architectural concepts must be provided. Thus, our work presents a Domain-Specific Modeling Lan-
guage (DSML) comprising a metamodel of MIDAS semantic architecture and a Unified Modeling Language
(UML) profile. To evaluate the DSML expressiveness, we instantiate several middleware models, and the find-
ings demonstrate that our modeling language has an acceptable level of concepts to specify the middleware.

1 INTRODUCTION

Cloud Computing (CC) is a paradigm that manages
a pool of virtualized resources at infrastructure, plat-
form, and software levels to deliver them as services
over the Internet (Shawish and Salama, 2014). These
services are classified by the National Institute of
Standards and US Technology (NIST) into Software
as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) respectively. CC is
organized into three deployment models according to
providers’ access policies (private, public, and hybrid
cloud). Everything in the cloud is considered as a ser-
vice. For instance, a database is provided as a service
(Database as a Service - DBaaS), and Data are also
offered as a service (Data as a Service - DaaS). In
the cloud market, providers are categorized into pro-
prietary and open-source platforms, and each of them
has their application programming interfaces (API),
protocol, and data format to provide their services
(Zhang et al., 2013).

In such a heterogeneous environment, organiza-
tions that migrate their applications or exchange their
data from one provider to another may stay in a lock-
in situation due to the lack of standard solutions.
These situations can occur between the same service
level of distinct clouds caused by horizontal hetero-
geneity (e.g., distinct DaaS or different DBaaS) or
among different service levels of clouds arising from
the vertical heterogeneity (e.g., SaaS and DaaS or
SaaS and DBaaS) (Ranabahu and Sheth, 2010; Sanaei
et al., 2013).

To solve the lock-in situation, portability or in-
teroperability solutions have been proposed (Lewis,
2013; Maciel et al., 2016). Reuven Cohen defines a
portability solution as the ability to move data or ap-
plication components regardless of the provider’s op-
erating system, storage, data format, or API (Cohen,
2009). Meanwhile, an interoperability solution has
been defined by the Institute of Electrical and Elec-
tronics Engineers (IEEE) as the ability to exchange
and mutually use information among systems. Sys-

Mane, B., Magalhaes, A., Quinteiro, G., Maciel, R. and Claro, D.
A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach.
DOI: 10.5220/0010459600830094
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 83-94
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

83



tems in different clouds should exchange and operate
data transparently among independent platforms. In-
teroperability provides transparency when exchang-
ing data between multiple clouds and also manag-
ing cloud resources with the same customized tools
(Lewis, 2013). Three levels of interoperability are de-
fined (Maciel et al., 2016): syntactic, semantic and
pragmatic. In a syntactic interoperability context, dif-
ferent applications exchange data or messages to per-
form an activity with a common protocol. A seman-
tic interoperability solution requires meaning on data
exchange to disambiguate each message communica-
tion. A pragmatic interoperability solution ensures
that an intended effect of a message is exchanged be-
tween applications or systems.

DaaS and DBaaS providers store and manage a
high volume of heterogeneous data produced by, for
instance, mobile computing, ubiquitous devices, so-
cial networks, and web-based applications. Such data
are distributed geographically and available to con-
sumers or organizations. However, to access similar
data distributed from distinct DaaS/DBaaS providers,
users from SaaS must connect to each provider at
a time and then use a mechanism (e.g., a program)
to process or aggregate data. For instance, a de-
mographic researcher will do the same thing to get
census data provided by governments from different
DaaS.

To mitigate the vertical heterogeneity issue among
SaaS and DaaS/DBaaS levels, an automated solution
so-called MIDAS (Middleware for DaaS/DBaaS and
SaaS) has been developed as an intermediate com-
munication layer (Mane et al., 2020a; Mane et al.,
2020b). MIDAS allows a cloud user to transform its
request in a single real-time Structured Query Lan-
guage (SQL) or Not Only SQL (NoSQL) query to re-
trieve data at once from distinct DaaS/DBaaS. This
avoids data migration, ensures semantic interoperabil-
ity, and enables DaaS and DBaaS data integration.

Currently, MIDAS runtime implementations are
published on Cloud Foundry, Amazon Web Services,
OpenShift and, Heroku PaaS providers. However, dif-
ferents PaaS offer heterogeneous tools and services
(Gonidis et al., 2013). Thus, to be able to deploy MI-
DAS across multiple PaaS, without lock-in to a partic-
ular vendor, model-based approaches can be exploited
to develop, maintain, and reuse cloud applications.

Our work proposes a Domain-Specific Model-
ing Language (DSML) for MIDAS architecture with
well-defined syntax and semantics. It enables the
specification of the MIDAS platform-independent ar-
chitecture within software components and connec-
tions. The DSML abstract syntax and static seman-
tics are specified following the Meta-Object Facility

(MOF) metamodel and the concrete syntax using a
UML profile. This DSML assists software project
to guide developers in a model-driven development
project as a base for model transformations (Da Silva,
2015). To evaluate the DSML expressiveness, we in-
stantiate several middleware models, and we conclude
that the modeling language has an acceptable cover-
age level of the concepts to define a middleware.

The remainder of this paper is organized as fol-
lows: Section 2 presents the State of Art; Section 3
describes some related work; Section 4 depicts our
domain specific modeling language (DSML); Section
5 presents the metamodel validation; and finally, Sec-
tion 6 presents the conclusion and future work.

2 BACKGROUND

In this section, we present a brief overview of models
and modeling language concepts.

