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Abstract: This paper presents a methodology to control greenhouse operations based on deep learning. The proposed 

methodology employs Artificial Intelligence algorithms working on edge devices, allowing the detection of 

anomalies in plants growth and greenhouse control equipment, in view of taking possible corrective actions. 

Edge Intelligence allows the greenhouse to work independently of the network to which it is connected. It 

also guarantees privacy to the processed data and contributes to fast and efficient decision-making. In this 

work, a Long-Short Time Memory Encoder-Decoder architecture is used for greenhouse anomaly detection. 

The best performance is achieved when using one LSTM layer and 64 LSTM units. 

1 INTRODUCTION 

Over the last years, the use of several Machine 

Learning (ML) techniques can be witnessed in the 

horticulture context (Liakos et al., 2018).  

Greenhouse agriculture plays an important role in 

providing fresh food to an ever-increasing global 

population, and could greatly benefit from the 

application of such Artificial Intelligence algorithms 

at production level. Modern high-tech greenhouses 

are equipped with active control of actuators, 

allowing them to maintain a favorable growing 

climate. Traditionally, actuators are based on 

setpoints which are set manually by the growers, 

relying on their long-time experience. However, 

Artificial Intelligence algorithms, exploiting the large 

amounts of data made available by sensors, have 

recently started to be employed in greenhouse 

management. As mentioned in Hemmings et al. 

(2019), the use of Deep Learning in greenhouse 

management, though yet in early stage of adoption, 

can yield results comparable with those of traditional 

approaches. Due to continuous spreading of 

greenhouses in unconventional contexts – such as 

vertical farming and urban farming – the demand for 

automated and efficient management solutions is 

continuously growing. Indeed, the typical new 

greenhouse user is often a private citizen who does 

neither have experience in the field of plant growing, 

nor time to devote to management activities. 

Among the diverse ML techniques that may be 

used to automate greenhouse operations, Recurrent 

Artificial Neural Networks (RNN), as for example 

Long Short-Term Memory (LSTM) ones (Hochreiter 

and Schmidhuber., 1997), are particularly suited in 

modelling sequences of data and learning patterns in 

time series. Thus, they can be very helpful in 

forecasting the plants’ growth indicators based on 

monitored parameters (Shadrin et al., 2019). Over a 

suitably long period of greenhouse data acquisition, it 

is likely that the vast majority of data will describe 

“normal” or optimal growth conditions, as anomalies 

in the plants’ growth are expected to be sparse in time 

and spotted over the greenhouse. Therefore, in order 

to detect them, it is necessary to use an approach 

which is both rapid and efficient. RNN-based 

Encoder-Decoder schemes have shown great 

potential in detecting anomalies (Malhotra et al., 

2016), even when applied to livestock (Cowton et al., 

2018).   

The presence of sensors and actuators – usually 

located at the network’s edge – sources a large 

amount of data which are often underused. The 

development of Edge Artificial Intelligence can 

contribute to fully exploiting such data. Much effort 

has been put over recent years in both hardware and 
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software edge technology research. Examples of 

hardware edge technology comprise Google TPU and 

NVIDIA Jetson. On the software side, research is 

particularly focusing on Tiny Machine Learning 

frameworks running on microcontrollers (MCU) (Lin 

et al., 2020). 

The features of the utilized devices – 

computational performance, latency, RAM memory, 

energy efficiency – affect the level of Edge 

Intelligence (EI) and the architecture that can be 

implemented in specific scenarios. Figure 1 shows a 

schematization of the implementable EI levels.  

 

 

Figure 1: Edge Intelligence levels (from Zhou et al., 2019). 

Various technologies are currently under 

evaluation in order to improve the performance of 

training algorithms for Edge Computing AI, among 

which: Federated Learning, Aggregation Frequency 

Control, Gradient Compression, DNN Splitting, 

Knowledge Transfer Learning and Gossip Training 

(Zhou et al., 2019). 

Edge inference based on Deep Learning can be 

performed in several ways, namely: 

• edge-based mode: devices acquire data and 

transfer them to an edge server for inference; 

• device-based mode: devices acquire data and 

perform inference using an AI model which 

has been pre-trained in cloud; 

• edge-device mode: devices execute the Deep 

Learning model up to a specific layer and send 

intermediate data to the edge server, which 

executes the remaining layers and sends the 

prediction results back to the device; 

• edge-cloud mode: the device acquires data and 

the inference is performed through edge-cloud 

synergy. 

The performance of the EI inference can be enhanced 

by several technologies which are currently object of 

research, as Model Compression, Model Partition, 

Model Early-Exit, Edge Caching, Input Filtering, 

Model Selection, Support for Multi-tenancy and 

Application-specific Optimization. More details 

about the above-mentioned EI technologies are given 

in Zhou et al. (2019). 

