
Edge Intelligence with Deep Learning in Greenhouse Management

Massimiliano Proietti1, Federico Bianchi1,2, Andrea Marini1, Lorenzo Menculini1,

Loris Francesco Termite3, Alberto Garinei1,2, Lorenzo Biondi1,2 and Marcello Marconi1,2

1Idea-Re S.r.l., Perugia, Italy
2Department of Sustainability Engineering, Guglielmo Marconi University, Rome, Italy

3K-Digitale S.r.l., Perugia, Italy

Keywords: Greenhouse Farming, Deep Learning, Computer Vision, Edge Intelligence, Anomaly Detection,

Encoder-Decoder, Smart Local Systems.

Abstract: This paper presents a methodology to control greenhouse operations based on deep learning. The proposed

methodology employs Artificial Intelligence algorithms working on edge devices, allowing the detection of

anomalies in plants growth and greenhouse control equipment, in view of taking possible corrective actions.

Edge Intelligence allows the greenhouse to work independently of the network to which it is connected. It

also guarantees privacy to the processed data and contributes to fast and efficient decision-making. In this

work, a Long-Short Time Memory Encoder-Decoder architecture is used for greenhouse anomaly detection.

The best performance is achieved when using one LSTM layer and 64 LSTM units.

1 INTRODUCTION

Over the last years, the use of several Machine

Learning (ML) techniques can be witnessed in the

horticulture context (Liakos et al., 2018).

Greenhouse agriculture plays an important role in

providing fresh food to an ever-increasing global

population, and could greatly benefit from the

application of such Artificial Intelligence algorithms

at production level. Modern high-tech greenhouses

are equipped with active control of actuators,

allowing them to maintain a favorable growing

climate. Traditionally, actuators are based on

setpoints which are set manually by the growers,

relying on their long-time experience. However,

Artificial Intelligence algorithms, exploiting the large

amounts of data made available by sensors, have

recently started to be employed in greenhouse

management. As mentioned in Hemmings et al.

(2019), the use of Deep Learning in greenhouse

management, though yet in early stage of adoption,

can yield results comparable with those of traditional

approaches. Due to continuous spreading of

greenhouses in unconventional contexts – such as

vertical farming and urban farming – the demand for

automated and efficient management solutions is

continuously growing. Indeed, the typical new

greenhouse user is often a private citizen who does

neither have experience in the field of plant growing,

nor time to devote to management activities.

Among the diverse ML techniques that may be

used to automate greenhouse operations, Recurrent

Artificial Neural Networks (RNN), as for example

Long Short-Term Memory (LSTM) ones (Hochreiter

and Schmidhuber., 1997), are particularly suited in

modelling sequences of data and learning patterns in

time series. Thus, they can be very helpful in

forecasting the plants’ growth indicators based on

monitored parameters (Shadrin et al., 2019). Over a

suitably long period of greenhouse data acquisition, it

is likely that the vast majority of data will describe

“normal” or optimal growth conditions, as anomalies

in the plants’ growth are expected to be sparse in time

and spotted over the greenhouse. Therefore, in order

to detect them, it is necessary to use an approach

which is both rapid and efficient. RNN-based

Encoder-Decoder schemes have shown great

potential in detecting anomalies (Malhotra et al.,

2016), even when applied to livestock (Cowton et al.,

2018).

The presence of sensors and actuators – usually

located at the network’s edge – sources a large

amount of data which are often underused. The

development of Edge Artificial Intelligence can

contribute to fully exploiting such data. Much effort

has been put over recent years in both hardware and

180
Proietti, M., Bianchi, F., Marini, A., Menculini, L., Termite, L., Garinei, A., Biondi, L. and Marconi, M.
Edge Intelligence with Deep Learning in Greenhouse Management.
DOI: 10.5220/0010451701800187
In Proceedings of the 10th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2021), pages 180-187
ISBN: 978-989-758-512-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

software edge technology research. Examples of

hardware edge technology comprise Google TPU and

NVIDIA Jetson. On the software side, research is

particularly focusing on Tiny Machine Learning

frameworks running on microcontrollers (MCU) (Lin

et al., 2020).

The features of the utilized devices –

computational performance, latency, RAM memory,

energy efficiency – affect the level of Edge

Intelligence (EI) and the architecture that can be

implemented in specific scenarios. Figure 1 shows a

schematization of the implementable EI levels.

