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Abstract: Mobile accessibility testing is the process of checking whether a mobile app can be perceived, understood,
and operated by a wide range of users. Accessibility testing tools can support this activity by automatically
generating user inputs to navigate through the app under evaluation and run accessibility checks in each new
discovered screen. The algorithm that determines which user input will be generated to simulate the user
interaction plays a pivotal role in such an approach. In the state of the art approaches, a Uniform Random
algorithm is usually employed. In this paper, we compared the results of the default algorithm implemented by
a state of the art tool with four different biased random strategies taking into account the number of activities
executed, screen states traversed, and accessibility violations revealed. Our results show that the default
algorithm had the worst performance while the algorithm biased towards different weights assigned to specific
actions and widgets had the best performance.

1 INTRODUCTION

Accessibility evaluation aims at checking whether an
information system can be perceived, understood, or
operated by users with different characteristics, spe-
cially those with any disability (ISO, 2018). This is not
a trivial task since the specific requirements for a wide
range of users may be vast and diverse. Therefore,
organizations have developed standards like the Web
Content Accessibility Guidelines (WCAG), which de-
fines guidelines and success criteria written as testable
statements to guide the development of accessible dig-
ital products. Such standards can be used during both
the development and evaluation phases.

Although organizations can rely on well-known
standards, proper accessibility evaluations are costly
and time consuming because ideally it should be con-
ducted by end users and specialists. This poses the
following challenges: (i) the number and diversity of
users required to conduct a proper evaluation may be
prohibitive for many organizations, and (ii) while spe-
cialists can emulate the behavior of many end users,
they usually carry out this activity manually (Paz
and Pow-Sang, 2016), which largely involves inter-
acting with the system under evaluation to inspect
each screen, component, or interaction, often relying
on assistive features such as screen readers.

Recently, in hopes of mitigating costs associated
with accessibility evaluations, researchers have come
up with automated approaches (Siebra et al., 2018;
Silva et al., 2018a; Agüero-Flores et al., 2019; Abas-
cal et al., 2019; Frazão and Duarte, 2020). However,
organizations should not solely rely on automated tests
because there are many accessibility violations whose
identification entails subjective judgment (Vigo et al.,
2013). For example, it is easy for an automated tool to
check whether the contrast ratio between a text element
and its background color complies with agreed upon
standards (i.e. 4.5/1), but it cannot decide whether
the focus sequence of the elements in a screen is se-
mantically correct for the user. Despite the limitations
inherent to automated approaches, studies suggest that
they can contribute with the evaluation process (Souza
et al., 2019; Antonelli et al., 2019; Mateus et al., 2020).

Several tools tailored to mobile accessibility evalu-
ation have been proposed (Eler et al., 2018; Park et al.,
2019; Alshayban et al., 2020; Siebra et al., 2018; Silva
et al., 2018a; Hao et al., 2014). Particularly, fully auto-
mated approaches generate test inputs to simulate user
interaction and automatically explore the application
under test while accessibility tests are run for each
visited screen. Such approaches are based on uniform
random input generation strategies with the goal of
simulating user interaction (Alshayban et al., 2020;
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Eler et al., 2018). In this strategy, a specific action
is randomly selected from a list of on-screen actions
(i.e., actions that the user can see and interact with on
a given screen). While such an approach lends itself
well to accessibility testing and thus has the potential
to reveal lots of accessibility violations, it does not gen-
erate complex interactions or sensitive data to further
explore the app under evaluation, which may let many
parts of the evaluated applications uncovered (Eler
et al., 2018; Alshayban et al., 2020).

Hence, an interesting question in this matter is
to evaluate whether other random testing strategies
would fare better in the detection of accessibility viola-
tions. Even though different strategies can be applied
to guide test generation for mobile apps so the app
under test can be further explored (e.g. search-based
testing), Random Testing is cheaper and it does not
require instrumentation (modification in the app); this
makes it a robust effective strategy to explore a soft-
ware under test (Choudhary et al., 2015; Tramontana
et al., 2019; Pacheco and Ernst, 2007).