This paper presents a research study aimed at 

developing a Deep Learning-based system to be 

installed inside a greenhouse in order to detect 

anomalies in plants growth and control equipment. 

The implemented model can learn patterns that 

represent “normal” plant growth conditions and 

equipment (sensors and actuators) operation from 

data collected by the sensors inside the greenhouse, 

signalling the occurrence of anomalies. The detection 

of an anomaly can thus be used to trigger possible 

corrective actions. “Normal conditions” can vary 

among different greenhouses and the system should 

be capable of learning such conditions independently 

of the location. Moreover, it may not be possible to 

set up a network connection in greenhouses. Finally, 

some kinds of collected data, as for example optimal 

growth processes, may be covered by non-disclosure 

restrictions. All these motivations suggest the 

development of a system with an EI level between 4 

and 6, to adapt to the unique conditions of each 

greenhouse environment. In the present study the type 

of collected data, together with the features of the 

selected algorithms (Computer Vision and LSTM 

Encoder-Decoder), led to the development of a level 

4 EI.  

2 MATERIALS AND METHODS  

2.1 Greenhouse Management Layout  

The experimental greenhouse used for the purposes 

of this study has an area of 2 m2.  Plants were grown 

in individual vases, with a substrate of coconut fiber. 

Four plants of three different kinds were studied: 

Cichorium Endivia (endive), Apium Graveolens 

(celery) and Lactuca Sativa (lettuce, 2 plants: 1 

young, 1 adult). Water was fed by filling the saucer, 

thus reaching the vase by capillary action of the 

substrate. The greenhouse has been equipped with a 

system for data acquisition and control of the 

actuators, as shown in Figure 2. 
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Figure 2: Experimental set-up in the greenhouse. 

Environmental measurements include absolute 

pressure (Pa), relative humidity (%), air temperature 

(°C), light intensity (LUX), UVA (μW/cm2). The data 

acquisition frequency is 30 seconds. All sensors are 

connected to an Arduino MKR.  

A Full-HD camera equipped with a Sony IMX219 

8-megapixel sensor was used to acquire RGB images 

of the plants, with 30-minutes frequency. The camera 

is connected to the computational unit through a USB 

port.  

Actuators are managed through relays by an 

Arduino Uno. A LED lamp is connected to the 

Arduino Uno and is turned on shortly before taking 

pictures, in order to take pictures during night or in 

general in low-light conditions. Moreover, the lamp 

is used to provide light in specific illumination cycles 

from 9 P.M. to 11 P.M. and from 3 A.M. to 5 A.M. 

These cycles are intended to increase the growth 

speed and are composed of alternating intervals 

characterized by one ON minute and nine OFF 

minutes. 

Both the Arduino MKR and Arduino Uno are 

connected to the computational unit to send sensors 

data (MKR) and receive actuators control instructions 

(Uno).  

Two computational units are used and evaluated 

in the present study, specifically: 

• Raspberry Pi 4 Model B - Quad Core Cortex-

A72 1.5 Ghz 4GB Ram, 7.30W Max Power, 

13.5 GFLOPS; 

• NVIDIA Jetson Nano – Quad Core Cortex-A57, 

128 core NVIDIA CUDA Maxwell, 4 GB Ram, 

10W Max Power, 472 GFLOPS. 
 

These units were selected since they allow the use of 

full Deep Learning frameworks as TensorFlow. 

Indeed, using these libraries it is in principle possible 

to run both the training and the inference phases of 

Deep Learning Networks on edge devices, allowing 

the implementation of EI up to Level 6.  

Anomaly detection is performed using an LSTM-

based Encoder-Decoder (as described in Section 2.3). 

The LSTM encoder-decoder was trained to learn the 

“normality”, corresponding to plants growing in a 

healthy state.  

Imagery is processed by a Computer Vision 

algorithm (described in Section 2.2) to extract 

features to be used as input together with the 

environmental raw data. Figure 3 shows the workflow 

of the greenhouse anomaly detection.  
 

  

Figure 3: Anomaly detection workflow. 

2.2 Computer Vision for Leaf Area 
Determination 

A total of 763 RGB images, collected over 16 days, 

were used. As a first step, they were cropped in order 

to separate the four different plants. The resulting 

pictures’ resolution was 750x750 for plant n.1, 

587x587 for plant n.2, 500x500 for plant n.3, and 

645x645 for plant n.4. These images are used as a 

source of information on plants’ health and growth.  

