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Abstract: The landscape taxonomy has a complex structure and hierarchical classification with indicators of their 
recognition, which is based on a variety of heterogeneous geographic territorial and expert knowledge. This 
inevitably leads to difficulties in the interpretation of remote sensing data and image analysis in landscape 
research in the field of classification and mapping. This article examines an approach to the analysis of intra-
season Landsat 8 OLI images and modeling of ASTER GDEM data for mapping of mountain permafrost 
landscapes of Northern Siberia at the scale of 1: 500,000 as well as its methods of classification and 
geographical recognition. This approach suggests implementing the recognition of terrain types and 
vegetation types of landscape types. The 8 types of the landscape have been identified by using the 
classification of the relief applying Jenness's algorithm and the assessment of the geomorphological 
parameters of the valley. The 6 vegetation types have been identified in mountain tundra, mountain woodlands, 
and valley complexes of the Adycha river valley in the Verkhoyansk mountain range. The results of mapping 
and the proposed method for the interpretation of remote sensing data used at regional and local levels of 
studying the characteristics of the permafrost distribution. The work contributes to the understanding of the 
landscape organization of remote mountainous permafrost areas and to the improvement of methods for 
mapping the permafrost landscapes for territorial development and rational environmental management. 

1 INTRODUCTION 

The development of knowledge-based approaches to 
object recognition is one of the most relevant research 
areas in machine learning and artificial intelligence 
algorithms for image processing and interpreting of 
the Earth observation data (Arvor et al, 2019). 
Landscape classification and mapping in geography 
are traditionally represented by the classification of 
the landscape types and categories according to the 
characteristics of the vegetation cover, soil, relief, 
geomorphology, lithology, etc. Permafrost 
landscapes are a complex geographic object in the 
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zone of permafrost distribution and the development 
of cryogenic processes. They have a complex 
hierarchical classification structure (Fedorov, 2018). 
Recognition and mapping of permafrost landscapes 
objects are based on the multi-fusion data modeling 
on the territorial and geographical features of 
landscape components. It makes them a 
multidimensional object for their recognition using 
remote sensing data processing (Boike et al, 2015). 
Given the lack of geospatial data of environmental 
parameters, remote sensing modeling becomes one of 
the main available tools for understanding the spatial 
organization of mountain permafrost landscapes in 
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the Arctic region (Witharana et al, 2021). Accurate 
mapping of landscapes is particularly important in 
view of the richness of the territory in mineral 
resources, as well as in assessing the possibilities of 
territorial development and taking effective measures 
for environmental management (Kalinicheva et al. 
2019). In addition, permafrost landscape types are 
used to account for agrobiological resources, such as 
reindeer pastures. Landscape taxonomy has a 
complex structure, being a heterogeneous knowledge, 
so there are obvious difficulties in interpreting land 
use/ land cover classes for landscapes and 
geographical processes. The classification of 
permafrost landscapes used for the territory of Siberia 
and Central Asia is based on Milkov's theory of 
landscape taxonomy and fractional hierarchical 
classification of landscapes, represented on the 
Permafrost-Landscape map of the Republic of Sakha 
(Yakutia) in scale 1: 1 500,000 (Fedorov et al, 1989). 
Classification and Geographic Information System 
(GIS) mapping of permafrost landscapes of the 
Republic of Sakha (Yakutia) implemented is based on 
superimposed analysis of climate-geomorphological, 
geological, biotic, and soil factors (Fedorov, 2018). 
This methodology allows using the cryoindication 
approach to apply remote sensing data and techniques 
in the interpretation of vegetation cover. In addition, 
remote sensing data are used as a tool for drawing 
boundaries in the designation of permafrost 
parameters (such as the type of distribution, depth of 
occurrence, cryogenic processes), extracted from the 
database of the geocryological observatory, and the 
collection of field data. Data from multispectral 
images are widely used in the analysis and modeling 
of vegetation cover and their succession stages, as 
well as the thermal regime of permafrost (Shestakova, 
2011) from thermal images (Kalinicheva et al. 2019). 
These examples allow us to see that remote sensing 
data is a relevant and rapidly developing tool in the 
study of the permafrost landscape. Machine learning 
and artificial intelligence algorithms (including deep 
learning), such as Support Vector Machine, (Pal, and 
Mather, 2005) and Random Forest (Eisavi, 2015), 
have shown significant performance in analyzing 
large data sets when modeling mountain permafrost 
landscapes on the example of Orulgan ridge in 
Verkhoyansk Mountains system (Gadal et al, 2020). 
The ability to perform complex hierarchical 
classifications has become the main tool for analyzing 
changes in the environment. At the same time, the 
capabilities of remote sensing data in the paradigm of 
geographic processes and complex geosystems 
(landscapes), including a set of heterogeneous 