2.1 Domain Modeling Languages

Model-Driven Development (MDD) is a model-based
approach emerging as one of the leading software en-
gineering approaches employing models as a primary
artifact to maintain the development process on track
and be able to implement an increasingly reliable soft-
ware design (Christensen and Ellingsen, 2016).

Models are abstract representations of a system,
which comprise both the structure and the behav-
ior(Mellor, 2004). In MDD, models are the funda-
mental artifacts, and they produce other models as
well as the application source code. Models must be
specified according to a modeling language with well-
defined syntax and semantic. A model is a set of el-
ements describing some aspects of a system with an
abstraction level, and it is a real authentic representa-
tion simplified and contextualized (Mellor, 2004). In
MDD, models are more than documentation; they fa-
cilitate and improve communication among technical
and non-technical stakeholders by sharing the same
vision and knowledge. During the systems develop-
ment process, the model concept provides a product
that is easier to understand through its graphical rep-
resentations.

In MDD, modeling languages are employed to
specify models graphically, textually, or both, and
they are always based on specific domain require-
ments in use. These languages are classified into two
categories: one is specified to a domain (a knowl-
edge area), called DSML (Domain-Specific Model-
ing Language) and, the other is a general-purpose,
called GPL (General Purpose Languages), such as the

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

84



Unified Modeling Language (UML) (Da Silva, 2015).
GPL is widely used in different application fields and
provides a higher number of generic constructs in-
stead of DSMLs that use a few constructs or con-
cepts tailored to the needs of a specific application
domain and make models more expressive. For each
application domain, it is often necessary to create a
new DSML; thus, this task can generate a new lan-
guage implementing, maintaining, and learning cost.
A General-Purpose Language (e.g., UML) can be cus-
tomized for specific domains based on the specifica-
tion of profiles and does not change the original se-
mantic elements. A profile definition comprises the
specification of stereotypes, meta-classes, and labeled
values.

Modeling languages formally write models with
a well defined syntax and semantic, and are com-
posed of four main elements: abstract syntax, con-
crete syntax, static semantics, and dynamic semantics
(Da Silva, 2015).

• Abstract Syntax: this conceptualizes, and synthe-
sizes the application domain knowledge by iden-
tifying concept names close to the application
domain and by establishing particular relations
among them. Language constructors are defined
in the abstract syntax;

• Concrete Syntax: This is either textual or graph-
ical. The graphical concrete syntax is often de-
fined by the structure of the abstract syntax and
a set of graphical representations for classes and
associations in the abstract syntax (Herrera et al.,
2016). It defines how abstract syntax features are
presented to users (e.g., UML profile);

• Static Semantics: Constraints and rules define re-
lations among concept names to ensure static se-
mantics. The Object Constraint Language (OCL)
is a declarative constraint language that is the
most used in this case 1;

• Dynamic semantics: This defines how instanti-
ated models are executed.

In MDD, the abstract syntax and static semantics of
a DSML is usually expressed in terms of metamod-
els. According to OMG2 a metamodel is a model of
models. Models built along the MDD-based software
development process are metamodel instances, and
should always be in accordance with their metamodel.
Models must satisfy restrictions defined by the meta-
model and should be syntactically correct concerning
the metamodel. Through a metamodel we can doc-
ument our models, reuse, debug and execute them
without its source code.

1https://www.omg.org/spec/OCL/
2https://www.omg.org//

3 RELATED WORK

Diversities of the cloud PaaS environment (a set
of application framework, runtime environment, and
programming languages) do not permit multi-cloud
applications development and deployment from one
cloud to another. Solutions to mitigate lock-in issues
in the cloud can face a challenge when deploying or
implementing them in another cloud. A way to solve
this issue is to employ model-based approach features
to simplify solutions design, management, and mi-
gration across multiple clouds. In this section, we
highlight some works from researchers who have at-
tempted to solve the same problem.

Researchers in (Merle et al., 2015) propose a
metamodel for Open Cloud Computing Interface
(OCCI) to ensure interoperability at IaaS, PaaS and
SaaS levels. OCCI core concepts are specified in nat-
ural language and interpreted in various ways during
their implementation. To avoid an imprecise, ambigu-
ous, and incomplete OCCI specification, the static se-
mantic of the OCCI metamodel is defined in the Ob-
ject Constraint Language (OCL). This proposes a pre-
cise type classification system, an extensible datatype
system, both extension and configuration concepts.
Authors in (Zalila et al., 2019; Zalila et al., 2017) then
extends the previous work of (Merle et al., 2015) pro-
viding an OCCIware approach to allow design, val-
idate, generate, implement, deploy, execute, and su-
pervise everything as a service with OCCI.

Cloud Modelling Framework (CloudMF) (Ferry
et al., 2018) is another approach relying on a model-
driven concept to simplify the complexity of main-
taining and evolving complex applications potentially
deployed across multiple cloud platforms. CloudMF
captures cloud applications provisioning and deploy-
ment in platform-independent models and automates
their operations and adaptations through a models at
run-time environment. The Cloud Application Mod-
elling Language (CAML) (Bergmayr et al., 2014)
is a UML internal language developed during the
ARTIST EU project to represent cloud-based deploy-
ment topologies, and to capture cloud environment-
specific information from different perspectives with
a set of UML profiles. Following the PIM/PSM con-
cept in the MDA framework, CAML manages to sep-
arate cloud-provider into independent and specific de-
ployment models. CAML does not provide a runtime
environment to perform the multi-cloud application
deployment. There are some configuration manage-
ment tools such as Cloudify3, Puppet4, Chef5, and

3https://cloudify.co/
4https://puppet.com/
5https://www.chef.io/products/chef-infra/

A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach

85



Ansible6 providing Domain Specific Modeling Lan-
guage (DSML) to facilitate the specification of an ap-
plication’s configurations, services, their dependen-
cies, deployment, monitoring, adaptation, and execu-
tion plans, without employing a language-dependent
of platform.

