
A Methodology for Generating BPEL Models from a Business
Process Textual Description

Wiem Khlif1, Nadia Aloui1 and Nourchène Elleuch Ben Ayed2
1Mir@cl Laboratory, University of Sfax, Sfax, Tunisia

2Higher Colleges of Technology, ADW, U.A.E.

Keywords: BPEL Model, Alignment Textual Description.

Abstract: Generating BPEL model from a Textual Description (TD) is essential to its reliable analysis. Nonetheless,
creating or preserving TD-BPEL alignment is an issue when an organization develops or changes a BEPL
model. Hence, it is possible to detect misalignment between BPEL model and text if changes are not applied
to both representations. This paper proposes a new methodology that assists business analyst to derive BPEL
models, which are aligned with their corresponding textual description. It uses the business concept’s
template that is augmented by a set of transformation rules. Compared to existing methods, our methodology
offers a complete alignment, which covers all BPEL elements. It is evaluated experimentally using the recall
and precision rates.

1 INTRODUCTION

Business process modelling constitutes an important
asset for expressing software requirements and
handling organizational change. What becomes
challenging with business process modelling is the
fact that the development of Business Process Models
(BPM) is a time-consuming task due to the
availability of different notations. The business
analyst uses Business Process Modelling Notation
(BPMN) for designing and improving the business
process, whereas Business Process Execution
Language (BPEL) is used by the technical analyst and
programmer when implementing it. These BPMN
models are as blueprints to define the BPEL model.

Several approaches were proposed in the literature
(Aysolmaz et al., 2018) (Doux et al., 2013) (Van der
Aa et al., 2019) to increase the agility of model. These
approaches are classified into two categories: the first
category addresses the transformation of BPMN
model into a textual description and vice versa
(Aysolmaz et al., 2018) (Van der Aa et al., 2019),
while the second category deals with the
transformation from the BPMN model into BPEL and
vice versa (Doux et al., 2013).

Regarding the first category, the transformation
from BPMN model to textual description can be
automatic or semi-automatic (Aysolmaz et al., 2018).

For the transformation from textual description to
BPMN model, (Van der Aa et al., 2019) present an
automatic approach that combines existing tools
from natural language processing in an innovative
way and augments them with a suitable anaphora
resolution mechanism.

For the second category, (Doux et al., 2013)
propose a set of BPMN patterns and their
corresponding BPEL structured constructs as well as
an algorithm automating this mapping. The latter
turns out to be rather complex because of inherent
differences between these two languages: BPMN
process models are graph-oriented (with only minor
topological restrictions), while BPEL process
definitions are block-structured.

To overcome these limitations, this paper
addresses the challenge of deriving a BPEL model
from a textual description. We propose to enhance
MONET (a systeMatic derivatiOn of a bpmN modEl
from business process Textual description)
methodology (Khlif et al., 2020) which mainly focus
on the derivation of BPMN models from given textual
descriptions. This generation is based on the business
concepts used as a mean to split the business process
textual description into goal-specific descriptions.
Each business concept (BC) is described by a well-
formed template respecting a set of linguistic
patterns. In addition, MONET proposes business
transformation rules that transform each linguistic

Khlif, W., Aloui, N. and Ben Ayed, N.
A Methodology for Generating BPEL Models from a Business Process Textual Description.
DOI: 10.5220/0010457403230330
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 323-330
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323

pattern to its corresponding BPMN elements. The
enhancement of MONET methodology goes through
differents steps. First, defining new transformation
rules that aim to derive BPEL from a textual decription
(TD). Second, evaluating the quality of the produced
model in terms of their precision and domain coverage.

The remainder of the paper is structured as
follows: Section 2 presents an overview of MONET
methodology (a systeMatic derivatiOn of a
bpmN modEls from business process Textual
description) and the related works. Section 3
determines the transformation rules that allow the
derivation of BPEL model from the business concept
template. Section 4 illustrates our tool MONEET that
implements the transformation rules and the ontology
to produce BPEL model and evaluate it through the
recall and precision. Finally, Section 5 summarizes
the results and draws the future works.