Therefore, this paper compares the effectiveness
of five flavours of random approaches to generate ac-
cessibility tests for mobile applications. More specif-
ically, we implemented four new random algorithms
on top of an open source tool called MATE (Mobile
Accessibility Testing) (Eler et al., 2018). The default
strategy adopted by MATE is a uniform random al-
gorithm in which each event of the mobile app under
test has the same probability of being selected. The
new algorithms are based on biased approaches that
use frequency and weights to assign different proba-
bilities for each event. Results show that the default
strategy adopted by MATE had the worst performance
and an algorithm that selects user input biased towards
specific actions executed over specific widgets had the
best performance.

This paper is organized as follows. Section 2
presents basic concepts regarding accessibility and ac-
cessibility testing approaches. Section 3 describes the
tool in which we implemented the five evaluated strate-
gies to generate test inputs for accessibility evaluation.
Section 4 shows the setup and Section 5 presents the
results and the discussion of our experiment. Finally,
Section 6 brings some concluding remarks.

2 BACKGROUND

Android apps are composed by Activities, components
that offer user interfaces and can be invoked individ-
ually. As such, they work as a container of compo-
nents called widgets, e.g., buttons, text fields, toggle
switches, etc., which allow the user to interact with the

app and navigate through other activities. An activity
is usually presented to the user as a full-screen window,
but they can also be used as floating or embedded win-
dows. One single activity may present different widget
configurations (i.e., different arrangement, states and
colors) as the user interacts with the app.

From a software testing perspective, it is important
to identify the different screen configurations (screen
states) reached during a test session because it might
represent that different functionalities of the app under
test have been covered (Baek and Bae, 2016). From the
accessibility testing standpoint, different screen states
may present different properties and user interaction
options that might be of interest.

Figure 1 shows four examples of screen states of
the activity New List of an app that provides users with
shopping lists facilities. Screen state A is the entry
point of this activity and presents the user with input
fields, radio buttons, check boxes and buttons. Screen
state B is different from screen state A because the
input field for the shopping list name is not empty any-
more. Screen state C is different from screen state B
because the radio button on the top right corner is acti-
vated. Finally, screen state D is different from screen
state C because the checkbox deadline is checked and
it has additional components (widgets).

Several tools have been proposed to support the
automated testing for mobile accessibility (Silva et al.,
2018a; Siebra et al., 2018). Even though many acces-
sibility barriers can only be detected based on human
judgement (Vigo et al., 2013; Mateus et al., 2020),
supporting tools can increase the productivity of the
evaluation task. Automated tools for accessibility test-
ing can perform static or dynamic analysis. Static
analysis tools can only detect violations on the source
code, but the lion’s share of accessibility violations are
caused by dynamic changes that might happen during
execution.

Dynamic analysis tools can be partially or fully
automated. Partially automated tools rely on man-
ual interaction or test scripts created by developers
or testers to find accessibility violations. The limi-
tation of such strategy is that manual interaction is
error prone and labor intensive, because it requires
to navigate through the application while the underly-
ing tool performs accessibility checks. Additionally,
tests cannot be re-executed when the interface changes.
With respect to script-based approaches, their effec-
tiveness is determined by the thoroughness of the test
set. Fully automated approaches generate user inputs
to simulate user interaction while accessibility checks
are executed in each new screen explored.

As far as we know, there are only three fully au-
tomated tools that support accessibility testing and
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Figure 1: Examples of different screen states of a single
activity.

automatically generate test inputs to navigate through
the application. PUMA is a generic framework that
can be customized for various types of dynamic analy-
ses, such as checks for button sizes (Hao et al., 2014).
Alshayban et. al (2020) developed a tool to assess the
accessibility features of Android applications, which
takes advantage of the accessibility checks provided by
Google’s Accessibility Testing Framework. The acces-
sibility assessment tool has two main parts. One part
simulates user interactions and the other part monitors
the device for accessibility events.

