A Self-protecting Approach for Service-oriented Mobile Applications

Ronaldo Rodrigues Martins, Marcos Paulo de Oliveira Camargo, William Filisbino Passini,

Keywords:

Abstract:

a

Gabriel Nagassaki Campos and Frank José Affonso

Department of Statistics, Applied Mathematics and Computation, Sdo Paulo State University — UNESP,

PO Box 178, Rio Claro, Sédo Paulo, 13506-900, Brazil

Self-protecting, Mobile Applications, Web Service, Security.

The evolution of software systems in the last 10 years has brought new challenges for the development area,
especially for service-oriented Mobile Applications (MobApps). In the mobile computing domain, the integra-
tion of MobApps into service-based systems has been a feasible alternative to boost the capacity of processing
and storage of such applications. In parallel, this type of application needs monitoring approaches mainly due
to the need of dealing with a large number of users, continuous changes in the execution environment, and se-
curity threats. Besides that, most MobApps do not present the self-protecting property by default, resulting in
a number of adverse situations, such as integrity of execution, reliability, security, and adaptations at runtime.
The principal contribution of this paper is an approach based on MAPE-K (Monitor-Analyze-Plan-Execute
over Knowledge) loop and machine learning techniques to ensure self-protecting features in MobApps, in
particular, those based on services. Experimental results showed that this approach can autonomously and
dynamically mitigate threats, making these applications more trustworthy and intrusion-safe. Our approach

has good potential to contribute to the development of MobApps, going beyond existing approaches.

1 INTRODUCTION

Nowadays, our society has become increasingly de-
pendent on software systems. In this scenario, it
can be also noted that most human daily tasks are
managed by Mobile Applications (MobApps) embed-
ded into mobile or smart devices (e.g., smartphones,
tablets, hybrid devices, smart-TVs, smart-watches,
among others), which enable on-line access to infor-
mation regardless of the users’ location (Aghav and
Sharma, 2011). These systems deal with complex
structures that enable the interpretation of the con-
text in which they are inserted and, at the same time,
with extra requirements that have become them more
versatile, extensible, resilient, dependable, robust, re-
coverable, customizable, configurable, and change-
able (Salehie and Tahvildari, 2009).

The integration between MobApps and SOA-
based (Service-Oriented Architecture) systems has
been shown as an alternative to overcome limitations
related to computation-intensive tasks, which can de-
mand an excessive amount of battery power or stor-
age space (Aghav and Sharma, 2011). Zahrani (2016)

a2 https://orcid.org/0000-0002-5784-6248

Martins, R., Camargo, M., Passini, W., Campos, G. and Affonso, F.
A Self-protecting Approach for Service-oriented Mobile Applications.
DOI: 10.5220/0010448603130320

argued that MobApps based on services can bene-
fit from cloud platforms to perform distributed pro-
cessing on multiple servers and access data remotely
from different machines instead of using its own de-
vice. These applications need monitoring approaches
to deal with large-scale environments to meet many
clients and to mitigate adverse situations of secu-
rity/threats (Sarker et al., 2020). Because of the con-
stant changes unannounced in the execution environ-
ment, protect such applications through approaches
based on the self-protecting property can be a feasi-
ble solution (Lara et al., 2019).

Based on the exposed scenario, there is a growing
interest in both academia and industry in the devel-
opment of solutions and theories to support the evo-
lution of service-oriented MobApps that require self-
protecting property. Self-protecting solutions must
identify old and new attacks/threats through proac-
tive and/or reactive strategies, i.e., they must antici-
pate the attacks/threats known in both academia and
software industry, besides enabling the gradual iden-
tification and treatment of the new ones. Despite ev-
ident interest from both industry and academia, to
our best knowledge, there is no self-protecting ap-
proach for MobApps that encompasses the afore-

313

In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 313-320

ISBN: 978-989-758-509-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

mentioned requirements. To do so, we conducted a
Systematic Mapping Study (SMS) (Petersen et al.,
2015) to identify secondary and primary studies that
deal with MobApps that require the self-protecting
property (Martins et al., 2021). Thus, an approach
based on MAPE-K (Monitor-Analyze-Plan-Execute
over Knowledge) loop (IBM, 2005) and machine
learning techniques to ensure self-protecting features
in MobApps is proposed in this paper (Sarker et al.,
2020). This approach was designed based on the
best practices of software engineering, the results
of the aforementioned SMS, and the main security
risks/threats (OWASP, 2021a; Martin et al., 2021).