2 BACKGROUND

2.1 Overview of MONET

MONET (a systeMatic derivatiOn of a bpmN modEls
from business process Textual description) is a
methodology that generates BPMN model from its
corresponding documentation (Khlif et al., 2020). It
is composed of two phases: BPMN model derivation
phase and evaluation phase. The derivation phase is
organized around a set of three steps that are a pre-
processing, a definition of the transformation rules,
and their implementations. A pre-processing step
during which the business analyst cleans first the
business process description, written with a natural
language. Then, the business analyst identifies the
business goals to divide the business process
description into business concepts. For each business
concept, the business analyst prepares its TD
according to a specific template (Khlif et al., 2020)
which is composed of three blocks. The first block
summarizes the business concept. The second block
describes the main, alternative, and error scenarios.
The third block illustrates business objects as result
of the execution of the BC. For more details, reader
can refer to (Khlif et al., 2020).

A transformation-definition step during which the
business designer defines an ontology to analyze the
semantic of the business concepts’ template. It is used
to define the business transformation rules.

A Transformation-implementation step during
which the business engineer formalizes/implements
the transformation rules, which provide for the
automated generation of the BPMN model.

2.2 Related Work

Many researchers proposed a number of methods for
generating BPMN model from its textual description
and vice versa (Aysolmaz et al., 2018) (Van der Aa et
al., 2019), and from model to another at different
abstraction levels ie. from BPMN to BPEL and vice
versa (Doux et al., 2013).

On the one hand, model-to-text transformation
(Aysolmaz et al., 2018) proposed a semi-automated
approach technique that transforms process models
into intuitive natural language texts.

On the other hand, text-to-model transformation
techniques cover a diversity of models. (Van der Aa
et al., 2019) offered an approach that derives
automatically BPMN models from natural language
text based on a tailored Natural Language Processing
technique that identifies activities and their inter-
relations. The authors of (Doux et al., 2013) address
the issues related to model-to-model transformation
from BPMN to BPEL and vice versa. They proposed
pattern-based transformation from BPMN to BPEL
using ATL.

What become problematic with these works
(Doux et al., 2013) is the patterns identification and
the different types of process models: BPEL (block-
based) and BPMN (graph based). To overcome these
limits, (Yongchareon et al., 2020) present a unified
framework, namely UniFlexView, for supporting
automatic and consistent process view construction.
Based on this framework, process modellers can use
the proposed View Definition Language to specify
their view construction requirements disregarding the
types of process models.

In summary, many researchers studied the
transformation between BPMN model and its textual
description or between BPMN and BPEL models.
However, there is no works that focus on the
generation of BPEL from the documentation of the
business process. Our objective is to facilitate the task
of the business designer and developer to obtain
BPEL model at a high level of granularity.

3 FROM TEXTUAL
DESCRIPTION TO BPEL
MODEL

We propose to extend MONET methodology to
generate BPEL model from its textual description.
We called the new methodology MONEET (a
systeMatic derivatiOn of a bpmN and bpEl modEls
from business process Textual description).

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

324

MONEET is composed of two phases: BPEL model
derivation phase and evaluation phase. As MONET,
the derivation phase is organized around a set of three
steps that are a pre-processing, a definition of the
transformation rules, and their implementations. The
pre-processing step is quite similar to MONET.
However, we defined new transformation rules to
generate the BPEL model. We describe in the
following sections the transformation rules and we
evaluate the obtained model.

We defined eighteen transformation rules. Each
transformation rule operates on the different
components of the template.

R1. Each trigger is transformed into an event that
will be linked to the first element of the current
business concept. Based on the trigger type, we add
the corresponding event.

R1.1. If the trigger type describes the time, so add
the following code:

 Case of start event, which is only applied on an
Event Sub-Process :

<eventHandlers> <onAlarm>[timer-spec]
 <scope> [current business concept] </scope>
 </onAlarm>
</eventHandlers>

 Case of intermediate event:

<wait name = "[trigger-name]" for="[trigger-
TimeCycle]"/>

R1.2. If the trigger type describes any action that
refers to a specific addressee and represents or
contains information for the addressee, so add the
following code:

 Case of start event:

<receive name= [trigger-name] partnerLink =
[Participant] createInstance="yes|no"/>

 Case of intermediate event

<receive name= [trigger-name] partnerLink =
[Participant] createInstance="no"/>

We note that conditional and signal event cannot be
mapped to BPEL.

R2. Each participant is transformed into partner
link depending on its type.