knowledge, represent a significant gap in the 
representation of geographic knowledge in image 
analysis. Research on the development of a 
methodology for mapping and recognizing 
permafrost landscapes is increasingly combining 
machine learning and artificial intelligence methods 
in the analysis and the interpretation of remote 
sensing data with geographic knowledge and 
geographic classification (Huang, 2020). In this 
study, we aim to develop a mapping methodology of 
permafrost landscapes at an average scale of 1: 
500,000 through modeling of intra-seasonal Landsat 
8 OLI images and digital elevation model (DEM), 
while building a knowledge-based approach to image 
analysis and considering two main principles. The 
first principle is a classification of permafrost 
landscape types, made according to the approach of 
permafrost-landscape classification and using the 
criteria for their recognition for the possibilities of 
correlation with another research. The second 
principle is the application of multi fusion model for 
integrating the results of image classification into a 
spatial database that should be based on determining 
the relationship between the ontological status of 
image objects and objects of permafrost landscape. 

2 METHODS AND MATERIALS 

2.1 Study Area 

The study area has a size of 60x80 km, and it is 
located between 66°26' - 65°53' North latitude and 
136°27' - 138°13' East longitude. This is the basin of 
the Adycha river, which is the largest tributary of the 
Yana River. Mountains belong to the Chersky range 
(Adyche-Elginsky plateau) in North-Eastern Siberia. 
According to the permafrost landscape map of the 
Republic of Sakha (Yakutia) (Fedorov, 2018), this 
Arctic region consists of mountain deserts, mountain 
tundras, and mountain woodlands, as well as 
intrazonal valley landscapes of mountain taiga and 
mountain tundra. Medium-high mountains of the 
study area are characterized by significant dissection. 
The height above the sea level of the watersheds 
ranges from 289 to 1715 m. Permafrost type is mainly 
a continuous area of frozen strata from 80-100%. The 
thickness of the permafrost ranges from 200-400 
meters. In addition, according to the permafrost 
landscape map, 7 types of landscape vegetation and 
10 types of mountain-slope and valley areas are 
distinguished in the study area (Figure 1). 
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Figure 1: The study area and fragment from the Permafrost Landscape Map of the Republic of Sakha (Yakutia) on Scale 1:1 
500 000 (7 vegetation types and 10 terrain types). 

2.2 Data and Methods 

In this study, we used hybrid data fusion modeling for 
landscape recognition based on the classification of 
multispectral images based on differences in 
photosynthetic activity of different vegetation types 
during the growing season, classification of 
landforms using TPI (Topographical Position Index) 
and methods for mapping the permafrost landscape. 
This allowed us to synthesize methods for classifying 
objects (classes) of the Earth's surface, which are 
closely related to the characteristics of data (mainly 
spectral, spatial, radiometric, and temporal 
resolution) with categories of permafrost landscapes. 
The Landsat 8 OLI images and DEM data with a 
spatial resolution of 30 m we used. This kind of 
remote sensing is suitable for landscape mapping on 
a scale of 1: 500,000 to 1: 100,000. These local scales 
are intended to reveal in maps the spatial organization 
of the landscape in scales of the types of landscapes, 
and the types of terrain. At the same time, we follow 
the criteria for selecting terrain types and landscape 
types used in the permafrost-landscape mapping.  