In contrast to the metamodel architecture of MI-
DAS, the approaches mentioned above are con-
ceived DSML automatically or semi-automatically
from design-time to the run-time to allow multi-cloud
applications to deploy from a particular cloud to an-
other. Our work provides a DSML to specify the MI-
DAS independent platform that can generate code in
any specific platform.

4 OUR DOMAIN SPECIFIC
LANGUAGE

To address the MIDAS deployment or development
issue across multiple clouds, we rely on the MDD ap-
proach to simplify MIDAS’ design, implementation,
and migration from one cloud to another. This section
presents MIDAS DSML for the specification of MI-
DAS middleware models independent of the platform.
The abstract syntax and static semantic of our DSML
are specified in the metamodel presented in (Section
4.2), and the concrete syntax is represented as a UML
profile in (Section 4.3). This language makes it possi-
ble to define models independent of the platform us-
ing UML diagrams. First, we provide an introduction
to the MIDAS architecture.

4.1 MIDAS Architecture

To mitigate vertical heterogeneity issues among SaaS
and DaaS/DBaaS, an automated solution so-called
MIDAS (Middleware for DaaS/DBaaS and SaaS) has
been developed as an intermediate communication
layer to allow the retrieval of data from DaaS or
DBaaS through a single real-time Structured Query
Language (SQL) or Not Only SQL (NoSQL) (Mane
et al., 2020a; Mane et al., 2020b). This solution
avoids data migration, and ensures semantic interop-
erability among SaaS and DaaS/DBaaS and, data in-
tegration among DaaS and/or DBaaS.

MIDAS is developed in two phases following the
interoperability types classification: syntactic and se-
mantic. The MIDAS syntactic interoperability is
composed of three modules (Request, Data, and Re-
sult), a Dataset Information Storage (DIS), and an ex-
ternal Crawler to update DIS. To provide a semantic

6https://www.ansible.com/

solution in MIDAS, a (semantic) module is appended
to the syntactic interoperability. Figure 1 shows the
syntactic and semantic architecture of MIDAS.

Figure 1: MIDAS Architecture.

The Request Module Query Decomposer component
receives users queries from SaaS providers, breaks
them into terms, and sends results to the Query
Builder component to build DaaS APIs. Before set-
ting DaaS APIs, the Query Builder component always
check terms consistency accessing Dataset Informa-
tion Storage (DIS) storing DaaS APIs information.
If some terms are different, it accesses the Semantic
Module Storage database to find terms which are se-
mantically similar. After that, DaaS APIs are send to
be performed by the Request Module Query Execute
component and the results are forwarded to the Result
Module Filtering component. If user requests contain
a Join SQL or a lookup NoSQL clause allowing users
to get data from more than one DaaS or DBaaS, the
Data Module Data Join component aggregates the
results of DaaS APIs executed, and send them to the
Filtering component.

The Data Module Data Mapping component re-
ceives DBaaS query terms from the Query Builder
component decomposed and datasets credentials
stored in DIS to build DBaaS APIs and execute them
at the corresponding DBaaS. If join SQL or lookup
NoSQL clause are employed in user queries, data are
aggregated by the Data Join component and sent to
the Filtering component to be filtered. Otherwise,
data are sent directly to the Filtering component.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

86



The Filtering component can receive data from the
components Data Join, Query Execute or Data Map-
ping to be filtered. This component is responsible
for removing some irrelevant attributes (e.g., id) be-
fore sending the data to the Formatter component to
be formatted into comma-separated-values (csv), Ex-
tensible Markup Language (xml) or JavaScript Object
Notation (json) format. Result Module manages in-
distinctly users data from DBaaS or DaaS.

The Mapping component of Semantic Module
shares DIS database with Query Builder component
to manage APIs attributes evolution. Each time the
DIS database is updated by the MIDAS Crawler, the
Mapping component identifies the semantic similar-
ity between old and new DaaS attributes evolution
and it stores the results in the Storage component in
a tree data structure. The Crawler is out of MIDAS’
architecture, and it is developed to maintain and up-
date semi-automatically DIS database. A temporary
data structure is created to store users’ terms query
change in order to allow the Formatter component to
send data to the user with the parameters defined in
the original query.

Currently, MIDAS runtime implementations are
published on Cloud Foundry, Amazon Web Services,
OpenShift and, Heroku PaaS providers. However,
different PaaS offer heterogeneous tools and services
(Gonidis et al., 2013). To be able to deploy MIDAS
across multiple PaaS, without lock-in to a particular
vendor, model-based approaches can be exploited to
develop, maintain, and reuse cloud applications.

4.2 MIDAS Architecture Metamodel

This section presents our metamodel to represent the
semantic interoperability domain. It is defined in the
M2 layer of the OMG model, and is organized into
one package as shown in Figure 2. The metamodel is
specified following the Meta-Object Facility (MOF)
meta-metalanguage (OMG layer M3), and will be de-
scribed in detail in the following subsection.