The main contribution of this paper is a self-
protecting approach to support the development of
service-oriented MobApps. In short, this approach
enables to address server-side security requirements,
making the design of such applications easier and
trustworthy. From the design viewpoint, our approach
was built to deal with attacks and/or threats in both
proactive and reactive strategies. To do so, it ad-
dresses the main security threats reported in the in-
dustry through learning techniques, which have auto-
mated the process of threats detection with excellent
accuracy. Moreover, in order to expand the capac-
ity to deal with old and new types of attacks/threats,
our approach enables us to incorporate algorithms
for the classification of vulnerabilities (i.e., proactive
strategy), and recommendation of solutions (i.e., re-
active strategy). Indirectly, our approach can ben-
efit different research communities and practition-
ers, providing a solution that can guide future re-
search and innovations focused on security strate-
gies, implementations, frameworks, tools, among oth-
ers. Thus, we believe to have created a favorable
scenario of development, since our approach enables
us to design service-oriented MobApps supported by
self-protecting mechanisms that can make them more
trustworthy and safe.

This paper is organized as follows. Section 2
presents the background and related work. A descrip-
tion of our approach is reported in Section 3. Sec-
tion 4 presents a proof of concepts to show the ap-
plicability of our approach. Finally, Section 5 sum-
marizes our conclusions and perspectives for further
research.

2 BACKGROUND AND RELATED
WORK

This section presents the background and related
work that contributed to the development of our ap-
proach. Initially, concepts of self-protecting systems

314

are described. Next, related work on self-protecting
solutions is addressed.

Self-protecting Systems. Adaptive security model or
self-protecting mechanisms are synonyms for the ca-
pability of changing a system’s security at runtime
based on a certain level of threat. Security con-
cerns refer to practices and processes that aim to
ensure the confidentiality, availability, and integrity
of data by restricting data usage or access by unau-
thorized entities. Tziakouris et al. (2018) defined
“self-adaptive security systems as any solutions that
can protect systems/users/data against runtime threats
via the enforcement of alternate/adjustable defensive
strategies”. According to Chopra and Singh (2011),
the principal purpose of self-protecting solutions is
to defend the execution environment or applications
against malicious intentional actions. Self-protecting
systems should scan for suspicious activities and re-
act to them without users knowing that such protec-
tion is in execution. Yuan and Malek (2012) de-
fined self-protecting as an essential property for self-
management of autonomic computing systems from
two perspectives: (i) reactive, the system automati-
cally defends against malicious attacks or cascading
failures; and (ii) proactive, the system anticipates se-
curity problems and takes decisions to mitigate them.

As related work, Dey et al. (2015) developed a
context-adaptive security framework for cloud-based
MobApps that aims to provide an extra security layer,
besides improving the Quality of Service (QoS) and
reliability of such applications. This framework cre-
ates a secure session between MobApps and the cloud
server, providing server security by checking patterns
of incoming traffic based on a learning system.

A context-aware adaptive security framework was
proposed by Mowafi et al. (2014), which provides
a multi-security incubator so that it executes a
MobApp. They developed this framework based on
policy selection, decision making, adaptive learning,
and recommendation and feedback systems. By run-
ning each application in its own incubator as a stan-
dalone application, it is possible to run security and
communication mechanisms within the incubator and
optimize the security of such applications.

Amoud and Roudies (2017) proposed a self-
adaptive security approach for mobile devices based
on the MAPE-K loop. In short, this approach enables
the dynamic negotiation of security policies and au-
tomatic reconfiguration of security levels. Thus, new
security policies can be instantiated at runtime so that
they meet the new security needs during changes that
can occur in the execution environment.

According to Zahrani (2016), it is common to
see data storage and replication in different locations

as a way of overcoming data loss and availability
problems (e.g., cloud computing). The author pro-
posed a self-protecting mechanism for Mobile Cloud
Computing (MCC) based on MAPE-K loop, which
aims to enable the self-protecting capability for this
application type (MCC) when data is transferred from
the mobile device to cloud.