Terrain types are recognized by the correlation of 
stratigraphic-genetic structure and geomorphological 
structure of territory. In landscape types, the 
recognition criteria are classes of vegetation 
associations (vegetation unit). In previous studies 
(Gadal et al, 2020) we have based analysis on the 
reclassification of a series of multi-time land covers 
for vegetation association recognition. In this study, 
we conduct a combined classification for three 

vegetation indices. This method has increased the 
level of automation for selecting vegetation types in 
permafrost landscapes (Figure 2). Landsat 8 OLI 
images acquired on 15 June 2018, 31 July 2018, and 
August 27, 2018, were used in this study. A 
preprocessing procedure was performed with 
multispectral channels (radiometric calibration, 
atmospheric correction using the DOS method (Dark 
Object Subtraction)).  

 

Figure 2: Modeling workflow of the permafrost landscape 
approach. 

Relief data are collected by merging the ASTER 
GDEM scenes into a mosaic. The ASTER GDEM 
(Global Digital Elevation Model) product developed 
by METI (Ministry of Economy, Trade, and Industry 
of Japan) and NASA is based on data from the ASTER 
sensor of the Terra satellite. ASTER GDEM is the most 
improved DEM dataset that has been GDEM3, 
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released in 2019 available at 30 meters’ resolution 
(Abrams et al 2020). It covers an area up to 83 latitudes 
and has high detail for mountainous areas.   

3 RESULTS 

3.1 Terrain Types by Landform 
Classification using Topographic 
Position Index 

The main factor in determining the types of terrain is 
the topography, geomorphological and lithological 
features of the rocks. This means that the 
stratigraphic-genetic complex, namely the nature of 
surface deposits determines the type of terrain. There 
are 10 types of the accumulative valley and mountain-
slope areas on the territory of the study (Fedorov, 
2018). The boundaries of the slope types of terrain are 
determined by its "upper" contact with the flat surface 
of the watershed, and on the other side - by the 
"lower" junction with the floodplain or above-flood-
terrace types of terrain. The transition of slopes to 
accumulative valley areas is carried out using a well-
defined bend along the rear edge of the valley floor. 
An exception to the recognition principle is the type 
of inter-alas terrain, which is distinguished in flat-
plain territories with the development of thermokarst 
formations (Savvinov, 2002). 

TPI is often used for automatic calculation of 
geomorphometric properties of the earth's surface 
(Weiss, 2001, Jenness, 2006, Ratajczak et al, 2009). 
Terrain types are determined according to their 
comparison with landforms determined by comparing 
TPI values. GRASS GIS (neighborhood analysis) and 
QGIS software for TPI and slope position are 
implemented for the processing with ASTER GDEM. 

Positive TPI (>1) values represent locations that 
are above the average for their surroundings, as 
defined by the neighborhoods. Negative TPI (<-1) 
values represent locations that are lower than their 
surroundings. TPI values close to zero (1>TPI>-1) are 
either flat areas or areas of constant slope (where the 
slope of the point is significantly greater than zero). 
By defining thresholds for continuous TPI values at a 
given scale and checking the slope for values close to 
zero, terrain types can be classified into discrete slope 
position classes (Jenness, 2006). Through 
neighborhood analysis, TPI's are generated in scales 
300 m (Figure 3, c) and 1000 m (Figure 3, d).  

Using the GIS-based Jenness landform 
classification algorithm (Jenness, 2006), we were 
able to identify 5 types of terrain: eluvial (rocky and 

mountain top), colluvial (steep mountain slopes), 
diluvial-colluvial (foothills and lower parts of slopes), 
river valleys and glacial valleys (the bottom of the 
trough valleys) (Figure 4). We had to combine inter-
alas and outwash and mid-terrace.  