The MIDAS semantic architecture metamodel is
implemented on the Eclipse Modeling Framework
(EMF), and it provides a metamodeling technology
called Ecore to encode the metamodel structure. It
is inspired by the OMG Model-Driven Architecture
(MDA) 7, and it represents the Platform-Independent
Model (PIM). It is agnostic to any development
paradigm and technology, and it enables developers to
implement their software by choosing their preferred
programming languages and frameworks.

7https://www.omg.org/mda/

Figure 2: MIDAS architecture metamodel representation at
different levels of abstraction.

4.2.1 Metamodel of the MIDAS Semantic
Architecture

Our metamodel of the MIDAS is depicted in Figure
3. It comprises the concepts (as classes) and their cor-
responding properties according to the domain of a
semantic interoperability middleware.

In the context of semantic interoperability, a Mid-
dleware (Middleware class in Figure 3) has a name
(middlewareName attribute) and can be specialized
into two types: APIData, and Module.

The APIData exhibits the DaaS/DBaaS provider
information, and it is associated to several sets
of attributes (e.g., search path, query param, fil-
ters param, newFields param in class Attribute)
identified by the attribute (domain). A module rep-
resents MIDAS functionalities. The four main types
of module are Request, Data, Result, and Semantic.
Each type expresses a MIDAS functionality:

• Request Module: Identifies by the propriety re-
questName, and it transforms the user query into
API links;

• Data Module: Manages data from user queries,
and it has dataName as its attribute, to identify it;

• Result Module: It has a name (resultName at-
tribute), and it formats data accordingly to users
requests;

• Semantic Module: This is identified by the pro-
priety semanticName, and it manages DaaS at-
tributes updating in APIData to identify semantic
similarity between previous and new attributes so
as to execute transparently user queries.

The Request Module is composed by a QueryDe-
composer, a QueryBuilder, and a QueryExecute, rep-
resented as class. The QueryDecomposer decom-
poses user query in terms, and it has three properties

A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach

87



Figure 3: Metamodel of the MIDAS semantic architecture.

a query, a queryType, and a resultsFormat. The query
represents user query, the queryType defines its type
(e.g., Structured Query Language, or MongoDB), and
the resultsFormat exhibits the data formatted type
provided by the user (e.g., csv, json, or xml). Users
can choose the data type format they wish to re-
ceive. The queryType value defines how to decom-
pose a user query in terms. The QueryBuilder verifies
the user query terms compatibility with DaaS/DBaaS
providers information represented by APIData be-
fore building an API link. This has eight proper-
ties selectParameters, fromDataset, whereConditions,
joinType, orderbyCondition, joinDatasets, joinCon-
ditions, and limitCondition representing user query
terms. The class QueryExecute has two properties
apiWithJoin, and apiWithoutJoin to represent two
types of APIs links: an API link from a user query
formulated without Join clause (apiWithoutJoin), and
a set of APIs links gained from a user query with
Join clause (apiWithJoin). An �enumeration� class
named SQLQueryEntryKind is created to define the
two types of a user query: Structured Query Language
(SQL) and MongoDB.

The Data Module comprises a DataJoin, and
a DataMapping, represented as classes. The class
DataMapping has four attributes databaseName,

password, userName, and apiDBaaS. It is respon-
sible for building DBaaS API and executing them
to get data from DBaaS providers. The properties
password, and userName represent user credentials,
and databaseName the database name. The attribute
apiDBaaS represents DBaaS APIs formatted by the
DataMapping. The DataJoin class aggregates data
obtained from API Links (apiWithJoin attribute, and
apiDBaaS).

The Result Module consists of a (Filter, and a
Formatter) represented as class. The Filter has one
propriety attributesValues, which represents data col-
lected from DaaS/DBaaS providers. Some unneces-
sary data parameters are removed for user informa-
tion. The Formatter has four attributes the queryFor-
mat, the attributesValuesFormatted, the attributesVal-
uesFilters, and the previous param. The attributes-
ValuesFilters represents data filtered by the Filter, and
the queryFormat exhibits three types of data format
(e.g., csv, json or xml). Previous param represents
user query terms identified in the QueryBuilder as
incompatible with DaaS/DBaaS represented by AP-
IData. To return the query result conform request
by the user with the same parameters, these terms
are used to format data filtered. The attribute at-
tributesValuesFormatted represents the data format-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

88



ted in one of the format types represented by the
attribute queryFormat. An �enumeration� class
named ResultOutPutKind is created to define three
types of data format: CSV, JSON, and XML.

SemanticMapping manages the attributes of
DaaS evolution represented in APIData to avoid mis-
matching with user query terms. SemanticMap-
pingStorage organizes these attributes per DaaS.
The SemanticMapping has three properties currentAt-
tribute, previousAttribute, and daaSDomain. The
currentAttribute, and previousAttribute represents se-
mantically similar attributes, and the daaSDomain at-
tribute exhibits DaaS domain. The SemanticMap-
pingStorage has three attributes current Attribute,
previous Attribute, and daaS Domain that organize
for each DaaS domain, semantically similar attributes
to maintain user requests transparent. This new or-
ganization allows the QueryBuilder class to format
API links even when there is a mismatch among user’
query terms and attributes represented by the API-
Data class. To do this, the QueryBuilder class has
one more property (newFields) that represents the se-
mantic similar attributes with user query terms. The
Formatter class has more than one propriety previ-
ous param to assign user terms incompatible with at-
tributes represented in the APIData class. This prop-
erty can format the user’s data with the previous pa-
rameters defined in the query.