As stated in Saxena et al. (2007), security is com-
monly treated as a system’s static component. This
principle cannot be applied to systems that are de-
veloped to operate in different environments, since
they deal with devices connected in divergent con-
texts. Thus, it is necessary to develop solutions able
to monitor every system’s aspect and intelligence to
carry out modifications/adaptations whenever neces-
sary. In a real scenario, it is not always possible to
predict all attack scenarios during the life cycle of the
system. In this sense, implementing different policies
for each environment solution can optimize the secu-
rity levels of a system.

3 SELF-PROTECTING
APPROACH

As our approach aims to address service-oriented
MobApps that require the self-protecting property, we
have gathered the main OWASP security risks for
three types of applications (i.e., web, mobile, and ser-
vices). These risks are based on data collected and
in discussions with the software development com-
munity, classifying the risks according to OWASP
(2021c). We also focused our concerns in the main
OWASEP threats (top 10) (OWASP, 2021a) and com-
plemented with the Common Weakness Enumeration
(top 25) (Martin et al., 2021) because of their preva-
lence on the Internet and their relevance to the appli-
cation domain of our proposal. However, it is note-
worthy the approach proposed in this paper can treat
threats not contained in aforementioned lists.

Figure 1 shows a detailed view of our self-
protecting approach. In short, it received the main
contributions of an SMS (Martins et al., 2021), the
studies reported in Section 2, and the aforementioned
security risks. In this sense, we highlight the MAPE-
K control loop (IBM, 2005), the learning techniques,
and the modular architectural organization (Gamma
et al., 1995), which enables our approach to be flex-
ible when scaled to meet new threats and/or vulner-
abilities types (Sarker et al., 2020). From an opera-
tional viewpoint, the proposed approach aims to ad-
dress security threats reported in this section through
proactive and reactive strategies. The first aims to
identify the known attacks/threats that may occur in

A Self-protecting Approach for Service-oriented Mobile Applications

an application at runtime. The purpose of this identi-
fication is to anticipate problems such as QoS degra-
dation, interruption of services, improper access to
data, among others. The second enables to deal with
the aforementioned problems so that applications are
not compromised, both from an operational viewpoint
and from undue exposure of information. Finally, it
is worth mentioning that we adopted an architectural
organization based on the decentralized topology to
protect the self-protecting module (i.e., the “protec-
tor” of our approach) (Yuan et al., 2014).

As can be observed in Figure 1, our approach
contemplates the development of service-oriented
MobApps in both phases: design and runtime. An-
other important aspect to be highlighted in this ap-
proach is its security scope, since it was designed to
operate in the application layer (server-side), where
occurs communication between a MobApp and the
Web services used by it. Regarding the services,
this approach enables the development of MobApps
based on SOAP and/or RESTFul that can be orga-
nized through orchestration, choreography, or simple
services. To do so, this approach was organized in
four activities, namely: (1) Development; (2) Learn-
ing; (3) Execution; and (4) Monitoring. Next, details
of each activity is addressed.

Activity 1 represents the development of service-
oriented MobApps, which should be conducted based
on security guidelines and supported by an auto-
mated process for identifying vulnerabilities in the
design phase OWASP (2021c). As our approach
uses learning algorithms to classify (i.e., predict) the
risks/weaknesses of an application, it is necessary
to define the “monitoring points” so that it can col-
lect and analyze that data at runtime (Activity 2).
We consider this step fundamental to our approach
because a good definition of the data can signif-
icantly improve the classification and/or prediction
of a learning-based system (Kamath and Choppella,
2017). Next, developers can evaluate the vulner-
abilities of the application before inserting it into
the execution environment through automated pro-
cesses, which can provide parameters regarding se-
curity weaknesses, possibilities of invasion, among
others. Based on this context, by evaluating self-
protecting as a broad, comprehensive, dynamic, and
evolutionary issue, we would like to emphasize that
the approach proposed in this paper is not a “silver
bullet” for all threat types for the service-oriented
MobApps. We recommend developers to use a list
of security techniques developed by OWASP Proac-
tive Controls (OWASP, 2021b) during the develop-
ment activity, since this list provides ten important
items that can optimize threat mitigation. Thus, in

315

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

Loop Coordinator

E@ Classification Recommendation
'

| v V
! E

Sensor Effector
Slave loops

Runtime

Security

Dashboard

= SOMobAmD T = SOMobAmD T

Security threats 1 Security threats 2

[] @'j,“
w Security
S|

pecialists

(Sensor ——{ Efecior

Security threats N

Mobile Device

Analyze Plan

Monitor Knowledge Execute

D v v F earing mode
Classification Recommendation Learning model
Model

Specialists

in Security

and Data
@ Machine i S.(:lence

i Learning Engine

1

Algorithm

Design

/ﬁ—\ Service-oriented MobApp | Repository

‘gg

OWASP <@l
Proactive

Controls EE;
J

Automated
Process,

Software
engineers

and

Security specialists

Yy yepe e ———————————— - gy

Service-oriented MobApp

(
Web service orchestration

specialist !