Figure 1: Edge Intelligence levels (from Zhou et al., 2019).

Various technologies are currently under

evaluation in order to improve the performance of

training algorithms for Edge Computing AI, among

which: Federated Learning, Aggregation Frequency

Control, Gradient Compression, DNN Splitting,

Knowledge Transfer Learning and Gossip Training

(Zhou et al., 2019).

Edge inference based on Deep Learning can be

performed in several ways, namely:

• edge-based mode: devices acquire data and

transfer them to an edge server for inference;

• device-based mode: devices acquire data and

perform inference using an AI model which

has been pre-trained in cloud;

• edge-device mode: devices execute the Deep

Learning model up to a specific layer and send

intermediate data to the edge server, which

executes the remaining layers and sends the

prediction results back to the device;

• edge-cloud mode: the device acquires data and

the inference is performed through edge-cloud

synergy.

The performance of the EI inference can be enhanced

by several technologies which are currently object of

research, as Model Compression, Model Partition,

Model Early-Exit, Edge Caching, Input Filtering,

Model Selection, Support for Multi-tenancy and

Application-specific Optimization. More details

about the above-mentioned EI technologies are given

in Zhou et al. (2019).

This paper presents a research study aimed at

developing a Deep Learning-based system to be

installed inside a greenhouse in order to detect

anomalies in plants growth and control equipment.

The implemented model can learn patterns that

represent “normal” plant growth conditions and

equipment (sensors and actuators) operation from

data collected by the sensors inside the greenhouse,

signalling the occurrence of anomalies. The detection

of an anomaly can thus be used to trigger possible

corrective actions. “Normal conditions” can vary

among different greenhouses and the system should

be capable of learning such conditions independently

of the location. Moreover, it may not be possible to

set up a network connection in greenhouses. Finally,

some kinds of collected data, as for example optimal

growth processes, may be covered by non-disclosure

restrictions. All these motivations suggest the

development of a system with an EI level between 4

and 6, to adapt to the unique conditions of each

greenhouse environment. In the present study the type

of collected data, together with the features of the

selected algorithms (Computer Vision and LSTM

Encoder-Decoder), led to the development of a level

4 EI.

2 MATERIALS AND METHODS

2.1 Greenhouse Management Layout

The experimental greenhouse used for the purposes

of this study has an area of 2 m2. Plants were grown

in individual vases, with a substrate of coconut fiber.

Four plants of three different kinds were studied:

Cichorium Endivia (endive), Apium Graveolens

(celery) and Lactuca Sativa (lettuce, 2 plants: 1

young, 1 adult). Water was fed by filling the saucer,

thus reaching the vase by capillary action of the

substrate. The greenhouse has been equipped with a

system for data acquisition and control of the

actuators, as shown in Figure 2.

Edge Intelligence with Deep Learning in Greenhouse Management

181

Figure 2: Experimental set-up in the greenhouse.

Environmental measurements include absolute

pressure (Pa), relative humidity (%), air temperature

(°C), light intensity (LUX), UVA (μW/cm2). The data

acquisition frequency is 30 seconds. All sensors are

connected to an Arduino MKR.

A Full-HD camera equipped with a Sony IMX219

8-megapixel sensor was used to acquire RGB images

of the plants, with 30-minutes frequency. The camera

is connected to the computational unit through a USB

port.

Actuators are managed through relays by an

Arduino Uno. A LED lamp is connected to the

Arduino Uno and is turned on shortly before taking

pictures, in order to take pictures during night or in

general in low-light conditions. Moreover, the lamp

is used to provide light in specific illumination cycles

from 9 P.M. to 11 P.M. and from 3 A.M. to 5 A.M.

These cycles are intended to increase the growth

speed and are composed of alternating intervals

characterized by one ON minute and nine OFF

minutes.

Both the Arduino MKR and Arduino Uno are

connected to the computational unit to send sensors

data (MKR) and receive actuators control instructions

(Uno).

Two computational units are used and evaluated

in the present study, specifically:

• Raspberry Pi 4 Model B - Quad Core Cortex-

A72 1.5 Ghz 4GB Ram, 7.30W Max Power,

13.5 GFLOPS;

• NVIDIA Jetson Nano – Quad Core Cortex-A57,

128 core NVIDIA CUDA Maxwell, 4 GB Ram,

10W Max Power, 472 GFLOPS.