4.3 UML Profile of the Metamodel of
MIDAS

This section presents the concrete syntax of our lan-
guage, specified as a UML profile. A UML profile
is an extension mechanism defining domain-specific
languages using UML concepts. The definition of the
UML profile named pmidas contains the stereotypes
specification, metaclass and labeled values. Stereo-
types are labels that can be applied to various UML el-
ements, and extend metaclass representing UML con-
cepts to which the stereotypes can be applied. Finally,
the labeled values assign values to the extended UML
concepts. Terminologies, syntax, and notations are
introduced to provide additional semantics for exist-
ing concepts. Furthermore, new meta-attributes (tar-
get values), new meta-associations, and new meta-
enumeration are defined. This extension mechanism
does not allow modification of the underlying meta-
model.

The stereotypes names in the UML profile pmi-
das are practically maintained in relation to MIDAS
metamodel concepts. For instance, the QueryDecom-
poser concept of MIDAS metamodel corresponds to
the �QueryDecomposer stereotype� of the pmidas

profile applied to class �metaclass�. The pmidas
profile is defined in the pmidas package, illustrated in
Table 1.

Table 1 shows the corresponding stereotypes cre-
ated, and the metaclass in which the stereotype can be
applied during development.

Table 1: Stereotypes and their instantiated metaclass.
Stereotypes Metaclass

QueryDecomposer, QueryBuilder, QueryExecute Class
APIData, Attributes, DataMapping, DataJoin Class
SemanticMapping, SemanticMappingStorage Class
Formatter, Filter Class
queryDecomposed, getApis, dBaaSParameters Association
getResultsDBaaSWithJoin, getResultsDBaaS Association
getOldFields, getResultsWithoutJoin Association
AttributesAndValues, AttributesValuesFiltered Association
getAttributesfromData, getResultsWithJoin Association
semanticData, getDaaSParameters Association
getSemanticMappingStorage Association
SQLQueryEntryKind, ResultOutPutKind Enumeration

Our metamodel which represents the semantic inter-
operability of MIDAS architecture will be evaluated
qualitatively instantiating its models.

5 VALIDATION

The DSML proposed in this work comprises a meta-
model, and a UML profile. Unlike programs, meta-
models are not executable artifacts, thus validation
cannot be performed using test cases (Magalhães
et al., 2015). The expressiveness of a modeling lan-
guage is usually assessed instantiating models accord-
ing to its metamodel. The DSML is said to be expres-
sive when it represents user requirements in a natural
way to software developers. The concept expressive-
ness measures whether the expressivity concepts lev-
els are enough to capture the main aspects of MIDAS
middleware.

This section presents the assessment of the MI-
DAS DSML expressiveness. The validation goal is
summarized using the GQM (Van Solingen et al.,
2002) template as follows:

• Analyze the MIDAS DSML;

• For the purpose of evaluating expressiveness;

• With respect to coverage of the DSML construc-
tors;

• From the perspective of software developers;

• In the context of the existing metamodel of MI-
DAS.

The questions underlying the validation are:

• Q1: Are the DSML constructors sufficient to
specify aspects of semantic interoperability in the
middleware?

A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach

89



• Q2: Are the selected UML diagrams sufficient to
represent the middleware?

We use several measures as dependent variables: the
number of constructors used, the need for new con-
structors, the number of existing changes in the con-
structors, and the UML diagrams used. The construc-
tor may be represented by classes, associations among
classes or attributes. The validation process lasted one
month and was performed by a researcher who has
more than three years of experience on the MDD ap-
proach, and a knowledge of middleware concepts. It
consists of the use of MIDAS DSML to define current
middlewares.

Three scenarios with three types of user query
are defined to validate our models: a user query in
a SQL statement, a user query in MongoDB, and a
user query in a SQL statement with a join clause. We
describe each of them below:

1: A User Query with SQL Statement.
• User Request: SELECT id, name, address, city

FROM nyc-wifi-hotspot-locations WHERE city
= ”New York” ORDER BY id LIMIT 1

This user’s request obtains from the DaaS provider
(nyc-wifi-hotspot-locations), the id, the name, and the
address of every wifi hotspot located in New York.
The number of records needed is limited to one, and
is classified by values of the parameter id.

This user request retrieves from DaaS provider
(nyc-wifi-hotspot-locations), the id, the name, and the
address of every wifi hotspot located in New York.
The number of records is limited to one, and it is clas-
sified by values of the parameter id. As the DaaS
provider nyc-wifi-hotspot-locations parameter name
is updated to names, the user’s query term name must
be changed to names in MIDAS.

Figure 4 shows the instance represented in
a class diagram stereotyped using our profile.
To facilitate readability in this model we named
class with the same name as the stereotype, but
this is not necessary. So, three properties of
�QueryDecomposer stereotype� represent query =
”SELECT id, name, address, city FROM nyc-wifi-
hotspot-locations WHERE city = ”New York” OR-
DER BY id LIMIT 1”, queryType = ”SQL”, and re-
sultsFormat =”JSON”).