‘)Webgervice E ; Dataset

choreography 1 | —

Web Server

O Simple services o
i Raw data
oo 2.1

Monitoring points [S i

Figure 1: Self-Protecting approach.

order to guide the security-oriented development, two
considerations regarding the major risks can be high-
lighted. The first is related to the use of an additional
layer to the system for mitigating some security risks.
For instance, the developers must implement data val-
idation on the front-end and back-end sides so that
threats such as code injection and cross-site scripting
can be avoided. In parallel, they can implement a data
encryption layer to avoid exposing data and metadata.
The second is related to code security. As our ap-
proach aims to deal with security threats at runtime,
services can be modified or replaced at runtime with-
out the perception of their stakeholders. Thus, some
threats are implicitly circumvented, namely: integra-
tion of data and services, client code quality, code
tampering, exposure of binary code, among others.

Activity 2 represents the development process of
the learning models that will be used to identify vul-
nerabilities and attacks/threats at runtime. This activ-
ity occurs in incremental and iterative cycles with Ac-
tivity 1, since it is necessary to define and refine the
data that will be collected from the service-oriented
MobApps during their execution and which learning

316

algorithms will be used according to the vulnerabil-
ities and attacks/threats that are intended to be ad-
dressed. To do so, we organize this activity as follows:
(1) Step 2.1 specifies the problem to be treated and
the organization of the dataset (i.e., data from third
parties and data collected with the preliminary exe-
cution of the system) that will be used to train the
model so that an anomaly (i.e., vulnerability or at-
tack) in service-oriented MobApps can be identified;
(i1) Step 2.2 represents the data preparation task that
should be conducted for the elimination of undesired
data (“Filter” phase). Next, it conducts the selection
of features (“Prepared data” Phase) so that the dataset
is adequate to the problem that is being addressed;
(iii) Step 2.3 selects the algorithms for classification
and recommendation modules, which represent the
learning model of our approach (Step 2.4) for each
vulnerability, attack, or anomaly; and (iv) Step 2.4
represents the final learning models that will be de-
ployed in the execution environment, which are refer-
enced from this point forward as supervisor systems.

In relation to the presented steps, the calibration
of the learning models is a task required for our ap-

proach in order to evaluate the identification accu-
racy of vulnerabilities, attacks/threats, or anomalies
according to the labeled data (i.e., that one provided
by the security specialist in relation to the data ac-
quired from the execution of the system). Moreover,
it is noteworthy that other algorithms can be coupled
to our approach without additional implementation
because it was designed to be flexible and scalable
(i.e., a common interface is available for the learn-
ing algorithms) (Gamma et al., 1995). According to
Psaier and Dustdar (2011), this process can optimize
the algorithm performance for both modules. Another
important aspect that should be taken into consider-
ation when choosing machine learning algorithms is
the learning type, which can be classified in three cat-
egories: (i) supervised: when the future can be pre-
dicted based on data learned in the past. The train-
ing dataset is used to produce an inferred function to
make future predictions. After that, the system can
classify new inputs from labeled data; (ii) unsuper-
vised: when the information is used to train is neither
marked nor classified. In this type of learning, the role
of the machine is to group unsorted information ac-
cording to patterns, similarities, and differences with
no prior training data; and (iii) semi-supervised: this
type of learning can be considered as an intermedi-
ate model because it uses both labeled and unlabeled
data for training. In short, we can use this type in
scenarios where it is difficult to produce an accurate
model, therefore, semi-supervised techniques can in-
crease the size of the training data.