These units were selected since they allow the use of

full Deep Learning frameworks as TensorFlow.

Indeed, using these libraries it is in principle possible

to run both the training and the inference phases of

Deep Learning Networks on edge devices, allowing

the implementation of EI up to Level 6.

Anomaly detection is performed using an LSTM-

based Encoder-Decoder (as described in Section 2.3).

The LSTM encoder-decoder was trained to learn the

“normality”, corresponding to plants growing in a

healthy state.

Imagery is processed by a Computer Vision

algorithm (described in Section 2.2) to extract

features to be used as input together with the

environmental raw data. Figure 3 shows the workflow

of the greenhouse anomaly detection.

Figure 3: Anomaly detection workflow.

2.2 Computer Vision for Leaf Area
Determination

A total of 763 RGB images, collected over 16 days,

were used. As a first step, they were cropped in order

to separate the four different plants. The resulting

pictures’ resolution was 750x750 for plant n.1,

587x587 for plant n.2, 500x500 for plant n.3, and

645x645 for plant n.4. These images are used as a

source of information on plants’ health and growth.

For each plant, the leaf area (LA) was calculated by

using a computer vision procedure that employs the

Easy Leaf Area (ELA) code of Easlon and Bloom

(2014). More specifically, the chosen approach

consists of the following series of steps:

• Selection of day and night parameters of the

ELA algorithm for each of the four plants;

• Application of the ELA algorithm to all the plant

RGB pictures;

• Elimination of pictures with poor leaves

identification;

• Interpolation of “missing” data using a mobile

window

The ELA algorithm is a based on a deterministic

procedure to identify and count green pixels in an

image and then estimate the corresponding surface

area if a red scale of known area is also present in the

picture. One has the possibility to adjust three

parameters (minimum pixel green (G) component,

minimum pixel green/red (G/R) ratio and minimum

SMARTGREENS 2021 - 10th International Conference on Smart Cities and Green ICT Systems

182

pixel green/blue (G/B) ratio in leaf pixels) to tune the

algorithm so that it correctly recognizes pixels

corresponding to plant leaves. With our image set,

fixing different values of the three parameters of each

plant and distinguishing between day (8am-4pm) and

night (4.30pm-7.30am) lighting conditions yielded

good results for most of the pictures. The chosen

parameters are reported in Table 1.

Table 1: ELA parameters (D: day, N: night).

 min G

(D/N)

min G/R

(D/N)

min G/B

(D/N)

Plant n.1 (endive) 45/34 0.955/1.01 1.05/1.015

Plant n.2 (celery) 62/45 0.905/0.98 1.01/1.00

Plant n.3 (lettuce) 55/40 0.915/0.90 1.025/1.015

Plant n.4 (lettuce) 35/75 1.01/1.06 1.07/1.06

It is to be noted that performance with these fixed-

parameters choices was better than when using the

calibration method suggested by the ELA authors:

that approach uses a linear law derived from a

calibration to predict recommended ELA parameters

based on the features of input pictures.

The pixel identifications resulting from the

choices of Table 1 revealed that in some pictures the

leaves had been misidentified. In order to correct the

LA data 𝑥𝑖 calculated from such pictures, with 𝑖 =
1, 2, … , 763 (for each different plant), an

interpolation procedure was used. First, a reference

leaf area value was calculated for each plant sample

and at each time 𝑡𝑖 , by linearly fitting the previous 15

data points, the current data point and the following

15 data points (for a total of 31 datapoints). These

reference values 𝑒𝑖 were then used to calculate the

residues

𝑟𝑖 = 𝑥𝑖 − 𝑒𝑖, (1)

i.e. the differences between the actual datapoints and

the reference values. Datapoints with residue absolute

value exceeding a given threshold 𝜃, namely

|𝑟𝑖| < 𝜃 (2)

were then considered as outliers and replaced with the

values 𝑒𝑖 resulting from interpolation. The chosen

values of 𝜃 were equal to 5 cm2, 7 cm2, 1 cm2 and 4

cm2 for plant n.1, n.2, n.3 and n.4 respectively.