The user’s query is decomposed into terms and
they are assigned to five properties defined in the
�QueryBuilder stereotype� (selectParameters=”id,
name, address, city”, whereConditions=”city=”New
York””, orderbyCondition=”id”, limitCondition=1,
and fromDataset=”nyc-wifi-hotspot-locations”). The
compatibility of these terms are verified in the nyc-
wifi-hotspot-locations DaaS parameters represented

in the �APIData stereotype�. It was found that
the term name is evolved to the term names in the
nyc-wifi-hotspot-locations DaaS, and it is managed
by the �SemanticMapping stereotype� with their
three properties (currentAttribute=”names”, previ-
ousAttribute=”
name”, and daaSDomain=”nyc-wifi-hotspot-
locations”), and it organizes by the
�SemanticMappingStorage� through their
three attributes (current Attribute=”names”, pre-
vious Attribute=
”name”, and daaS Domain=”nyc-wifi-hotspot-
locations”). The ”nyc-wifi-hotspot-locations” DaaS
API is created with the value of the attribute cur-
rent Attribute represented by the �QueryBuilder
stereotype� property (new Fields=”names”).
The �QueryExecute stereotype� represent the
API Link with its propriety (apiWithoutJoin =
"https://data.nyc-wifi-hotspot-locations.
com/ browser?dataset=data.nyc-wifi-hotspot-
locations&fields=id,names,address,city").
The data obtained from the API Link are rep-
resented by �Filter stereotype� attribute
(attributesValues="["id":"1359", "name":"
Metropolitan Museum of
Art","address":"1000 Fifth Avenue",
"city":"New York"]"). The ”id” parameter is
removed for a better understanding of the data by
the user. �Formatter stereotype� formats the data
in the type represented by (queryFormat=”JSON”),
and it exchanges the attribute ”names” repre-
sented by �QueryBuilder stereotype� propriety
(new Fields=”names”) with the attribute ”name” rep-
resented by the propriety (previous param=”name”).
The user data formatted is represented by the attribute
(attributesValuesFormatted=””name”:”
Metropolitan Museum of Art”,”address”:”1000 Fifth
Avenue”,”
city”:”New York””).

The user query is a request to get data from
one DaaS, and does not define a join clause in
statement. For this reason, �DataJoin stereo-
type� and �DataMapping stereotype� are not
described in this section. �DataJoin stereotype�
aggregate data from DaaS/DBaaS providers, and the
�DataMapping stereotype� get data from DBaaS
providers.

2: A User Query with MongoDB Statement.
This user request is a conversion of the user request
previously defined in SQL format to a MongoDB
query. In this case, the user should get the same result
obtained by the SQL query. The DaaS provider nyc-
wifi-hotspot-locations is updated, and the parameter

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

90



Figure 4: Executing user SQL query.

name is change to names.
• User Request: db.nyc-wifi-hotspot-

locations.find(”city”: ”New York”, ’id’:
1, ’name’: 1, ’address’: 1, ’city’:
1).limit(1).sort(’id’: ’);

We employed models in Figure 4 to test the user
MongoDB query. This model shows the instance
represented in a class diagram stereotyped using our
profile, and the name of classes are the same as the
stereotype to facilitate readability. The execution
process is the same as performed by the user SQL
query. The classes stereotype and attributes used to
execute user SQL query is the same as employed by
the user MongoDB query. It is worth mentioning that
in the �QueryBuilder stereotype� the properties
used to represent the user SQL query terms are the
same as those employed for the user MongoDB query
terms. This is possible to identify the equivalence of
clause statements between the two types of query.

3: A User Query with SQL Statement Employing
join Clause.
This user SQL query retrieves user name, email, and
ages that have the same cpf from the three DaaS
(DaaS1, DaaS2, and DaaS3). We observe that the
term ages is evolved to age in the DaaS3 provider.

• User Request: SELECT DaaS1.name,
DaaS2.email, DaaS3.ages FROM DaaS1 INNER
JOIN DaaS2 ON DaaS2.cpf = DaaS1.cpf IN-
NER JOIN DaaS3 ON DaaS3.cpf = DaaS1.cpf;

The user’s query is decomposed into terms
and assigned to five properties defined in the

�QueryBuilder stereotype� (selectParame-
ters=”DaaS1.name, DaaS2.email, DaaS3.ages”,
joinType=”INNER JOIN, INNER JOIN”, join-
Datasets=”DaaS2,DaaS3”, joinConditions=”
DaaS2.cpf = DaaS1.cpf, DaaS3.cpf = DaaS1.cpf ”,
and fromDataset=”
DaaS1”).

The compatibility of these terms are verified in
DaaS1, DaaS2 and DaaS3 parameters represented in
the �APIData stereotype�. It was found that the
term DaaS3.ages is evolved to the term DaaS3.age
in the DaaS3. Therefore, this term is managed by
the �SemanticMapping stereotype� with their
three properties (currentAttribute=”age”, previousAt-
tribute=”ages”, and daaSDomain=”
data.fipe-parallelum.rhcloud.com”), and organized
by the
�SemanticMappingStorage� through three at-
tributes
(current Attribute=”age”, previous Attribute=
”ages”, and daaS Domain=”data.fipe-
parallelum.rhcloud.com”). The attribute newFields
defined in the �QueryBuilder stereotype� repre-
sents the new term ”age”. The three APIs links are
represented by the propriety aPILinkDaaS in the
�QueryExecute stereotype� Table 2:

In the �DataJoin stereotype�, results from
the three API links are represented by the attributes
resultDaaS. These data are aggregated in the �Filter
stereotype�, and represented by the propriety re-
sultsDaaS= ”” id: Objectid(”4578”), ’name’:’João’,
’email’:’dao@ufba.br’,
’age’:’20’,” id: Objectid(”4589”)’name’:’Maria’,

A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach

91



Table 2: Three APIs links.

https://data.fipe-parallelum.rhcloud.com/browser?dataset=DaaS3&fields=age,cpf
https://data.cityofnewyork.us/browser?dataset=DaaS2&fields=email,cpf
https://data.public.opendatasoft.com/browser?dataset=DaaS1&fields=name,cpf