Regarding the operating mode (Activity 3), our
approach acts as a non-intrusive supervision modality,
i.e., a supervisor system is responsible for monitor-
ing the internal states of a service-oriented MobApp.
As can be observed in Figure 1 (Activity 3), there is
a control loop coordinator and multiple slave loops.
Each slave loop deals with a type of vulnerability, at-
tack, threat, or anomaly, since each security problem
requires specific features and behaviors that should
be considered in the execution of both modules (i.e.,
classification and recommendation). In short, sensors
are responsible for capturing parameters from the ex-
ecution environment for the supervisor system. Next,
the classification module classifies these parameters
to identify the changes occurred in each monitoring
point. Based on this classification and the data col-
lected from the environment, an adaptation plan is
prepared by the recommendation module to estab-
lish a solution for the identified risk/threats. Before
it becomes an effective solution, such recommenda-
tion must be tested in order to ensure that no “col-
lateral effects” will be propagated to the application
(i.e., service-oriented MobApp). Effectors deal with

A Self-protecting Approach for Service-oriented Mobile Applications

the “selected solution” after its testing activities are
performed, applying it to the application. When a
vulnerability, attack, threat or anomaly is identified,
the learning models are updated, characterizing an
incremental and dynamic learning strategy. Finally,
in order to guarantee that the solution proposed does
not become unfeasible, we recommend that the su-
pervisor systems (i.e., coordinator and slaves) be de-
ployed in a different host than the application that is
being monitored in order to protect the protector of
our approach. Moreover, we recommend that secu-
rity guidelines are applied, as suggested by (OWASP,
2021a) and (Martin et al., 2021).

Finally, as suggested by the OWASP AppSen-
sor (Watson et al., 2015), monitoring an application
(Activity 4) through automated processes helps in
mitigating/identifying security threats. In this sense,
we have elaborated a monitoring environment (i.e., a
dashboard with parameters related to the monitoring
points) together with a message notification system.
Essentially, these systems receive the classification
module data containing the information collected, and
the anomalies identified. In short, we designed these
systems to assist the security specialists, providing in-
formation about attacks and vulnerabilities of an ap-
plication in a quick and objective way.

4 PROOF OF CONCEPT

This section presents a proof of concept conducted
to evaluate the applicability of our approach. As
a subject application for our empirical analysis, we
have selected a public dataset named CSIC TOR-
PEDA 2012, which provides 74,133 labeled HTTP
requests to an e-commerce web application in XML
(eXtensible Markup Language) format (Torrano et al.,
2012). According to these authors, this dataset is
composed of 8,363 normal requests, 16,459 anoma-
lous requests, and 49,311 malicious requests. They
injected eight types of threats in the last type of
request to simulate attacks in a web application,
namely: 43,013 SQLi and variants, 4,818 XSS and
variants, 412 Buffer Overflow, 41 Format String, 74
LDAPi, 451 SSI, 175 XPath, and 327 CRLFi. Based
on the exposed context, for reasons of scope and
space, this paper will only address scenarios for the
identification/classification of such threats and noti-
fication of the security specialist in relation to threat
types identified in these scenarios. Finally, as the data
in this dataset is labeled, our approach will be instan-
tiated to work with supervised learning models.
Figure 2 presents an overview of the pre-
processing step of our approach, which represents

317

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

the preparation of the raw data (e.g., Step 2.1 of
our approach — Figure 1). To do so, we devel-
oped a Java application called XML2CSV, which
enabled us to convert the log files in XML to a
Weka input format (e.g., CSV — Comma-Separated
Values). Then, using Weka’s analysis process, we
selected five features to classify requests as normal
or anomalous, namely: lengthRequest, length-
Arguments, numberArguments, lengthPath, and
numberSpecialCharsPath. After this step, we
choose six algorithms to perform the classification
of the requests. The description of these activi-
ties represents the execution of Steps 2.2 and 2.3
of our approach (see Figure 1). Finally, we per-
formed the model calibration to detect anomalous re-
quests and obtained the following accuracy distribu-
tion for the selected algorithms: Logistic 95.85%,
LibSVM 99.16%, AdaBoostM1 98.24%, J48 99.61%,
K-Nearest Neighbor 99.89%, and Random Forest
99.89%. A brief description of these algorithms is
presented in Table 2, which shows the classification
accuracy of the attacks.

[] <dataset author—"csic" name—"torpeda"s |
<sample id="1"> }—\:..___ <sample id="1">
<sample id="2"> <request>...</request>

*s. | <1abel>... </label>

XML2CSV | [imple id—rnn>
Specialists t</dataset>

in Security
and Data
Science
{<label>

</sample>

<type>attack</type>
‘ Normal ‘ ’ Aggpalous <attack>SQLi</attack>

</label>

Labbed data

)

lBuffer Overﬂowl Jl Format String l Ssl XSS

[cruFi] [(wapi] [sau | [xatn |

Figure 2: Pre-Processing process of our approach.