R2.1. If a participant invokes the BPEL process,
so add the following code:

<process name=[process.name]/>
<partenerLink name="[participant name]" myRole =
"[processNameProvider]"/>

R2.2. if a participant is invoked by the BPEL
process, so add the following code:

<partnerLink name="[participant name]" myRole =
"[processNameProvider]"
partnerRole= "[ParticipantNameRequester]"/>

R3. Each relationship between a business concept
and its successors respects the linguistic pattern:
[<Pre-condition>] <Current Business Concept
ID> is related <sequentially | exclusively | parallel
| inclusively>to<Business Concept ID>.

R3.1. If the relationship is <sequentially>, then
add the following code:

<sequence> <scope> [current BC] </scope>
 <scope> [successor of the current BC] </scope>
</sequence>

R3.2. If the relationship is <parallel>, then add the
following code:

<flow> [current BC] [successor of the current BC]
</flow>

R3.3. If the relationship is <exclusively> and
there is a precondition, then add following code:

<if >[precondition] [current BC]
<else> [BC successor] </else> </if>

R3.4. If the relationship is <inclusively> and there
is a precondition, add the following code:

<flow> <links>
 <link name= "link1" >
 <link name= "link2" >
 <link name= "link3" >
 <link name= "link4" > </links>
 <source linkName="link1"> <transitioncondition>
 precondition1 <transitioncondition>
</source>
<source linkName= " link2" >
 <transitioncondition>precondition2
<transitioncondition> </source>
<flow>
 <target linkName= "link 1" > </target>
 <source linkName= "link 3" > </source>
 [current BC] </flow>
<flow> <target linkName= " link 2" > </target>
 <source linkName= " link 4" > </source>
 [business concept successor] </flow>
<target linkName= " link3" ></target>
<target linkName= " link4" ></target>
</flow>

R4. For each step of a BC’s scenario respecting
the linguistic pattern: [<Pre-condition>] <Task#> <
Task Description > <Task Type >, then add the
following:

A Methodology for Generating BPEL Models from a Business Process Textual Description

325

R4.1. If the task description is « Action verb +
BusinessObject », then add an invoke activity
presented by the following BPEL code and call R4.4,
R4.5, and/or R4.6.

< invoke name="[Action verb + BusinessObject]"
 portType="[Task-operation-interface]"
operation="[Task-operation]" > </invoke>

R4.2. If the task description is « Action verb +
NominalGroup », then add an invoke activity that has
the same name of the pattern and call R4.4, R4.5
and/or R4.6. If the pre/post-modifier is a noun that
merely represents a pure value, so there is no variable
(data object) to add. Otherwise, if the pre/post-
modifier is a complex noun (an entity) then add a
variable corresponding to the data object.

<invoke name="[Action verb + NominalGroup]"
 partnerLink="[participant]"
 portType="[Task-operation-interface]"
operation="[Task-operation]"> </invoke>

R4.3. If the task description is
« CommunicationVerb + BusinessObject |
NominalGroup+ [[to ReceiverName(s)] | [from
SenderName]] », then add the following code
corresponding to an invoke or receive activity that has
the same name of the pattern and a variable for each
BusinessObject or NominalGroup.

<invoke
name="[CommunicationVerb+BusinessObject|Nomina
lGroup]" partenerLink= "[ReceiverName]">
 <toPart part ="[variable.name]"
fromVariable="[variable.name]"/>
</invoke>

Or

<receive
name="[CommunicationVerb+BusinessObject|Nomina
lGroup]"
partnerLink=[SenderName] portType="[Task-
operation-interface]" operation="[Task-operation]" >
 <fromPart part ="[variable.name]" fromVariable =
"[variable.name]"/>
</receive>

R4.4. If the task type is ActivePER, then add a
variable presented by the following code:

<fromPart part = "[variable.name]" fromVariable =
"[variable.name]"/>

R4.5. If the task type is ActiveRET, then add a
variable expressed as follows:

<toPart part = "[variable.name]" fromVariable =
"[variable.name]"/>

R4.6. If the task type is ActiveREP, then add a
reply activity represented as follows:

<reply> </reply>

R5. Each relationship between the task and its
successors respects the linguistic pattern: [<Pre-
condition>] <Current Task ID> is related
<sequentially | exclusively | parallel |
inclusively>to<Task ID>