 

Figure 3: a) RGB (2-3-4 bands) Landsat 8, 27 august 2018; 
b) DEM 30m, mosaic of ASTER GDEM scenes; c) 300m 
Neighborhood TPI; d) 1000m Neighborhood TPI. 

Determining the moraine type of terrain based on 
slope analysis is difficult. When solving this issue, we 
used the color composite of 2-3-4 bands of Landsat 8 
of a summer image that can determine the side 
moraines designed when the glacier melts into the 
valley slopes in the form of ramparts or moraine 
terraces. 

 

Figure 4: Hisometric profile with terrain types of Adycha 
river valley. 

The low-terrace type of terrain is determined by 
the height of the valley section with a threshold of 500 
m. According to the criteria for identifying low 
terraces, only the Adycha river valley is located 
below 500 meters. The valley of Adycha River of a 
large tributary belongs to well-drained low-terraced 
terrain types.  

The map of terrain types (Figure 5) shows a 
significant difference in the spatial distribution of 
terrain types, in comparison with the permafrost-
landscape map, while the general pattern remains. 
The Adycha river basin in the study area is 
characterized by a strongly dissected and well- 
drained accumulative plain and by the presence of 
many trough glacial valleys.  
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Figure 5: Permafrost landscape terrain type map by ASTER GDEM/ Scale 1:500 000. 

3.2 Vegetation Unit of Permafrost 
Landscape Recognition 

For the interpretation of the vegetation types, we 
applied the method of using the series of intra-season 
multispectral satellite images. The processes of 
accumulation and destruction of chlorophyll and 
changes in the water content in them are associated 
with phenological cycles and cause variations in the 
spectral-reflective characteristics of vegetation 
(Stytsenko, 2018). The seasonality of the behavior of 
vegetation is the result of micro and macroclimatic 
aspects, as well as the activities of other living 
organisms (Dyah et al, 2012). While for permafrost 
landscapes, a significant impact is made by cryogenic 
processes and seasonal dynamics of the thawed 
permafrost layer. Since the dependence of the spectral 
brightness coefficients on the wavelength varies not 
only for different objects but also for the same objects 
depending on the chlorophyll state and humidity, first, 
it depends on the vegetation phase (Stytsenko, 2018). 
This method based on phenological patterns is actively 
used to classify cropland and pastures by vegetation 
indices of time-series images from Sentinel-2 (Belgiu 
and Csillik, 2018) and MODIS. This method is 

particularly applicable to woodlands and valley 
complexes, where the sparsity of the tree layer allows 
satellite images to capture the spectral reflections of 
shrubs, bushes, and grass, underlying forest surface, 
playing a leading role in the typification of classes of 
vegetation associations. This feature and advantage 
allow us to increase the quality of differentiation of 
objects depending on the type of shrubs or herbage of 
larch woodlands (Elovskaya, 1989). 

 

Figure 6: a) NDVI on 15 June 2018; b) NDVI on 31 July 
2018; c) NDVI on 27 August 2018. 
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The classes of plant associations for training the 
algorithm for the classification of vegetation 
associations are based on geobotanical studies of the 
Chersky ridge, as well as on the types of vegetation 
identified on the agricultural map of the Yakut ASSR. 
A detailed geobotanical description of the study area 
is presented in the works of Nikolin E.G. (Nikolin, 
2009) Kuvaev V.B. (Kuvaev, 1960), and others. 
Within the Chersky ridge, 5 main landscape-
phytocenotic structures are distinguished, represented 
by 4 altitudinal belts and a complex of valley 
vegetation. In terms of floristic zoning, the study area 
belongs to the Western Verkhoyansk. Woodland and 
sparse forest represent the arboreal layer from Larix 
cajanderi. The shrubs are dominated by Pinus pumila, 
Betula divaricata, Betula exilis, while the layer of 
dwarf shrubs is dominated by Ledum palustre, 
Vaccinium uliginosum, and Vaccinium vitis-idaea. 
The moss-lichen cover is represented by sphagnum 
(Sphagnum warnstorfii, Sphagnum fuscum, etc.), 
green mosses, and lichens (Cladonia stellaris, 
Cladonia arbuscula, Cladonia rangiferina, Cetraria 
islandica, Cetraria laevigata, Cetraria cucullata, 
Cetraria nivalis, species genera Umbilicaria, 
Parmelia, Hypogimnia, etc.) In addition, steppe 
communities are formed on the slopes of the southern 
exposure. In the valley landscapes, small Ivanchay 
meadows are formed, adjacent to floodplain forb 
meadows. The vegetation of the valley complexes is 
dominated by dwarf birch-shrub and forest 
communities, including poplar-chasonian forests 
(Isaev et al, 2017).  