MATE (Eler et al., 2018) is a tool designed with
the goal of automatically exploring applications while
applying different checks for accessibility violations
according to the WCAG 2.1 (Web Content Accessibil-
ity Guidelines). MATE is compatible with the Android
environment (emulators or physical devices) and uses
the UIAutomator structure to interact with the applica-
tion without requiring access to the source code of the
application under test. One of the limitation of this ap-
proach is that the algorithm that generates user inputs
may not generate complex interactions or sensitive
data to further explore the app under evaluation.

3 APPROACH DESCRIPTION

The results of comparing different algorithms that gen-
erates test inputs using different tools may be influ-
enced by the underlying implementation and the en-
gineering choices of the testing tool. Therefore, we
decided to implement the new flavours of random test
generation algorithms we devised for this study on top

of the open source tool called MATE (Eler et al., 2018).
In this section, we provide an overview of how this
tool operates, the types of accessibility violations the
tool can find, and the new algorithms we implemented.

3.1 MATE: Mobile Accessibility Testing

MATE automatically generates inputs (e.g. tap, swipe)
to simulate user interaction and run accessibility tests
in each visited screen. The tool runs as a mobile app
in the Android environment and execute the following
steps repeatedly until a time budget is met.
Step 1: the tool extracts detailed information from the
visual components presented on the device or emulator
screen using the Accessibility Service1 API. The infor-
mation available for each visual component can vary,
but they usually include: coordinates in the screen,
component type, content description, label, hint, text,
drawing order, and so forth. This API also allows to
retrieve the events each component or the screen itself
can handle, such as if the component can be taped, or
checked, or scrolled.
Step 2: the tool uses the information retrieved in Step
1 to check whether that screen follows specific accessi-
bility criteria aiming at finding accessibility violations.
MATE checks for more than accessibility criteria de-
fined by the WCAG 2.1, such as for Non-text Con-
tent (guideline 1.1.1), which checks whether non-text
components (e.g. images) have a text alternative to
describe their purpose, of for Target Size (guideline
2.5.5), which checks whether actionable components
have at least a size of 44 by 44 pixels.
Step 3: the tool uses the information on the possi-
ble events the components or the screen can handle
(collected at Step 1) to create a list of actions that
will simulate user interaction, such as “tap on button
add product” or “insert text in the input field product
name”. MATE selects an action to be executed using
an algorithm called Uniform Random (UR), that se-
lects a possible action from a list in which each action
has the same probability to be chosen.

The selected action is executed by means of the
UiAutomator2 API. The action selected to simulate
user interaction is important because it is used to navi-
gate through the app while accessibility checks are run.
Depending on the actions executed, the tool can ex-
plore more or less functionalities and different screens;
this impacts on the application coverage and the num-
ber of accessibility violations revealed.

1https://developer.android.com/reference/android/
accessibilityservice/AccessibilityService

2https://developer.android.com/training/testing/ui-
automator
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Step 4: the tool registers whether the executed action
(in Step 3) moved the app to a screen that had not been
visited before.

3.2 New Algorithms

In this work, we implemented four different flavours
of random algorithms that receive a list of possible
actions that a screen can handle and select one action
based on different strategies. Following we present
the different random approaches each algorithm use,
which were largely inspired in testing tools of general
purposes (Machiry et al., 2013; Su et al., 2017).

Biased Random - New Action (BRNA): all actions
of the list have the same probability of being selected,
as the default algorithm implemented by MATE, but
once an action is selected for a given screen, it is
removed from the list. When the list of actions of a
given screen is empty, the original list is restored.

Biased Random - Fixed Weight (BRFW): some type
of actions have more probability of being selected than
others by assigning different weights to different types
of actions (e.g. tap, type, back). Such weights were
defined based on an investigation in which we tested
30 mobile applications during 30 minutes each using
the Uniform Random algorithm to collect information
of which type of action lead to the exploration of new
screens. Our results are presented in Table 1.