R5.1. If the relationship is <sequentially> and if
the current activity and its direct successor are in the
same main process, then add the following code:

</sequence> [current task] [successor task]
</sequence>

Otherwise add

 Receive activity

<receive name="[direct successor task]"
partenerLink="[participant]"></receive>

 Invoke activity

<invoke name= "[direct successor task]"
partenerLink="[participant]" ></invoke>

R5.2. If the relationship is <parallel>, then add

<flow> [current task] [successor task] </flow>

R5.3. If the relationship is <exclusively> and
there is a precondition, add the following code:

<if >[precondition][current task]
<else> [task successor] </else> </if>

R5.4. If the relationship is <inclusively> and there
is a precondition, then add the following code:

<flow> <links>
<flow> <links>
<link name= " link1" >
<link name= " link2" >
 <link name= " link3" > </links>
<source linkName=”link1”>
<transitioncondition>precondition1
<transitioncondition> </source>
<Source linkName= " link2" >
<transitioncondition>precondition2
<transitioncondition> </source>
<flow>
<target linkName= " link 1" > </target>
<source linkName= " link 3" > </source>
[current task] </flow>
<flow> <target linkName= " link 2" > </target>
<target linkName= " link3" ></target> </flow>

R5.5. If the relationship is <sequentially>, and
there is a <complete> construct related to a task, then
add an end event based on the following code:

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

326

 None end event

<empty name="[e-name]"> </empty>

 Message End Events

<invoke name="[e-name]"
 partnerLink="[Q, e-operation-interface]"
portType="[e-operation-interface]" operation="[e-
operation]"> </invoke>

 Error end event:

<throw faultName="[e -name]"> </throw>

 Compensation end event

<compensate/> or <compensateScope
target="[referencedActivity]"/>

 Terminate End Events

<exit> </exit>

4 MONEET TOOL

To facilitate the application of our methodology, we
enrich MONET tool (Khlif et al., 2020) by a module
that derives BPEL model from a given textual
description. We called MONEET Tool, which is
implemented as an EclipseTM plug-in (Eclipse,
2011) and is composed of three main modules: Parser,
generator, and evaluator.

The pre-processing engine uses as input the TD of
a BPEL model written in a natural language. It cleans

the file using. The cleaned file is used by the business
analyst to manually determine the business goals. The
Business Goal (BG4) definition and its description is
presented in (Khlif et al., 2020). Figure 1 shows the
template corresponding to BC4.

Next, the analyst selects one or more BCs. If he
selects one BC, the corresponding fragment is
generated. Else, the business analyst can select all
business concepts to transform. The generator engine
uses the ontology and applies the transformation rules
to derive the BPEL model. Figure 2 illustrates the
generated BPEL model: “Supply Management
Process”. First, by applying R2.1 we add a process
name "Supply Management Process" and a
partnerLink "Inventory Management". Second by
applying R1, the process is activated by the trigger
"Item and Invoice are received". The transformation
of the main scenario calls R4.2 and R4.5 that generate
an invoke activity labelled "Check item and invoice".

Then, we add two variables labelled "item" and
"invoice" to this activity. R4.2 produces an invoke
activity labelled "Establish a payment" (respectively,
"Put items in stock"). By applying R5.1, we generate
an orchestration logic between "Control result" and
"Check item and invoice". Then, by applying R5.2,
we add a flow activity between "establish payment"
and "put item in stock". The transformation of the
alternative scenario calls R4.2, R4.5 and R4.6 that
produces an invoke activity labelled "Reconciliation
order/invoice". Then, we add two variables labelled
"order" and "invoice" to this activity and we add a
reply activity "send expired product". R4.1 produces

Figure 1: BC4’s enhanced template (Khlif et al., 2020).

A Methodology for Generating BPEL Models from a Business Process Textual Description

327

an invoke activity labelled "return products".
Then, by applying R5.2, we add a flow activity

between "reconciliation order/invoice" and "return
products".

Figure 2: The generated BPEL model:"SupplyManagementProcess ".

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

328

Table 1: BPEL code corresponding to BC4.