2.3 LSTM Encoder-Decoder for
Anomaly Detection

The proposed approach for anomaly detection adopts

a Long Short-Term Memory to encode the input

sequence into a vector of fixed dimensionality. Then,

another deep LSTM decodes the target sequence from

the vector. The input sequence is a time series with

the following data structure:

• Temperature, Relative Humidity, Pressure,

Light Intensity and UVA;

• Leaf Area.

Every sequence is composed of six time steps, with a

time interval of 30 minutes between them. In order to

match the environmental raw data acquisition

frequency (30 seconds) with the used time steps, all

records of environmental parameters are averaged

over 30 minutes. The sequence length was selected

so to make its timespan of the same order of the

autumn/winter alternance of lighting conditions at

middle latitudes. However, it can be modified

according to seasonality and location.

Two different datasets were given as input to the

Autoencoder: one with data corresponding only to

normality conditions and the other including

anomalies. The normality data were selected

according to the following criteria: absence of

abnormal readings in the environmental data and

correction of erroneous LA values using the

procedure described in the previous Section. The

anomalous dataset, instead, included all sensor

readings and misidentified LA values.

Pre-processing of data was carried out by first

normalizing them to a range between 0 and 1; then

they were reshaped into a format suiting an LSTM

input. Indeed, LSTM inputs are characterized by a 3-

dimensional form, specifically of the kind

samples×timesteps×features. Thus, in the present

case, the input tensor has a 763×6×6 shape for each

plant.

The implemented Encoder and Decoder are

composed of two LSTM layers. The number of units

within each LSTM layer is a hyperparameter and the

performances were tested employing the following

values: 32, 64, 128 and 256. The ReLU activation

function is used in all configurations. The state

returned from the LSTM Encoder first layer is set as

the initial state of the LSTM Decoder first layer.

Analogously, the state returned by the LSTM

Encoder second layer is set as the initial state of the

LSTM Decoder second layer.

The Encoder output – also called context vector –

is reversed before being passed to the Decoder: the

motivation behind this choice is to be found in better

performances that it is able to assure (Sutskever et al.

2014). The context vector is copied n times in a repeat

vector layer, with n being the number of timesteps of

the Encoder input. The repeat vector layer is used as

input to the Decoder. The Decoder output is then fed

to a Time Distributed Layer that applies the same

Edge Intelligence with Deep Learning in Greenhouse Management

183

dense layer to each time slice. The described

Autoencoder architecture is schematized in Figure 4.

This model was applied separately to each cultivar.

The training was performed by minimising the

Huber loss function by means of ADAM optimisation

(Kingma and Ba, 2015). The learning rate was

updated at every training epoch, with exponentially

decreasing learning rate as the epoch number grows.

The detection of anomalies is based on the loss

value distribution under “normal conditions”. A

simple way to define a boundary between “normality”

and the occurrence of anomalies, in fact, is to analyse

the system response to data describing normal

conditions, in the hypothesis that anomalies will

produce reconstruction error values located to the

right of the “normality” distribution tail. Thus, the

available time series was analysed to detect where

most of the anomalies are located. The Mean

Absolute Error (MAE) was used as reconstruction

error.

The performance of the implemented models was

evaluated according to the F1 score (Powers, 2011),

defined as:

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3)

In order to provide a baseline for the model, the Local

Outlier Factor (LOF) was used (Breunig et al. 2000).

The Autoencoder was developed using the

TensorFlow framework and Keras wrapper. In order

to compare the performance of different edge devices

and to assess their performance, the Encoder-Decoder

was executed on both Raspberry PI and NVIDIA

Jetson Nano for the training and inference phases.

The proposed methodology was applied to the

three different lettuce cultivars, namely endive, celery

and lettuce, and for each one a specific Encoder-

Decoder was trained as described above. The reason

behind this approach is the need to make the system

learn “normality conditions” in case of different

species and cultivars growing in real-word

greenhouses.

The obtained performances are detailed in Section

3.

Figure 4: Example of Autoencoder architecture.

3 RESULTS

The performance of the computer vision ELA

algorithm was such that the identification of the plant

pixels was considered acceptable for 94% of plant n.1

images, 97% of plant n.2 images, 94% of plant n.3

images, and 86% of plant n.4 images. An example of

an image of plant 1 and the corresponding well-

performing green pixels selection are shown in

Figures 5 and 6. Errors in identifying leaf pixels in the

pictures were due to strongly variable lighting

conditions during the day and/or over different days,

specifically in cases of strong sunlight. This is clearly

to be expected in real greenhouse settings, where it is

not always possible to take well-lit pictures within the

greenhouse.