The dataset compiled from the input images 
generated by the Normalized Difference Vegetation 
Index (NDVI) (Crippen, 1990) is a typical Vegetation 
Index for Remote Sensing Vegetation Analysis. This 
method is a local application of phenology-based 
image classification (Son et al, 2014). The proposed 
automated method of vegetation cover mapping, 
based on the analysis of short time series, allows 
circumventing the restrictions imposed by a single 
classification date.  

The maximum likelihood (ML) classification 
algorithm based on calculating the probability 
distribution for the classes, let us evaluate whether a 
pixel belongs to the land cover class by Bayes' 
theorem. This algorithm requires enough pixels for 
each learning area to compute the covariance matrix 
(Congedo, 2018). This algorithm is known for its high 
efficiency and gives the greatest advantage to the 
dominant classes of the study area. In addition, 
among the class pairs that overlap in the spectrum, 
ML favors the dominant class pair. Thus, ML causes 
the retooling of most of the dominant classes in the 

study area (Shivakumara et al, 2018). Training 
samples for vegetation classes and water are 
determined by the color composite (4-5-3), (2-3-4) 
using the vegetation map of the Yakutian ASSR 
(Elovskaya, 1989) to determine the spatial 
distribution of vegetation communities and features 
of their species by the analysis of NDVI during the 
vegetation season. 

 

Figure 7: Yandex color composite image (CNES 2018, 
Distribution Airbus DS), the fragment of random point a), 
g), Larch woodlands lichen; b), l) Complex of mountain-
tundra vegetation of trough valleys; c) Larch woodlands 
lingonberry green moss-lichen; k) Larch sparse green moss-
sphagnum with bogs; d), e) epilithic-lichen stony deserts 
with areas of mountain tundra and debris of the slopes of 
valleys with areas of steppe vegetation; f) Larch woodlands 
and sparse forests with green moss shrub birches. 

Data from late June shows low NDVI (Figure 6, 
a) responses in mountainous areas, in some areas 
covered with snow from heights of more than 1600 
meters. High NDVI values are observed in low-
terraced areas with open larch forests covered with 
dwarf birches and green moss. In July (peak of the 
green season) the spectral response of the valley 
vegetation complexes is almost the same with a 
resolution of 30 m, and the high NDVI values (Figure 
6, b) are the reason for the classification for dark and 
light wood cover. As expected, only areas with 
epilithic-lichen vegetation and areas exposed to forest 
fires remain with zero NVDI values. In August, it is 
possible to separate the areas of valley larch 
vegetation in sphagnum bogs and in humid areas by a 
drop in NDVI values (Figure 6, c). In the valley areas, 
it is possible to clearly distinguish the areas of larch 
open spaces with lichens by the permanence of the 
average NDVI values. 

When there is a real lack of ground check data at 
the appropriate scale, the only acceptable method for 
assessing accuracy is the method of generating 
random points and correlating the classification 
results with the available higher resolution data 
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Figure 8: Permafrost landscape vegetation unit map by Landsat 8 OLI image series 2018-2020. Scale 1:500 000. 