After identifying the requests as anomalous, the next
step is to classify them as one type of threat, as il-
lustrated in Figure 2, which represents the Step 2.3
of our approach. To show how the operation must
be performed, the type of SQLi attack was selected
to be presented in more detail. Initially, the CSV
file must be loaded in the Weka tool for applying
three filters: (i) RemoveDuplicates, which enables
to remove all duplicate instances; (ii) Randomize,
which randomly shuffles the order of instances; and
(iii)) ReplaceMissingWithUserConstant, which
enables to replace all missing values for nominal,
string, numeric, and date attributes in the dataset.
Next, we generated an ARFF file containing the spec-
ification and data (i.e., learning model) for this type
of attack. Regarding the specification, we used a set
of 58 features defined by Bhagwani et al. (2019), as
shown in Table 1.

318

Table 1: SQLi attack features (Bhagwani et al., 2019).

£777 13 ** b (Xl 13 b G,’ 6.’ 13 b e_ 13 b 13 2
’/ /, 6,+, s I #’_7 [7]7
(7)7 9’ 9Char’ 9 7<7>? L]
NEA] Y6 e ¢ LIS 5 6, G _> ¢ ’
|7, "7, <=1 =%, T, e, T =T, feount,

‘into’, ‘or’, ‘and’, ‘not’, ‘null’, ‘select’,
‘union’, ‘insert’, ‘update’, ‘delete’, ‘drop’,
‘replace’, ‘all’, ‘any’, ‘from’, ‘user’, ‘where’,
‘sp’, ‘xp’, ‘like’, ‘exec’, ‘admin’, ‘table’,
‘sleep’, ‘commit’, ()’, ‘between’,

To complete Activity 2 of our approach, we must con-
duct the model evaluation process so that Step 2.3 can
be consolidated. Thus, it can be said that we have an
initial dataset (i.e., knowledge) and a learning model
that can be deployed in the classification module to
deal with SQLi attacks at runtime (see Step 2.4 — Fig-
ure 1). Regarding the model evaluation, it is notewor-
thy that we analyzed the classification for this type
of attack using the aforementioned six algorithms, as
shown in Table 2. Our goal in presenting these re-
sults is not to provide qualitative and/or comparative
evidence regarding the use of such algorithms, since
security and data science specialists can choose algo-
rithms according to the needs of the application and
results of this calibration process.

Analyzing the data in the Table 2, J48 algorithm
showed the best result for the CRLFIi, SQLi, and
Xpath attacks, with an accuracy of 84.85%, 98.67%,
and 99.45 respectively. 98.96% was the accuracy
achieved by the LibSVM, AdaBoostM1, and J48 al-
gorithms for the LDAPi attack. Similarly, 95.45%
was the accuracy achieved by the Logistic and J48
algorithms for the SSI attack. Finally, K-Nearest
Neighbor algorithm showed the highest accuracy of
99.53% for the XSS attack.

Figure 3 illustrates how the slave loops are used by
the coordinator loop. As can be observed by the area
highlighted in light gray (solid border), which repre-
sents a slave loop for the CRLFi attack, new data is
collected so that this type of attack can be identified.
We represent the new requests by tuples composed of
information for each attack type (i.e., X, y, z, W, ...,
empty), which, after processing activity of each loop,
can be classified as attacks (i.e., red square) or nor-
mal request (i.e., blue square). The coordinator loop
monitors the slave loops so that the classified data is
collected. Then, this loop gathers the data and notifies
the security specialist about which attacks the appli-
cation is suffering so that he can take assertive deci-
sions, avoiding that the application is compromised.

A Self-protecting Approach for Service-oriented Mobile Applications

Table 2: Attack detection in %.