SMARTGREENS 2021 - 10th International Conference on Smart Cities and Green ICT Systems

184

Figure 5: Example of a picture of plant n.1.

Figure 6: Example of good performance of the ELA

algorithm.

The Encoder-Decoder with 128 LSTM units in each

layer took 8.32 ms/sample and 8.3 s/epoch when the

training was performed on NVIDIA Jetson Nano.

Instead, Jetson did not manage the run of the 256

LSTM units configuration, displaying an internal

error. Conversely, Raspberry PI took 11.6 ms/sample

and 11.6 s/epoch to run the training of the Encoder-

Decoder with 128 units and 30.84 ms/sample (31

s/epoch) to run the 256-units configuration.

To fine-tune the model, a grid-search optimization

was performed over the numbers of LSTM units and

of stacked layers. For each combination of these

hyperparameters, the Autoencoder reconstruction

error for the training dataset was plotted and a

possible set of threshold values – triggering the

occurrence of anomalies – was identified. In order to

assess the suitability of the potential threshold values,

the Autoencoder was also used to compute the

reconstruction error on the whole dataset comprising

both normality and anomaly conditions

As an example, Figures 7 and 8 show the

distribution of the reconstruction error for plant n.4

when 2 LSTM layers with 256 units are used, for the

normality and whole datasets respectively. From the

comparison of the two distributions, it appears

reasonable to set potential threshold values between

0.06 and 0.08. The actual threshold value was

selected as the one optimizing the F1 score.

Tables 2, 3, 4 and 5 show the results of the grid-

search optimization for all the analysed plants.

Figure 7: Reconstruction error on normality dataset.

Figure 8: Reconstruction error on whole dataset.

Table 2: Grid-search optimization results for plant n.1.

Stacked

layers

LSTM units

per layer
Optimized F1 Threshold

1 32 0.397 0.082

1 64 0.452 0.061

1 128 0.432 0.053

1 256 0.408 0.040

2 32 0.403 0.065

2 64 0.442 0.060

2 128 0.375 0.055

2 256 0.331 0.055

Table 3: Grid-search optimization results for plant n.2.

Stacked

layers

LSTM units

per layer
Optimized F1 Threshold

1 32 0.391 0.099

1 64 0.380 0.068

1 128 0.419 0.057

1 256 0.415 0.049

2 32 0.403 0.010

2 64 0.419 0.006

2 128 0.402 0.055

2 0.256 0.359 0.052

Edge Intelligence with Deep Learning in Greenhouse Management

185

Table 4: Grid-search optimization results for plant n.3.

Stacked

layers

LSTM units

per layer

Optimized

F1
Threshold

1 32 0.415 0.059

1 64 0.412 0.056

1 128 0.481 0.060

1 256 0.421 0.045

2 32 0.358 0.081

2 64 0.410 0.048

2 128 0.388 0.050

2 256 0.374 0.030

Table 5: Grid-search optimization results for plant n.4.

Stacked

layers

LSTM units

per layer

Optimized

F1
Threshold

1 32 0.370 0.104

1 64 0.473 0.063

1 128 0.374 0.062

1 256 0.330 0.055

2 32 0.292 0.102

2 64 0.319 0.070

2 128 0.344 0.064

2 256 0.267 0.062

From the above results it can be seen that for almost

all cases the best performing architecture is the one

with one LSTM layer and 64 LSTM units.

The best performance achieved by the LOF

baseline was an F1 score equal to 0.233.

4 DISCUSSION

For the computer vision part, it was necessary to fine-

tune the ELA algorithm parameters in order to

achieve satisfactory performance in the greenhouse

setting, due to the extremely variable lighting

conditions throughout the observation period.

Therefore, to improve the levels of robustness and

automation, the introduction of a smarter leaf area

detection method would be desirable. To this purpose,

the CNN studied by Zhang et al. (2020) could

represent a good starting point.

The approach to determine the anomaly threshold

was based on the inspection of the reconstruction

error with normality data. This is arguably the

simplest available approach, however more elaborate

methods exist, for example that based on deriving the

reconstruction error distribution through a maximum

likelihood estimation adopted in Malhotra et al.

(2016).

