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Abstract: Current full- and semi- Autonomous car prototypes increasingly feature complex algorithms for lateral and 
longitudinal control of the vehicle. Unfortunately, in some cases, they might cause fussy and unwanted effects 
on the human body, such as motion sickness, ultimately harnessing passengers' comfort, and driving 
experience. Motion sickness is due to conflict between visual and vestibular inputs, and in the worst case 
might causes loss of control over one’s movements, and reduced ability to anticipate the direction of 
movement. In this paper, we focus on the five main physical characteristics that affect motion sickness, 
including them in the function cost, to provide quality passengers' experience to vehicle passengers. We 
implemented our approach in a state-of-the-art Model Predictive Controller, to be used in a real Autonomous 
Vehicle. Preliminary tests using the Unreal Engine simulator have already shown that our approach is viable 
and effective, and we implemented and evaluated using Motion Sickness Dose Value and Illness Rating and 
then tested it in an embedded platform. We implemented it on our embedded platform, NVIDIA Jetson AGX 
Xavier that is representative of the next-generation AV Domain Controller. 

1 INTRODUCTION 

In semi- and full AVs, vehicle control shall consider 
passengers’ stress, and not decrease their level of 
comfort (Elsner, 2018). It was proven that a tight 
relationship exists between comfort and trust, as well 
as the acceptance of automated vehicles (Bellem et 
al., 2018). 

The mostly known comfort issues for the 
passengers is probably Motion Sickness. Its common 
symptoms are: headache, pallor, sweating, nausea, 
vomiting, and disorientation, and they can be 
measured by Physiological signals, Vestibule Ocular 
Reflex (VOR) parameters, and Posture stability. 
There are several ways to mitigate this, such as 
instance visual cues, Posture and vehicle 
controllability, and Immersive Experience (Iskander 
et al., 2019).  

Motion is primarily sensed by the organs of 
balance located in the inner ear and our eyes, which 
are mainly or uniquely sensitive to accelerations. The 
vestibular section of the inner ear is partly comprised 
of three semi-circular canals that detect head angular 
acceleration. The main issue stems from the fact that 
our bodies are not used to low-frequency oscillating 

motion, and our “biological IMUs” are highly 
sensitive to this. In carsickness, the lateral 
accelerations (sway) in the low-frequency bands (0.1-
0.5 Hz) are most relevant and their effects increase in 
higher accelerations. In general, researchers proved 
(Diels, 2014) that it might happen when the frequency 
is below 1 Hz.  

The potential sources of AV motion sickness are 
variation in horizontal and vertical acceleration, 
posture instability, loss of controllability and loss of 
anticipation of motion direction, Head downward 
inclination, and lack of synchronization between 
virtual motion and the vehicle motion profile 
(Iskander et al., 2019). Although motion sickness is 
most frequently caused by a conflict between visual 
and vestibular inputs, loss of control over one’s 
movements and reduced ability to anticipate the 
direction of movement are also important in the 
etiology of motion sickness (Sivak and Schoettle, 
2015). All three factors, to varying degrees, are more 
frequently experienced by vehicle passengers than by 
drivers, who rarely experience motion sickness 
(Sivak and Schoettle, 2015). Possible counter 
measures can be categorized into two groups: 
prevention solutions and mitigation solutions. 
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Roughly speaking, the degree of motion sickness may 
be predicted by an acceleration frequency weighting 
that is independent of frequency from 0.0315 to 0.25 
Hz and reduces at 12 dB per octave (i.e., proportional 
to displacement) in the range 0.25 to 0.8 Hz (Iskander 
et al.., 2019). 

We contribute to research with the original design 
of a control software component for AVs that 
minimizes the most important costs. In this paper, we 
used an Adaptive Model Predictive Control (AMPC) 
that can estimate and update the model in real-time 
along with five constraints to build our cost function 
to minimize.  