Algorithms CRLFIi LDAPi SQLi SSI Xpath XSS

Logistic 80.30 98.93 90.48 95.45 99.18 95.08
LibSVM 81.82 98.96 95.93 87.34 99.15 96.80
AdaBoostM 1 83.33 98.96 91.89 95.13 99.15 93.04
J48 84.85 98.96 98.67 95.45 99.45 99.26
K-Nearest Neighbor 72.73 97.95 98.50 92.21 99.08 99.53
Random Forest 74.24 97.99 98.60 91.23 99.10 99.49

Where Logistic is a regression algorithm for binary classification, LibSVM is a library for Support Vector Machines, Ad-
aBoostM]1 is a classifier for nominal class problems, J48 is a classifier based on tree, and K-Nearest Neighbor and Random
Forest are algorithms to deal with classification and regression problems.

Loop Coordinator
Classification Recommendation
&
] Security
Security Security Specialists
g EREEm | aum |
Buffer Overflow LDAPI : XSS
4 4 () 4
L] FOEFLT] (OEFLL]
Classified data{ FFEFCH amm |
Slave loop { CRLFi SQLi
'f Legend:
New data { FFTEIRLT] FYEFLT] = e m——

Figure 3: Classification process.

S CONCLUSIONS

A self-protecting approach to support the develop-
ment of service-oriented MobApps was presented in
this paper. In short, our approach uses machine
learning techniques and MAPE-K loop to deal with
different types of attacks/threats. The design of
our approach is based on results of an SMS con-
ducted by Martins et al. (2021) and OWASP secu-
rity risks (Foundation, 2021; Martin et al., 2021). On
the other hand, we would like to emphasize that our
approach is not a “silver bullet” for all threat types.
Based on the results of this paper, we are providing
a solution capable of guiding developers and orga-
nizations interested in the development of this type
of application in order to optimize the threat mitiga-
tion and the solution customization faced during the
development. Thus, we believe that our approach
can boost the development of industrial solutions and
future research in these areas. The main contribu-
tions of this paper are: (i) self-protecting approach
that can facilitate the development of this applica-
tion type, benefiting several research communities,
namely: Service Computing, Mobile Computing, and

Security; and (ii) stakeholders interested in how the
self-protecting property has been used for the devel-
opment of service-oriented MobApps to make such
applications more trustworthy and intrusion-safe.
Regarding future work, at least two activities are
intended: (i) conduction of more case studies or
proof of concepts to evaluate our approach, includ-
ing different machine learning algorithms, learning
approaches, and security scenarios; and (ii) use of this
approach in a larger real environment of development
and execution. Therefore, based on the content pre-
sented in this paper, a positive research scenario can
be idealized, enabling this approach to become an ef-
fective contribution to the involved communities.

ACKNOWLEDGEMENTS

This research is supported by UNESP’s Pro-
Rectory of Research (PROPe/UNESP), the Sao
Paulo Research Foundation (FAPESP) - Brazil
(Grant: 2019/21510-3), and the LINEAS and
RADIAR Project (UNESP/Petrobras/EUNDUNESP
Cooperation) - Brazil (Grants: 2017/00502-7,
5850.0102453.16.9).

REFERENCES

Aghav, J. and Sharma, N. (2011). A software architecture
for provisioning of mobile services: An OSGi imple-
mentation. In The 7th International Conference on
Perspective Technologies and Methods in MEMS De-
sign, pages 24-27.

Amoud, M. and Roudies, O. (2017). Dynamic adaptation
and reconfiguration of security in mobile devices. In
2017 International Conference On Cyber Incident Re-
sponse, Coordination, Containment Control (Cyber
Incident), pages 1-6.

Bhagwani, H., Negi, R., Dutta, A. K., Handa, A., Kumar,
N., and Shukla, S. K. (2019). Automated classifi-
cation of web-application attacks for intrusion detec-
tion. In Bhasin, S., Mendelson, A., and Nandi, M.,

319

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

editors, Security, Privacy, and Applied Cryptography
Engineering, pages 123—141, Cham. Springer Interna-
tional Publishing.

Chopra, I. and Singh, M. (2011). Sasm-an approach to-
wards self-protection in grid computing. In Dua, S.,
Sahni, S., and Goyal, D. P,, editors, Information Intel-
ligence, Systems, Technology and Management, Com-
munications in Computer and Information Science,
pages 149-159. Springer Berlin Heidelberg.

Dey, S., Sampalli, S., and Ye, Q. (2015). A context-adaptive
security framework for mobile cloud computing. In
11th International Conference on Mobile Ad-hoc and
Sensor Networks, pages 89-95.