Table 1: Percentage of new states and weights assigned to
each type of event.

Action type New Screen exp. Weight
TAP 65.20% 8
TYPE-TEXT 10.80% 5
SWIPE-DOWN 9.80% 5
MENU 3.1% 3
BACK 3.0% 3
SWIPE-UP 3.0% 3
ENTER 1.7% 2
LONG-PRESS 1.2% 2
SWIPE-RIGHT 1.2% 2
SWIPE-LEFT 1.1% 2
OTHER-TYPES <1% 1

Instead of using the absolute values presented at the
column New screen exploration, we decided to use
the Fibonacci scale to reduce the gap between the
weights assigned to each type of action, similarly to
what is generally done in the software estimation in
agile projects (Dybå et al., 2014). In this case, we
decided that the weights would be assigned based on
the percentagem of new screens explored by that action
as follows: 1 (below 1%), 2 (1% to 2%), 3 (3% to 5%),
5 (6% to 10%), 8 (above 11%).

Biased Random - Fixed Weighted Widget-Action

(BRFWWA): some types of actions combined with
some types of components (e.g. tap on a button, tap
on a spinner, or type text in an input box) have more
probability of being selected than others. Some actions
are associated with the screen itself, such as BACK or
even SWIPE actions. Weights were assigned based
on the same investigation mentioned in the descrip-
tion of the Fixed Weighted Action Random algorithm.
Here are the list of assigned weights: TAP on Linear-
Layout(8), ImageButton (8), Button” (8), CheckBox
(8), TextView (5), RadioButton (3), ImageView (3),
FrameLayout (2), RelativeLayout (2), LinearLayout-
Compat (2); TYPE-TEXT in any type of input box (8);
SWIPE-DOWN (8), SWIPE-UP (2), MENU (3), BACK
(3), ENTER (2), all other actions and components (1).

Biased Random - Uniform Variable Weight
(BRUVW): all actions have the same probability of
being selected at first because they are all assigned
the same weight: 5. However, the weight assigned for
each type of action (e.g. tap, type, back) is variable
during the execution. Each time an action is selected,
that type of action has its weight reduced in one point.
When the weight reaches 0, it is restored to 5.

4 EXPERIMENTAL DESIGN

Considering that different approaches to generating
inputs for uncovering accessibility violations are
likely to perform differently across various apps, we
set out to examine how five algorithms perform when
compared with each other. We believe that the results
of our experiment can shed some light into the merits
and limitations of each algorithm. Specifically, our
analysis is centered on the following research question:

RQ1: How do the algorithms compare to each other
with respect to their effectiveness?

4.1 Scope of the Experiment

We defined the scope of our experiment by setting
its goals, which were summarized according to the
Goal/Question/Metric (GQM) (Wohlin et al., 2012)
template as follows:

Analyze: a uniform random algorithm and four adap-
tive random input generation algorithms
for the purpose of: evaluation
with respect to their: effectiveness
from the point of view of: the researcher
in the context of: mobile apps.
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4.2 Variables Selection

Given that it is challenging to compare algorithms in
terms of their effectiveness, prior to carrying out the
experiment, we needed to come up with an opera-
tionalization of effectiveness. We decided to evaluate
the effectiveness of the algorithms in terms of three de-
pendent variables: (i) activity coverage, (ii) traversed
state coverage, and (iii) the amount of uncovered ac-
cessibility violations.

The independent variables are the algorithms we
set out to examine, Uniform Random (UR), No Repeti-
tion Random, Fixed Weight Random, Variable Weight
Random, and Widget-Action Random. An in-depth de-
scription of these algorithms is presented in Section 3.