For each plant, the leaf area (LA) was calculated by 

using a computer vision procedure that employs the 

Easy Leaf Area (ELA) code of Easlon and Bloom 

(2014). More specifically, the chosen approach 

consists of the following series of steps: 

• Selection of day and night parameters of the 

ELA algorithm for each of the four plants; 

• Application of the ELA algorithm to all the plant 

RGB pictures; 

• Elimination of pictures with poor leaves 

identification; 

• Interpolation of “missing” data using a mobile 

window  

The ELA algorithm is a based on a deterministic 

procedure to identify and count green pixels in an 

image and then estimate the corresponding surface 

area if a red scale of known area is also present in the 

picture. One has the possibility to adjust three 

parameters (minimum pixel green (G) component, 

minimum pixel green/red (G/R) ratio and minimum 
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pixel green/blue (G/B) ratio in leaf pixels) to tune the 

algorithm so that it correctly recognizes pixels 

corresponding to plant leaves. With our image set, 

fixing different values of the three parameters of each 

plant and distinguishing between day (8am-4pm) and 

night (4.30pm-7.30am) lighting conditions yielded 

good results for most of the pictures. The chosen 

parameters are reported in Table 1. 

Table 1: ELA parameters (D: day, N: night). 

 min G 

(D/N) 

min G/R 

(D/N) 

min G/B 

(D/N) 

Plant n.1 (endive) 45/34 0.955/1.01 1.05/1.015 

Plant n.2 (celery) 62/45 0.905/0.98 1.01/1.00 

Plant n.3 (lettuce) 55/40 0.915/0.90 1.025/1.015 

Plant n.4 (lettuce) 35/75 1.01/1.06 1.07/1.06 

 

It is to be noted that performance with these fixed-

parameters choices was better than when using the 

calibration method suggested by the ELA authors: 

that approach uses a linear law derived from a 

calibration to predict recommended ELA parameters 

based on the features of input pictures. 

The pixel identifications resulting from the 

choices of Table 1 revealed that in some pictures the 

leaves had been misidentified. In order to correct the 

LA data 𝑥𝑖  calculated from such pictures, with 𝑖 =
1, 2, … , 763  (for each different plant), an 

interpolation procedure was used. First, a reference 

leaf area value was calculated for each plant sample 

and at each time 𝑡𝑖 , by linearly fitting the previous 15 

data points, the current data point and the following 

15 data points (for a total of 31 datapoints). These 

reference values 𝑒𝑖  were then used to calculate the 

residues 
 

𝑟𝑖 = 𝑥𝑖 − 𝑒𝑖, (1) 
 

i.e. the differences between the actual datapoints and 

the reference values. Datapoints with residue absolute 

value exceeding a given threshold 𝜃, namely 
 

|𝑟𝑖| < 𝜃 (2) 

were then considered as outliers and replaced with the 

values 𝑒𝑖  resulting from interpolation. The chosen 

values of 𝜃 were equal to 5 cm2, 7 cm2, 1 cm2 and 4 

cm2 for plant n.1, n.2, n.3 and n.4 respectively.  

2.3 LSTM Encoder-Decoder for 
Anomaly Detection 

The proposed approach for anomaly detection adopts 

a Long Short-Term Memory to encode the input 

sequence into a vector of fixed dimensionality. Then, 

another deep LSTM decodes the target sequence from 

the vector. The input sequence is a time series with 

the following data structure: 

• Temperature, Relative Humidity, Pressure, 

Light Intensity and UVA; 

• Leaf Area. 

Every sequence is composed of six time steps, with a 

time interval of 30 minutes between them. In order to 

match the environmental raw data acquisition 

frequency (30 seconds) with the used time steps, all 

records of environmental parameters are averaged 

over 30 minutes.  The sequence length was selected 

so to make its timespan of the same order of the 

autumn/winter alternance of lighting conditions at 

middle latitudes. However, it can be modified 

according to seasonality and location.  

Two different datasets were given as input to the 

Autoencoder: one with data corresponding only to 

normality conditions and the other including 

anomalies. The normality data were selected 

according to the following criteria: absence of 

abnormal readings in the environmental data and 

correction of erroneous LA values using the 

procedure described in the previous Section. The 

anomalous dataset, instead, included all sensor 

readings and misidentified LA values.  

Pre-processing of data was carried out by first 

normalizing them to a range between 0 and 1; then 

they were reshaped into a format suiting an LSTM 

input. Indeed, LSTM inputs are characterized by a 3-

dimensional form, specifically of the kind 

samples×timesteps×features. Thus, in the present 

case, the input tensor has a 763×6×6 shape for each 

plant.  