BC4 Textual description Rules Code BPEL

O
ve

rv
ie

w
 Participants:

<Inventory management>
In<SupplyManagement Process>

R2.1
<process name= "SupplyManagementProces" </process>
<partnerLink name= "InventoryManagemen"
myRole="SupplyManagementProcesProvider" />

<Item and Invoice are received> R1
<receive name= item and invoice received partnerLink= "supplier"
createInstance="yes"/>

M
ai

n
 s

ce
n

ar
io

<T1> <Check Item and Invoice>
<Type: ActiveRET>

R4.2
R4.5

<invoke name="check item and invoice "
<toPart part = "item" fromVariable = "item"/>
<toPart part = "invoice" fromVariable = "invoice"/>

<Positive Control>
<T2><Establish a payment>
<Type: ActiveREQ>

R4.2
< invoke name="establish a payment" portType="[T2-operation-
interface]" operation="[T2-operation]"> </invoke>

<T3><Put item in stock><Type:
ActiveREQ>

R4.2
< invoke name="put item in stock" portType="[T3-operation-
interface]" operation="[T3-operation]"> </invoke>

<T1> is related sequentially to
<Control Result>

R5.1 <sequence><T1><control result></sequence>

which is related in parallel to <T3> R5.2 <flow> [T2] [T3] </flow>

A
lt

er
n

at
iv

e
sc

en
ar

io

<T4><Reconciliation
order/invoice>
<Type:ActiveRET, ActiveREP>

R4.2
R4.5
R4.6

<invoke name="reconciliation order/invoice "
portType="[T4-operation-interface]"
operation="[T4-operation]"> </invoke>
<toPart part = "order" fromVariable = "order"/>
<toPart part = "invoice" fromVariable = "invoice"/>
<reply name="send expired product"> </reply>

<T5><Return products> <Type:
ActiveREQ>

R4.1
< invoke name="return products"
portType="[T5-operation-interface]"
operation="[T5-operation]"> </invoke>

<T4> is related in parallel to<T5> R5.2 <flow> [T4] [T5] </flow>

Table 1 illustrates the BPEL code corresponding
to BC4. The evaluator evaluates the BPEL model
through the calculation of recall and precision rates.
The high scores for both ratios (Recall=0,86 and
Precision=0,95) mean that the generated BPEL
model covers the whole domain precisely in
accordance with the experts’(See Figure 3).

5 CONCLUSIONS

Deriving BPEL model from BPMN model can be a
challenging task in the business process modelling
project. The difference between the notations may
degrade the quality of generated BPEL model. For
that reason, this paper proposed a transformation-
based methodology to generate a BPEL model from
its textual description instead of BPMN models. To
our best knowledge, there are no works that have
investigated this research problem. Furthermore,
compared to existing works dealing with BPMN-to-
BPEL transformation, our methodology provided
an enriched template defined in terms of structured
linguistic patterns, as the starting point. Then, it
defined transformation rules that derive each
linguistic patterns to its corresponding BPEL

elements. These transformation rules are automated
and MONEET tool is implemented to derive the
BPEL model an evaluate its quality using the recall
and precision ratios.

REFERENCES

Aysolmaz, B., Leopold, H., Reijers, H.A., Demirörs, O.,
2018. A semi-automated approach for generating
natural language requirements documents based on
business process models. In Journal of Information &
Software Technology, V. 93, pp. 14-29.

Doux, G., Jouault, F., Bézivin, J., 2013. Transforming
BPMN process models to BPEL process definitions
with ATL. In Proceedings of the 5th International
Workshop on Graph-Based Tools.

Eclipse Specification, 2011. Available from:
http://www.eclipse.org/.

Khlif, W., Elleuch Ben Ayed, N., Chihi, F., 2020.
Towards a systematic derivation of BPMN model
from business process textual description. In
International Conference on Software Engineering
and Knowledge Engineering venue 2020. july 9 – 19.

Van der Aa, H., Ciccio, C.D., Leopold, H., Reijers, H.A.,
2019. Extracting Declarative Process Models from
Natural Language. In 31st International Proceedings
of Conference on Advanced Information Systems

A Methodology for Generating BPEL Models from a Business Process Textual Description

329

 Engineering. Rome, Italy, June 3-7, pp. 365-38.
Yongchareon, S., Liu, C., Zhao,X., 2020. UniFlexView:

A unified framework for consistent construction of

BPMN and BPEL process views. In journal of
concurrency and computation: Practice and
experience, V 32.

Figure 3: The elaborated BPEL model by the expert.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

330