The control variables are the (i) time budget allo-
cated for each algorithm to generate user inputs au-
tomatically, (ii) the number of times each algorithm
is executed, and (iii) the execution environment. The
time budget we chose for all algorithms is exactly 30
minutes, which has been used in several studies regard-
ing test generation (Eler et al., 2018; Choudhary et al.,
2015). Due to the inherently random behavior of the
algorithms, they were executed three times and the out-
come used with respect to the independent variables is
the average between the three executions.

The execution environment for each app and each
input generation algorithm was the same: an Intel Core
i7 processor, 16GB RAM. Prior to each execution, the
emulator running the application had all its data erased
and it was rebooted.

In the next subsection we describe the criteria we
adopted to select our study sample.

4.3 Sample Selection

As described in Section 3, the accessibility testing tool
we chose can test applications that run on Android
emulators or actual devices. Although the testing tool
does not require the source code of the application,
having access to deployable files of the applications
under evaluation makes running experiments that de-
mand several executions more feasible. Therefore, in
the context of our experiment, we selected applications
from a F-Droid,3 which is a well-known repository that
indexes more than 3000 Android apps of different cat-
egories, sizes and complexities. This repository has
been used in several studies on testing mobile appli-
cations (Samir et al., 2019; Li et al., 2019; Jha et al.,
2019; Mao et al., 2016; Li et al., 2014; Lamothe and
Shang, 2018; Eler et al., 2018; Silva et al., 2018b).

We applied the following criteria during sample
construction: (i) the application must also be available

3https://f-droid.org/

in the official app store of the Android platform, the
Google Play Store, to make sure it is not a toy project;
(ii) the target version of the Android API must be the
28th or a newer version since the testing tool was built
based on the API 28. Only 323 out of 3,168 met the
two selection criteria we set4. Next, we randomly
selected 63 out of these 323 apps to create the sample
for our study. Table 2 shows the apps that comprise our
sample; it includes apps with one to up 90 activities.

5 RESULTS AND DISCUSSION

Activity Coverage. To measure activity coverage, we
collected how many different activities were explored
for each algorithm. Figure 2 shows that, when we
evaluate activity coverage across all apps of our sam-
ple, the Uniform Random (UR) performed slightly
worse than the other algorithms. However, there are
no significant differences between all algorithms.

UR BRUVW BRFWWA BRFW BRNA
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Figure 2: Number of executed activities for each algorithm
across all apps in our sample.

Results seem to be different when we compare the
performance of each algorithm on an app-by-app basis.
Figure 3 shows for how many apps each algorithm
performed best in terms of activity coverage. Since the
number of activities in the apps is low, most algorithms
covered about the same number of activities; hence,
many algorithms were the best with respect to activity
coverage for each app. Notice that the BiasedRandom-
NewAction performed best for 45 apps, followed by
BiasedRandomFixedWeight and BiasedRandomFixed-
WeightWA which yield the best results (i.e., covered
more activities) for 42 apps; and then the Uniform-
Random and BiasedRandomUniformVariableWeight
performed best for 38 apps.

Traversed States. By looking at the current activity,
the UI elements displayed, and their contents, we can

4Data extracted from FDroid on August 27th of 2020.
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Table 2: Mobile apps of our sample.