’email’:’lia@ufba.br’,’age’:
’20’”. The id parameter is removed from
the data to make the information understand-
able for the user. The result is represented
by the attribute resultsFiltered=’name’:’João’,
’email’:’dao@ufba.br’,’age’:’20’,”name’:’Maria’,
’email’:’lia@ufba.br’,’age’:’20’ in the
�ResultFormatter stereotype�. The previous
term of DaaS3, ages is recovered and replace the
term age. The user query final result is represented
by the �ResultFormatter stereotype� propriety
resultsFormatted=’name’:’João’, ’email’:’dao@
ufba.br’,’ages’:’20’,’name’:’Maria’,
’email’:’lia@ufba.br’,’age’:’20’ in a JSON for-
mat specified by the attribute resultFormat=”JSON”.
Figure 5 shows the number of constructors (classes,
associations, and attributes) employed to perform the
user query. Compare to Figure 4, we have a new
class named �DataJoin stereotype� to perform
terms belonging to the user query Join. None of the
three user queries employed the �DataMapping
stereotype� to not specify a DBaaS provider
in their requests. Each attribute defined in the
�QueryBuilder stereotype� is related to the name
of a clause stated in the user SQL query.

Related to question Q1, the results obtained exe-
cuting the three types of user queries defined above
allow us to append and separate some MIDAS DSML
constructors. Classes as the QueryExecute is ap-
pended to our metamodel, the DataJoin are separated
from the DataMapping to only aggregate data from
DaaS/DBaaS providers, and the class defined in the
Result Module is broken down into two classes: the
Filter and the Formatter.

The QueryExecute class is created to manage
DaaS’ API links built by the QueryBuilder class. The
DataJoin class is constructed to handle data from
DaaS/DBaaS’ API links built according to a user
query with Join or lookup clause. The DataMapping
is responsible for building DBaaS APIs and getting
data from DBaaS providers. The Filter class removes
some unnecessary data parameters for easier to user
understanding, and the Formatter class is responsible
to format the user data into JSON, XML or CSV type.

Besides the creation of classes SemanticMap-
pingStorage, and SemanticMapping stereotype
to handle the semantic interoperability con-
cept in our metamodel, three properties pre-
vious param=”name”, newFields, and new-

Fields param are defined respectively in the
Formatter, QueryBuilder, and Attributes.

News associations are created among the
QueryExecute and the two classes: DataJoin
and Filter. We also have an association between
QueryExecute and QueryBuilder class. The di-
vision of the class defined in the Result Module
established a new association between the Filter
and the Formatter class. Two news properties
previous param=”name”, and newFields defined
respectively in Formatter, and QueryBuilder create
association relations among SemanticMappingStor-
age and the two classes Formatter and QueryBuilder.
The attribute newFields param defined in the At-
tributes class establishes an association relation
between the Attributes class and the SemanticMap-
ping.

Related to question Q2, the UML class diagram
adopted by our profile was sufficient to specify in-
stantiation of the syntactic, and semantic aspects of
the user query. Therefore, we consider that the DSML
was stable to be used.

We conclude that the MIDAS DSML constructors
are sufficient to specify the middleware and stable
enough to be employed. The examples used covered
the concepts needed within DSML. For now, they no
longer need to be changed or added within DSML.
This may happen in the future to change or accom-
modate some concepts that the examples did not con-
template. The expressiveness of the language is eval-
uated according to the level of comprehension of the
language constructors. This means we assess whether
the defined metamodel presented the necessary con-
cepts to instantiate the models. We know that our val-
idation results are limited, and the application of the
DSML in other scenarios is necessary to improve the
approach.

6 THREATS TO VALIDITY

Some threats of validity were identified in this process
validation. This section describes threats to internal
validity, external validity, and construction validity.
Internal Validity. Threats to internal validity are
related to the possibility of uncontrolled factors in-
fluencing our results. The participant’s experience
can be decisive in the metamodel validation. The

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

92



Figure 5: Executing user’s SQL query with join clause.

expert who is responsible for validating the DSML
expressiveness has more than three years experience
with the MDD approach, and knowledge in middle-
ware and cloud computing concepts. Therefore, the
threats related to the participant’s level of experience
are quite few.

External Validity. Threats to external validity are re-
lated to the possibility of generalizing the results to
other participants than the expert. MDD is a recent
approach relevant in some areas of development in the
industry, and academia (Whittle et al., 2013). How-
ever, as it is a recent approach and therefore requires
a specialized profile, it is difficult to find a partici-
pant with experience in MDD approach, middleware,
and cloud computing concepts. It is necessary to con-
firm the results obtained using a participant with ex-
perience in the MDD approach, middleware but not in
MIDAS, and in cloud computing concept.

Construction Validity. The construction threats to
the validity are related to the measures employed by
the expert, whether they really represent what is in-
tended to be evaluated. Assessing the DSML expres-
siveness is not a trivial task, as it involves partici-
pants performing tasks. As a consequence, the eval-

uation depends on the experience of each participant
in MDD approach, middleware and cloud computing
concepts.

Despite all these threats, efforts were made to
avoid bias in this validation process.