The implemented Encoder and Decoder are 

composed of two LSTM layers. The number of units 

within each LSTM layer is a hyperparameter and the 

performances were tested employing the following 

values: 32, 64, 128 and 256. The ReLU activation 

function is used in all configurations. The state 

returned from the LSTM Encoder first layer is set as 

the initial state of the LSTM Decoder first layer. 

Analogously, the state returned by the LSTM 

Encoder second layer is set as the initial state of the 

LSTM Decoder second layer. 

The Encoder output – also called context vector – 

is reversed before being passed to the Decoder: the 

motivation behind this choice is to be found in better 

performances that it is able to assure (Sutskever et al. 

2014). The context vector is copied n times in a repeat 

vector layer, with n being the number of timesteps of 

the Encoder input. The repeat vector layer is used as 

input to the Decoder. The Decoder output is then fed 

to a Time Distributed Layer that applies the same 

Edge Intelligence with Deep Learning in Greenhouse Management

183



dense layer to each time slice. The described 

Autoencoder architecture is schematized in Figure 4. 

This model was applied separately to each cultivar.   

The training was performed by minimising the 

Huber loss function by means of ADAM optimisation 

(Kingma and Ba, 2015). The learning rate was 

updated at every training epoch, with exponentially 

decreasing learning rate as the epoch number grows.  

The detection of anomalies is based on the loss 

value distribution under “normal conditions”. A 

simple way to define a boundary between “normality” 

and the occurrence of anomalies, in fact, is to analyse 

the system response to data describing normal 

conditions, in the hypothesis that anomalies will 

produce reconstruction error values located to the 

right of the “normality” distribution tail. Thus, the 

available time series was analysed to detect where 

most of the anomalies are located. The Mean 

Absolute Error (MAE) was used as reconstruction 

error.  

The performance of the implemented models was 

evaluated according to the F1 score (Powers, 2011), 

defined as: 
 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 

  

In order to provide a baseline for the model, the Local 

Outlier Factor (LOF) was used (Breunig et al. 2000). 

The Autoencoder was developed using the 

TensorFlow framework and Keras wrapper. In order 

to compare the performance of different edge devices 

and to assess their performance, the Encoder-Decoder 

was executed on both Raspberry PI and NVIDIA 

Jetson Nano for the training and inference phases. 

The proposed methodology was applied to the 

three different lettuce cultivars, namely endive, celery 

and lettuce, and for each one a specific Encoder-

Decoder was trained as described above. The reason 

behind this approach is the need to make the system 

learn “normality conditions” in case of different 

species and cultivars growing in real-word 

greenhouses.   

The obtained performances are detailed in Section 

3. 

 

 

Figure 4: Example of Autoencoder architecture.  

3 RESULTS 

The performance of the computer vision ELA 

algorithm was such that the identification of the plant 

pixels was considered acceptable for 94% of plant n.1 

images, 97% of plant n.2 images, 94% of plant n.3 

images, and 86% of plant n.4 images. An example of 

an image of plant 1 and the corresponding well-

performing green pixels selection are shown in 

Figures 5 and 6. Errors in identifying leaf pixels in the 

pictures were due to strongly variable lighting 

conditions during the day and/or over different days, 

specifically in cases of strong sunlight. This is clearly 

to be expected in real greenhouse settings, where it is 

not always possible to take well-lit pictures within the 

greenhouse.  
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Figure 5: Example of a picture of plant n.1. 

 

Figure 6: Example of good performance of the ELA 

algorithm. 

The Encoder-Decoder with 128 LSTM units in each 

layer took 8.32 ms/sample and 8.3 s/epoch when the 

training was performed on NVIDIA Jetson Nano. 

Instead, Jetson did not manage the run of the 256 

LSTM units configuration, displaying an internal 

error. Conversely, Raspberry PI took 11.6 ms/sample 

and 11.6 s/epoch to run the training of the Encoder-

Decoder with 128 units and 30.84 ms/sample (31 

s/epoch) to run the 256-units configuration.  

To fine-tune the model, a grid-search optimization 

was performed over the numbers of LSTM units and 

of stacked layers. For each combination of these 

hyperparameters, the Autoencoder reconstruction 

error for the training dataset was plotted and a 

possible set of threshold values – triggering the 

occurrence of anomalies – was identified. In order to 

assess the suitability of the potential threshold values, 

the Autoencoder was also used to compute the 

reconstruction error on the whole dataset comprising 

both normality and anomaly conditions 

As an example, Figures 7 and 8 show the 

distribution of the reconstruction error for plant n.4 

when 2 LSTM layers with 256 units are used, for the 

normality and whole datasets respectively. From the 

comparison of the two distributions, it appears 

reasonable to set potential threshold values between 

0.06 and 0.08. The actual threshold value was 

selected as the one optimizing the F1 score.  