app #act.s app #act.s
cityfreqs.com.pilfershushjammer 1 net.tjado.passwdsafe 7
com.dosse.speedtest 1 com.adguard.android.contentblocker 8
de.tutao.tutanota 1 com.james.status 8
fr.jnda.android.ipcalc 1 com.menny.android.anysoftkeyboard 8
net.guildem.publicip 1 com.orpheusdroid.screenrecorder 8
net.mullvad.mullvadvpn 1 nitezh.ministock 8
se.tube42.drum.android 1 net.eneiluj.moneybuster 9
androdns.android.leetdreams.ch.androdns 2 net.gsantner.markor 9
btools.routingapp 2 ai.susi 10
cf.fridays.fff info 2 org.secuso.privacyfriendlytodolist 10
com.github.axet.hourlyreminder 2 de.rampro.activitydiary 11
io.github.easyintent.quickref 2 org.connectbot 11
me.tsukanov.counter 2 org.nutritionfacts.dailydozen 11
net.asceai.meritous 2 org.zephyrsoft.trackworktime 11
com.aa.mynotes 3 com.eventyay.organizer 12
com.atelieryl.wonderdroid 3 org.secuso.privacyfriendlyweather 12
com.github.axet.filemanager 3 com.yacgroup.yacguide.dev 13
com.physphil.android.unitconverterultimate 3 org.kiwix.kiwixmobile 13
eu.roggstar.luigithehunter.batterycalibrate 3 de.tadris.fitness 15
mn.tck.semitone 3 org.openintents.shopping 15
org.billthefarmer.diary 3 org.xbmc.kore 15
org.billthefarmer.notes 3 com.gpl.rpg.AndorsTrail 17
org.billthefarmer.tuner 3 de.danoeh.antennapod 17
org.jitsi.meet 3 au.com.wallaceit.reddinator 18
ru.meefik.busybox 3 de.syss.MifareClassicTool 19
com.darshancomputing.BatteryIndicator 4 org.quantumbadger.redreader 19
info.papdt.blackblub 4 io.github.hidroh.materialistic 23
it.rignanese.leo.slimfacebook 5 com.fsck.k9 29
org.billthefarmer.currency 5 io.pslab 32
uk.co.busydoingnothing.prevo 5 org.epstudios.epmobile 81
com.google.android.stardroid 7 me.ccrama.redditslide 90
name.boyle.chris.sgtpuzzles 7
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Figure 3: Number of apps for which an algorithm is the best
w.r.t. activity coverage.

define a state of the app. In this part, we counted
the number of unique app states traversed by each
algorithm. Figure 4 shows that the number of different
states reached by the Biased Random - Fixed Weight
Widget-Action algorithm slightly covers more states,

followed by Biased Random - Fixed Weight and Biased
Random - New Action. Algorithms Uniform Random
and Biased Random - Uniform Variable Weight are the
least effective ones in terms of covering screen states.
However, the differences between algorithms are not
significant when we consider all apps in our sample.
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Figure 4: Number of traversed states for each algorithm
across all apps in our sample.

When it comes to each app individually, however, the
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number of apps for which each algorithm performed
best with respect to screen state coverage is signifi-
cantly different. Figure 5 shows that the algorithm Bi-
ased Random - Fixed Weight Widget-Action is clearly
the one that traverses more states for 31 apps, fol-
lowed by Biased Random - Fixed Weight with 19 apps,
Biased Random - Uniform Variable Weight with 15
apps, Biased Random - New Action with 14 apps, and
finally Uniform Random with 9 apps. Such results
would seem to indicate that, all random algorithms we
employed managed to traverse more states than the
default implementation of MATE: the Uniform Ran-
dom algorithm. In addition, algorithms that resort to
weights to decide which user input should be gener-
ated next tend to traverse more states. It is noticeable
that more than two algorithms were the best for the
same app when it comes to the screen state coverage;
in that case, all algorithms are counted as the best for
that app.
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Figure 5: Number of apps for which an algorithm is the best
w.r.t. screen state coverage.

The five algorithms were not able to explore many
screen states for many apps due to two reasons mainly:
many apps have only one activity and possibly few
states to be explored; and for many apps the algorithms
could not go through the first screen because they were
not able to generate more complex user inputs or pro-
duce sensitive data (e.g. login and password). In such
cases, the results achieved by the algorithms are not
much different. Therefore, we analyzed the results
of two subsets of the whole sample to check whether
results would be different. First, we created a subset
of our sample containing only apps for which the tra-
versed states are equal or greater than the average num-
ber of states explored in the experiment (80). Then,
we created a second subset of our sample containing
only apps for which the traversed states are equal or
greater than the average number of states explored in

the experiment divided by two (40).
Table 3 shows the number of apps for which a par-