7 CONCLUSION AND FUTURE
WORK

In this paper, to enable implementing, running, and
deploying MIDAS on a large scale despite the diver-
sity of some cloud development and runtime environ-
ment characteristics, we propose a MIDAS Domain-
Specific Modeling Language (DSML) comprised of
the metamodel of MIDAS semantic architecture and
the Unified Modeling Language (UML) profile. The
metamodel enables the instantiation of platforms in-
dependent models, and provides a portability solu-
tion for MIDAS to be develop and run on distinct
cloud providers without creating a lock-in situation.
Through the metamodel of MIDAS, we can document
our models, reuse, debug and perform our artifacts
without ending implementation. Models are key ar-

A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach

93



tifacts to keep the development process on track and
to implement increasingly reliable software design.

To evaluate the DSML expressiveness, we exe-
cuted three types of query, and our results show that
modeling language has an acceptable coverage level
of concepts to define the middleware. In future work,
we plan to perform a controlled experiment to analyze
the consistency, correctness, completeness, and devel-
opment time to obtain MIDAS source code from the
metamodel of MIDAS architecture.

REFERENCES

Bergmayr, A., Troya Castilla, J., Neubauer, P., Wimmer,
M., and Kappel, G. (2014). Uml-based cloud ap-
plication modeling with libraries, profiles, and tem-
plates. In CloudMDE 2014: 2nd International Work-
shop on Model-Driven Engineering on and for the
Cloud co-located with the 17th International Confer-
ence on Model Driven Engineering Languages and
Systems (MoDELS 2014)(2014), p 56-65. CEUR-WS.

Christensen, B. and Ellingsen, G. (2016). Evaluat-
ing model-driven development for large-scale ehrs
through the openehr approach. International journal
of medical informatics, 89:43–54.

Cohen, R. (2009). Examining cloud compatibility, portabil-
ity and interoperability. http://www.elasticvapor.com/
2009/02/examining-cloud-compatibility.html. On-
line; Accessed: 2016-12-13.

Da Silva, A. R. (2015). Model-driven engineering: A sur-
vey supported by the unified conceptual model. Com-
puter Languages, Systems & Structures, 43:139–155.

Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko,
M., and Solberg, A. (2018). Cloudmf: model-driven
management of multi-cloud applications. ACM Trans-
actions on Internet Technology (TOIT), 18(2):1–24.

Gonidis, F., Simons, A. J., Paraskakis, I., and Kourtesis,
D. (2013). Cloud application portability: an initial
view. In Proceedings of the 6th Balkan Conference in
Informatics, pages 275–282.

Herrera, A. S.-B., Willink, E. D., and Paige, R. F. (2016).
A domain specific transformation language to bridge
concrete and abstract syntax. In International Con-
ference on Theory and Practice of Model Transforma-
tions, pages 3–18. Springer.

Lewis, G. A. (2013). Role of standards in cloud-computing
interoperability. In System Sciences (HICSS), 2013
46th Hawaii International Conference on, pages
1652–1661. IEEE.

Maciel, R. S. P., David, J. M. N., Claro, D. B., and Braga, R.
(2016). Full interoperability: Challenges and opportu-
nities for future information systems. I GranDSI-BR,
page 107.

Magalhães, A. P., Maciel, R. S. P., and Andrade, A. M. S.
(2015). Towards a metamodel design methodology:
Experiences from a model transformation metamodel
design. In SEKE, pages 625–630.

Mane, B., Rocha, W. d. S., Lima, E., and Claro, D. B.

(2020a). Semantic similarity attributes for data cloud:
A case study in midas. In Proceedings of the Brazilian
Symposium on Multimedia and the Web, pages 89–96.

Mane, B., Rocha, W. d. S., Ribeiro, E. L. F., Jesus, L.
E. N. d., Motta, I. C., Lima, E., and Claro, D. B.
(2020b). Enhancing semantic interoperability on mi-
das with similar daas parameters. In XVI Brazilian
Symposium on Information Systems, pages 1–8.

Mellor, S. J. (2004). MDA distilled: principles of model-
driven architecture. Addison-Wesley Professional.

Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., and Tata,
S. (2015). A precise metamodel for open cloud com-
puting interface. In 2015 IEEE 8th International Con-
ference on Cloud Computing, pages 852–859. IEEE.

Ranabahu, A. and Sheth, A. (2010). Semantics centric solu-
tions for application and data portability in cloud com-
puting. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Con-
ference on, pages 234–241. IEEE.

Sanaei, Z., Abolfazli, S., Gani, A., and Buyya, R. (2013).
Heterogeneity in mobile cloud computing: taxonomy
and open challenges. IEEE Communications Surveys
& Tutorials, 16(1):369–392.

Shawish, A. and Salama, M. (2014). Cloud computing:
paradigms and technologies. In Inter-cooperative
Collective Intelligence: Techniques and Applications,
pages 39–67. Springer.

Van Solingen, R., Basili, V., Caldiera, G., and Rombach,
H. D. (2002). Goal question metric (gqm) approach.
Encyclopedia of software engineering.

Whittle, J., Hutchinson, J., and Rouncefield, M. (2013). The
state of practice in model-driven engineering. IEEE
software, 31(3):79–85.

Zalila, F., Challita, S., and Merle, P. (2017). A model-driven
tool chain for occi. In OTM Confederated Interna-
tional Conferences” On the Move to Meaningful In-
ternet Systems”, pages 389–409. Springer.

Zalila, F., Challita, S., and Merle, P. (2019). Model-driven
cloud resource management with occiware. Future
Generation Computer Systems, 99:260–277.

Zhang, Z., Wu, C., and Cheung, D. W. (2013). A survey
on cloud interoperability: taxonomies, standards, and
practice. ACM SIGMETRICS Performance Evalua-
tion Review, 40(4):13–22.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

94