The results found by running the machine learning

algorithms onboard the edge devices showed that

Jetson Nano may be faster than Raspberry PI due to

its CUDA cores, however it seems to be affected by

some issues with the utilized TensorFlow version.

These issues did not allow to complete the analysis of

different hyperparameter choices.

In real greenhouse contexts, more sensors and

actuators may be added. For example, soil Ph and/or

CO2 sensors, or suitable actuators for automated

irrigation. All of these can be included in the

presented setup since the edge devices can

computationally afford their integration; obviously,

one would need to train the Autoencoder for each

distinct configuration of sensor/actuators.

5 CONCLUSIONS

This work shows that edge intelligence is relevant,

viable and reliable for greenhouse applications. The

work conducted here shall be considered a

preliminary study, and more data such as thermal

images, 3D evaluations will be added to better

characterize the health conditions of the plants.

Cloud-edge co-training, that is, training the

models jointly on cloud and on edge, and then

deploying them on the devices for inference turns out

to be a good solution also in terms of flexibility of the

data framework.

In order to face the great variability of conditions

found in real-world, production-level greenhouses,

artificial intelligence and specifically deep learning

algorithms turn out to be an essential tool that

guarantees the necessary robustness.

The ultimate goal of using edge intelligence in

greenhouses would be to automate the operations.

The next stage of development would be one in which

the intelligence not only detects anomalies, but

provides suggested actions within a deep learning

recommendation system framework. Then, in the last

step the recommendation system would become a

system that automatically performs the best possible

actions based on current data.

ACKNOWLEDGEMENTS

The study presented in this paper is part of the

REACT project financed to Idea-Re S.r.l. by Regione

Veneto (IT) POR FESR 2014-2020 Asse I Azione

1.1.4.

SMARTGREENS 2021 - 10th International Conference on Smart Cities and Green ICT Systems

186

REFERENCES

Breunig, M.M., Kriegel, H.P., Ng, R.T., and Sander, J.

(2000). “LOF: identifying density-based local outliers”.

Proceedings of the 2000 ACM SIGMOD international

conference on Management of Data, 93-104.

Cowton, J., Kyriazakis, I., Plötz, T., and Bacardit, J. (2018).

“A combined deep learning gru-autoencoder for the

early detection of respiratory disease in pigs using

multiple environmental sensors”. Sensors, 18(8), 2521.

Hemming, S., de Zwart, F., Elings, A., Righini, I., and

Petropoulou, A. (2019). “Remote control of greenhouse

vegetable production with artificial intelligence —

greenhouse climate, irrigation, and crop production”.

Sensors, 19(8), 1807.

Hochreiter, S., and Schmidhuber, J. (1997). “Long short-

term memory”. Neural computation, 9(8), 1735-1780.

Kingma, D.P., and Ba, J. (2015). “Adam: A method for

stochastic optimization”. Proceedings of the 3rd

International Conference on Learning Representations,

arXiv:1412.6980.

Liakos, K.G., Busato, P., Moshou, D., Pearson, S., and

Bochtis, D. (2018). “Machine learning in agriculture: A

review”. Sensors, 18(8), 2674.

Lin, J., Chen, W. M., Lin, Y., Gan, C., and Han, S. (2020).

“Mcunet: Tiny deep learning on iot devices”. Advances

in Neural Information Processing Systems, 33.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L.,

Agarwal, P., and Shroff, G. (2016). “LSTM-based

encoder-decoder for multi-sensor anomaly detection”.

arXiv preprint arXiv:1607.00148.

Powers, D.M.W. (2011). "Evaluation: From Precision,

Recall and F-Score to ROC, Informedness, Markedness

& Correlation". Journal of Machine Learning

Technologies, 2 (1), 37–63.

Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G.,

Hauslage, J., and Fedorov, M. (2019). “Enabling

Precision Agriculture through Embedded Sensing with

Artificial Intelligence”. IEEE Transactions on

Instrumentation and Measurement.

Sutskever, I., Vinyals, O., and Le, Q.V. (2014). “Sequence

to sequence learning with neural networks”. Advances

in neural information processing systems, 3104-3112.

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J.

(2019). “Edge intelligence: Paving the last mile of

artificial intelligence with edge computing”.

Proceedings of the IEEE, 107(8), 1738-1762.

Edge Intelligence with Deep Learning in Greenhouse Management

187