ticular algorithm is the best with respect to screen state
coverage considering different samples. The Whole
Sample is the original sample and it has 63 apps; the
#St>=average has 26 apps; and #St>=average/2 has
35 apps. Considering the Whole Sample, it is notice-
able that more than two algorithms were the winners
with respect to the number of screen state traversed
during the test execution. In that case, more than one
algorithm is defined as the best for that app; that is
why the sum of the first second column is more than
the number of apps in the sample. As presented in Fig-
ure 5, Biased Random - Fixed Weight Widget-Action is
clearly the most effective algorithm as it is the best for
half of the apps (49.21%), followed by Biased Random
- Fixed Weight (30.16%), Biased Random - Uniform
Variable Weight (23.81%), Biased Random - New Ac-
tion (22.22%), and Uniform Random (14.29%).

Considering the subset of the sample for which
the algorithms reached at least the average number
of states explored by the whole sample (80); notice
that there is only one best algorithm for each app,
which may imply that differences between algorithms
increase as the number of states explored increases.
In this subset, the algorithm Biased Random - Fixed
Weight Widget-Action is still the most effective as it is
the best algorithm for 46.15% of the apps of this sam-
ple subset, followed by Biased Random - New Action
(23.08%), Biased Random - Fixed Weight (15.38%),
Biased Random - Uniform Variable Weight (11.54%),
and Uniform Random (3.85%). When apps with more
states traversed are considered, the percentage of the
apps for which the algorithm Biased Random - Fixed
Weight Widget-Action is the best remained about the
same while it was reduced for the others, especially
for the default algorithm Uniform Random which was
the best for only one app this time.

Considering the subset of the sample for which
the algorithms achieved at least the average number
of states explored by the whole sample divided by
two (40), notice that there is also only one best al-
gorithm for each app. Similarly to the other sample
subset, the algorithm Biased Random - Fixed Weight
Widget-Action is also the most effective as it is the
best algorithm for almost half of the apps (48.57%),
followed by Biased Random - New Action (17.14%)
and Biased Random - Fixed Weight (17.14%), Biased
Random - Uniform Variable Weight (11.43%), and
Uniform Random (5.71%).

Accessibility Violations. To probe into the viola-
tion detection effectiveness of each algorithms, we
collected the absolute number of unique accessibility
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Table 3: Number of apps for which an algorithm is the best w.r.t. screen coverage in different sample subsets.

Whole Sample Proportion #St>=average Proportion #St>=average/2 Proportion
BRFW 19 30,16% 4 15,38% 6 17,14%
BRFWWA 31 49,21% 12 46,15% 17 48,57%
BRNA 14 22,22% 6 23,08% 6 17,14%
BRUVW 15 23,81% 3 11,54% 4 11,43%
UR 9 14,29% 1 3,85% 2 5,71%

violations revealed during the exploration of each al-
gorithm. Figure 6 shows that there is no significant
difference in the number of accessibility violations
revealed when different flavors of random algorithms
are applied to generate user inputs.
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Figure 6: Number of violations uncovered by each algorithm
when applied to all apps in our sample.

Nevertheless, the number of apps for which each algo-
rithm performed the best with respect to accessibility
violations found is different. Figure 7 shows that the al-
gorithm Biased Random - Fixed Weight Widget-Action
clearly generates user inputs that uncovered more ac-
cessibility violations for 27 apps, followed by Biased
Random - Fixed Weight for 16 apps, Uniform Random
for 12 apps, Biased Random - New Action for 9 apps,
and Biased Random - Uniform Variable Weight for
7 apps. Notice that, even though the Uniform Ran-
dom algorithm was the worst algorithm with respect
to state coverage, it was the third in terms of uncover-
ing accessibility violations. It means that the number
of states explored may not correlate with uncovering
more violations. We surmise that this is the case be-
cause uncovering violations depends on the diversity
of the states explored.