Yandex Satellite, Google Earth (Figure 7). Overall 
accuracy was 78% and Kappa coefficient 0,71 with 
500 random points. Based on the classification 
obtained, a vegetation map of permafrost landscapes 
was created, showing 6 types of vegetation cover with 
an acceptable level of classification accuracy. The 
resulting map (Figure 8) reliably, at the present level 
of exploration of the territory, conveys the spatial 
organization of plant associations. 

4 DISCUSSION 

In the context of climate change and permafrost 
degradation, qualitative modeling is of particular 
importance (Fedorov, 2019). The quality of remote 
sensing data modeling depends on basic landscape 
and geographic knowledge, geobotanical descriptions 
of the territory, and the availability of a variety of 
cartographic materials in geology, geomorphology, 
and soil distribution. The obtained maps and the 
described method are intended to contribute to the 
development of mapping of permafrost landscapes, 

including by modeling remote sensing data. The 
results obtained can be used to create maps on a local 
scale that are suitable for considering the 
agrobiological resources of areas, but also for 
understanding the local cryogenic conditions of 
mountain territories.  

By comparing maps of vegetation and terrain 
types, one can obtain the following information about 
the mountainous permafrost landscapes of the 
Adycha valley. The spatial distribution of classes of 
plant associations is uneven (Figure 8). The most 
widespread types are Larch woodlands lingonberry 
green moss-lichen with areas of cedar elfin in 
mountain sparse forests (47.41%), Larch sparse 
forests and dwarf green moss sparse forests with 
dwarf birch forests in mountain light forests (3%), 
Green moss-sphagnum larch sparse forests with 
marsh terraces on accumulative valleys (8.54 %), 
Larch woodlands lichen (6%), and a complex of 
mountain-tundra vegetation in trough valleys (4.5%). 
In total, 4 plant types make up 67% of the total land 
cover, 29.38% are epilithic-lichen stony deserts with 
areas of mountain tundra and talus of valley slopes 
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with areas of steppe vegetation. In Adycha river 
valley, in low-terraced terrain types, because of the 
warming effect of the river, three classes of plant 
associations are formed, which are traced in the 
dynamics of the green moss index - sphagnum larch 
woodlands with marsh, larch woodlands, and dwarf 
green moss woodlands with dwarf birch forests in 
mountain woodlands and lichen larch forests. 
Epilithic-lichen is distributed on the steep slopes of 
the mountains of colluvial, near-watershed eluvial, 
and rocky terrain types. 

5 CONCLUSIONS 

The proposed method for recognizing permafrost 
landscapes formulates an approach to using 
algorithms for processing remote sensing data in 
landscape research. The criteria for combining the 
results of remote sensing and the geographical 
components of the permafrost landscape have been 
established. The maps obtained using remote sensing 
modeling are a compilation of geographical studies of 
a given territory used in the interpretation of 
processing results. Therefore, the quality of modeling 
directly depends on the level of conceptualization of 
geographical knowledge about permafrost landscapes 
and the study area. This approach can be implemented 
using spatial ontology in the future.  

The method used is proposed for mapping at the 
local level at scales from 1:500,000, 1: 200,000 to 1: 
100,000, when mapping vegetation and mesorelief of 
individual territories of mountain permafrost 
landscapes that are still difficult to access and labor-
intensive for field research. The lack of opportunities 
to interpret cryogenic parameters (such as freezing 
depth, rock temperature) can be considered an 
obvious shortage of this study. The data obtained on 
the spatial distribution of vegetation and terrain types 
can be considered a contribution to understanding the 
landscape organization of mountain ranges in North-
Eastern Siberia. It can also be used to study the 
cryogenic conditions of mountain regions. 

The development of methods for mapping and 
classification of the permafrost landscapes and other 
geographic objects of the landscape is directly 
dependent on the level of accumulated geographic 
knowledge about the territory and the geographic 
processes. Remote sensing can be used for 
developing the knowledge-based approach for image 
processing and image analysis. This study proposes 
one of the possible approaches to remote sensing 
modeling for mountain permafrost landscapes. 
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