Tables 2, 3, 4 and 5 show the results of the grid-

search optimization for all the analysed plants. 
 

 
Figure 7: Reconstruction error on normality dataset. 

 

Figure 8: Reconstruction error on whole dataset. 

Table 2: Grid-search optimization results for plant n.1. 

Stacked 

layers 

LSTM units 

per layer 
Optimized F1 Threshold 

1 32 0.397 0.082 

1 64 0.452 0.061 

1 128 0.432 0.053 

1 256 0.408 0.040 

2 32 0.403 0.065 

2 64 0.442 0.060 

2 128 0.375 0.055 

2 256 0.331 0.055 

Table 3: Grid-search optimization results for plant n.2. 

Stacked 

layers 

LSTM units 

per layer 
Optimized F1 Threshold 

1 32 0.391 0.099 

1 64 0.380 0.068 

1 128 0.419 0.057 

1 256 0.415 0.049 

2 32 0.403 0.010 

2 64 0.419 0.006 

2 128 0.402 0.055 

2 0.256 0.359 0.052 
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Table 4: Grid-search optimization results for plant n.3. 

Stacked 

layers 

LSTM units 

per layer 

Optimized 

F1 
Threshold 

1 32 0.415 0.059 

1 64 0.412 0.056 

1 128 0.481 0.060 

1 256 0.421 0.045 

2 32 0.358 0.081 

2 64 0.410 0.048 

2 128 0.388 0.050 

2 256 0.374 0.030 

Table 5: Grid-search optimization results for plant n.4. 

Stacked 

layers 

LSTM units 

per layer 

Optimized 

F1 
Threshold 

1 32 0.370 0.104 

1 64 0.473 0.063 

1 128 0.374 0.062 

1 256 0.330 0.055 

2 32 0.292 0.102 

2 64 0.319 0.070 

2 128 0.344 0.064 

2 256 0.267 0.062 

From the above results it can be seen that for almost 

all cases the best performing architecture is the one 

with one LSTM layer and 64 LSTM units.  

The best performance achieved by the LOF 

baseline was an F1 score equal to 0.233.  

4 DISCUSSION 

For the computer vision part, it was necessary to fine-

tune the ELA algorithm parameters in order to 

achieve satisfactory performance in the greenhouse 

setting, due to the extremely variable lighting 

conditions throughout the observation period. 

Therefore, to improve the levels of robustness and 

automation, the introduction of a smarter leaf area 

detection method would be desirable. To this purpose, 

the CNN studied by Zhang et al. (2020) could 

represent a good starting point. 

The approach to determine the anomaly threshold 

was based on the inspection of the reconstruction 

error with normality data. This is arguably the 

simplest available approach, however more elaborate 

methods exist, for example that based on deriving the 

reconstruction error distribution through a maximum 

likelihood estimation adopted in Malhotra et al. 

(2016). 

The results found by running the machine learning 

algorithms onboard the edge devices showed that 

Jetson Nano may be faster than Raspberry PI due to 

its CUDA cores, however it seems to be affected by 

some issues with the utilized TensorFlow version. 

These issues did not allow to complete the analysis of 

different hyperparameter choices. 

In real greenhouse contexts, more sensors and 

actuators may be added. For example, soil Ph and/or 

CO2 sensors, or suitable actuators for automated 

irrigation. All of these can be included in the 

presented setup since the edge devices can 

computationally afford their integration; obviously, 

one would need to train the Autoencoder for each 

distinct configuration of sensor/actuators.    

5 CONCLUSIONS 

This work shows that edge intelligence is relevant, 

viable and reliable for greenhouse applications. The 

work conducted here shall be considered a 

preliminary study, and more data such as thermal 

images, 3D evaluations will be added to better 

characterize the health conditions of the plants.  

Cloud-edge co-training, that is, training the 

models jointly on cloud and on edge, and then 

deploying them on the devices for inference turns out 

to be a good solution also in terms of flexibility of the 

data framework. 

In order to face the great variability of conditions 

found in real-world, production-level greenhouses, 

artificial intelligence and specifically deep learning 

algorithms turn out to be an essential tool that 

guarantees the necessary robustness.  

The ultimate goal of using edge intelligence in 

greenhouses would be to automate the operations. 

The next stage of development would be one in which 

the intelligence not only detects anomalies, but 

provides suggested actions within a deep learning 

recommendation system framework. Then, in the last 

step the recommendation system would become a 

system that automatically performs the best possible 

actions based on current data. 
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