Table 4 shows the number of apps for which a
particular algorithm is the best with respect to the
number of accessibility violations found considering
different subsets of our sample: apps for which the
number of states traversed is equal or greater than
the average for the whole sample (80) and half of the
average (40).

Considering the Whole Sample, notice that more
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Figure 7: Number of apps for which an algorithm is the best
w.r.t. accessibility violations found.

than two algorithms were the best for the same app
with respect to the number of accessibility violations
found. As presented in Figure 7, Biased Random -
Fixed Weight Widget-Action is clearly the most effec-
tive algorithm as it is the most effective for 42.86% of
the apps, followed by Biased Random - Fixed Weight
(25.40%), Uniform Random (19.05%), Biased Random
- New Action (14.19%) and Biased Random - Uniform
Variable Weight (11.11%).

Considering the subset #St>=average, the algo-
rithm Biased Random - Fixed Weight Widget-Action is
still the most effective for 42.31% of the apps, followed
by Biased Random - New Action (26.92%), Biased
Random - Fixed Weight (15.38%), Biased Random -
Uniform Variable Weight (11.54%), and Uniform Ran-
dom (11.54%). When apps with more states traversed
are considered, the percentage of the apps for which
the algorithms Biased Random - Fixed Weight Widget-
Action and Biased Random - Uniform Variable Weight
are the best remained about the same while it increased
for Biased Random - New Action and decreased for
Uniform Random and Biased Random - Fixed Weight.

Considering the subset of the sample for which
the algorithms achieved at least the average num-
ber of states explored by the whole sample divided
by two (40), the algorithm Biased Random - Fixed
Weight Widget-Action remains the most effective for
45.71% of the apps, followed by Biased Random -
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Table 4: Number of apps for which an algorithm is the best w.r.t. accessibility violations found in different sample subsets.

Whole Sample Proportion #St>=average Proportion #St>=average/2 Proportion
BRFW 16 25,40% 4 15,38% 8 22,86%
BRFWWA 27 42,86% 11 42,31% 16 45,71%
BRNA 9 14,29% 7 26,92% 7 20,00%
BRUVW 7 11,11% 3 11,54% 5 14,29%
UR 12 19,05% 3 11,54% 4 11,43%

Fixed Weight (22.86%), Biased Random - New Action
(20%), Biased Random - Uniform Variable Weight
(14.29%), and Uniform Random (11.43%).

The algorithm Biased Random - Fixed Weight
Widget-Action seems to be the most effective consider-
ing both the number of states traversed and the number
of accessibility violations found. Nevertheless, for
most winning algorithms, the difference between the
number of states explored and the accessibility vio-
lations found is not significantly different from the
second best algorithm. Another noticeable fact regard-
ing our results is that the Uniform Random, the default
algorithm used to generate user inputs by the under-
lying tool we used in this experiment, has the worst
performance in most cases.

6 CONCLUDING REMARKS

We probed into different strategies for random testing
in the context of automated accessibility testing. To
this end, we proposed four biased algorithms and im-
plemented them on top of state of the art open source
tool MATE (Eler et al., 2018). These algorithms were
compared with the default strategy Uniform Random,
taking into account the number of activities executed,
screen states traversed, and accessibility violations
revealed.

Comparing results for the our sample altogether,
the differences between the results achieved by the
five algorithms are negligible in most cases. How-
ever, when we look at the results on an app-by-app
basis, the algorithm Biased Random - Fixed Weight
Widget-Action is clearly the most effective at exploring
more screen states and revealing more accessibility
violations. In addition, the default strategy Uniform
Random had the worst performance in most scenarios.

Such results evince that different flavors of ran-
dom algorithms can be explored to achieve better re-
sults with respect to the automated accessibility testing
of mobile apps. As future work, we intend to evalu-
ate how adaptive random strategies, which systemati-
cally generate more diverse test inputs, perform against
the best performing algorithm (i.e., Biased Random -
Fixed Weight Widget-Action) according to our results.
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