Foundation, O. (2021). Owasp mobile security project.
[On-line]. Available: http://tiny.cc/owasp-top10-msp,
Accessed on February 26, 2021,.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

IBM (2005). An architectural blueprint for autonomic com-
puting. [On-line]. Available: http://tiny.cc/ibm-loop,
Third Edition, Accessed on February 21, 2021.

Kamath, U. and Choppella, K. (2017). Mastering Java
Machine Learning: A Java Developer’s Guide to Im-
plementing Machine Learning and Big Data Architec-
tures. Packt Publishing.

Lara, E., Aguilar, L., Sanchez, M. A., and Garcia, J. A.
(2019). Adaptive security based on mape-k: A survey.
In Sanchez, M. A., Aguilar, L., Castaiién-Puga, M.,
and Rodriguez, A., editors, Applied Decision-Making:
Applications in Computer Sciences and Engineering,
pages 157-183, Cham. Springer International Pub-
lishing.

Martin, B., Brown, M., Paller, A., and Kirby, D. (2021).
2011 cwe/sans top 25 most dangerous software er-
rors. [On-line]. Available: https://cwe.mitre.org/
top25/index.html, Accessed on February 26, 2021,.

Martins, R. R., de Oliveira Camargo, M. P., Passini,
W. E, Campos, G. N., and Affonso, F. J. (2021).
Mapping study on self-protecting property for
service-based mobile applications domain. [On-
line]. Available: https://drive.google.com/file/d/
1yxQ58VrJ06Ks5T3h7aXk9dAi7bm3wUqO/view,
Accessed on February 26, 2021.

Mowafi, Y., Abou-Tair, D., Aqarbeh, T., Abilov, M.,
Dmitriyev, V., and Gomez, J. M. (2014). A context-
aware adaptive security framework for mobile ap-
plications. In Proceedings of the 3rd International
Conference on Context-Aware Systems and Applica-
tions, ICCASA ’14, pages 147-153, Brussels, Bel-
gium. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

OWASP (2021a). The owasp foundation. [On-line]. Avail-
able: https://www.owasp.org, Accessed on February

26, 2021,.
OWASP (2021b). Owasp proactive controls.
[On-line]. Available: https://owasp.org/

WWW-project-proactive-controls, Accessed on

February 26, 2021,.
OWASP (2021c). Owasp risk rating methodology. [On-
line]. Available: https://www.owasp.org/index.php/

320

OWASP _Risk _Rating_Methodology, Accessed on
February 26, 2021,.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Information
and Software Technology, 64:1 — 18.

Psaier, H. and Dustdar, S. (2011). A survey on self-
healing systems: approaches and systems. Comput-
ing, 91(1):43-73.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems,
4:1-42.

Sarker, 1. H., Kayes, A. S. M., Badsha, S., Alqahtani, H.,
Watters, P., and Ng, A. (2020). Cybersecurity data
science: an overview from machine learning perspec-
tive. Journal of Big Data, 7(1):41.

Saxena, A., Lacoste, M., Jarboui, T., Liicking, U., and
Steinke, B. (2007). A software framework for au-
tonomic security in pervasive environments. In Mc-
Daniel, P. and Gupta, S. K., editors, Information
Systems Security, pages 91-109, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Torrano, C., Pérez, A., and Alvarez, G. (2012). Http csic
torpeda 2012 dataset. [On-line]. Available: https://
www.tic.itefi.csic.es/torpeda/datasets.html, Accessed
on February 26, 2021.

Tziakouris, G., Bahsoon, R., and Babar, M. A. (2018).
A survey on self-adaptive security for large-scale
open environments. ACM Computing Surveys,
51(5):100:1-100:42.

Watson, C., Groves, D., and Melton, J. (2015). Appsensor
guide - application-specific real time attack detection
& response. version 2.0. [On-line]. Published 27th
July 2015. Available: http://tiny.cc/owasp-appsensor,
Accessed on February 26, 2021,.

Yuan, E., Esfahani, N., and Malek, S. (2014). A system-
atic survey of self-protecting software systems. ACM
Transactions on Autonomous and Adaptive Systems,
8(4).

Yuan, E. and Malek, S. (2012). A taxonomy and survey
of self-protecting software systems. In ICSE Work-
shop on Software Engineering for Adaptive and Self-
Managing Systems, pages 109—118.

Zahrani, M. (2016). Self-protection and security in mobile
cloud computing. Research Journal of Information
Technology, 8(1-2):47-54.