We have chosen the constraints that are relevant 
to Motion Sickness and comfort, either direct or 
indirect. Acceleration frequency is one of the 
constraints that directly affects the Motion Sickness 
and the range of Frequency in which Motion Sickness 
occurs is in 0.0315<F<0.8 Hz (Donohew & Griffin, 
2004). Speed limitation is not directly related to 
Motion Sickness level. However, as the speed goes 
up, Acceleration Frequency for the speed regulation 
will arise. Therefore, we consider a speed limitation 
based on our Acceleration Frequency. The European 
New Car Assessment Program (Euro NCAP) 
performed standardizing tests on different 
autonomous vehicles with a constant speed of 20 – 60 
km/h (Standard, 1987). We also consider a threshold 
of acceleration because it affects both Motion 
Sickness and Comfort driving (Standard, 1987). It is 
also one of the factors that increase Motion Sickness 
Dose Value (MSDV). Therefore, having the 
limitation with an appropriate planner can lower the 
MSDV and raise comfort.  We also consider the 
distance from the next vehicle to brake with a 
minimum acceleration, as we discussed before. In 
particular, with higher distance from the next vehicle, 
we require a lower braking acceleration. Finally, 
since the lateral acceleration is the other important 
source in MSDV (Donohew & Griffin, 2004), we 
need a lane keeper to reduce our lateral accelerations 
to a minimum quantity.  

The system is tested on MATLAB/Simulink 
(MATLAB, 2020) and then implemented on an 
NVIDIA Xavier AGX. We evaluate our work based 
on ISO 2631-1 (Standard, 1987) which a measure of 
the probability of nausea that is called motion 
sickness dose value (MSDV) and a simple linear 
approximation between MSDV and mean passenger 
named illness rating (IR) are considered as the 
evaluation methods.  

In the following sections, we first review the state-
of-the-art in motion sickness and MPC controller. 
Then we describe the details of our controller. 

Finally, we show our implementation, and discuss 
experimental results with respect to the reference 
metrics of motion sickness. 

2 MOTION SICKNESS IN AV 
LITERATURE 

Several works are done for the motion sickness 
mitigation and minimization in the recent years. In 
(Elsner, 2018) a library of cost functions, consisting 
of progress, comfort, and safety costs, is used to 
evaluate the strategies generated by the three modules 
distance keeper, lane selector, and merge planner. In 
(Sivak & Schoettle, 2015), two strategies for reducing 
the visual-vestibular conflict while watching videos 
are investigated. One approach imposes visual stimuli 
on or around the video screen to mimic the perceived 
motion and forces of the moving vehicle. The other 
method involves controlling the position of displayed 
images in synchronization with vehicle motions and 
passenger's head motions produced by vehicle 
acceleration/deceleration, thus providing a video that 
appears to be stabilized in relation to the movement 
of the vehicle. In (Lambert et al., 2019), a method is 
proposed for generating optimal Path Planning with 
Clothoid Curves for passenger comfort, and their cost 
is based on the squared distance along the curve, 
made up of the first clothoid length, the second 
clothoid length, and the straight line to the goal at the 
end. An application of Motion Planning is presented 
in (Htike et al., 2020) in order to minimize MSDV in 
self-driving vehicles. Most of the works are 
considering some parameters but not all to minimize. 
However, since the Motion Sickness occurs based on 
different sources, to minimize it, we need to consider 
all of the Motion Sickness sources. In this manner, we 
require to distinguish the actual direct and indirect 
sources and try to minimize or remove them. 
Furthermore, it is essential to consider comfort 
driving while minimizing the Motions Sickness rate. 
To overcome these important factors, as opposite to 
the other works, our work considers the direct and 
indirect sources of Motion Sickness and tries to 
minimize them all in a single cost function to enhance 
passengers’ comfort. 

Considering recent AMPC implementations in 
autonomous driving, concentrating on their cost 
functions, there are several efforts. In (Easa & 
Diachuk, 2020), an adaptive model predictive control 
with three constraints, Lane Change-Related 
Constraint, Location in Opposite Lane Constraint, 
and Maneuver Completion, is applied for tracking the 
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references being generated for the Autonomous 
Vehicles on Two-Lane Highways.  In (Shi et al., 
2020), they constructed an adaptive model predictive 
control trajectory tracking system with the four 
constraints. In (Wu et al., 2020), an adaptive model 
predictive control (AMPC) scheme is developed to 
improve the yaw stability for four-wheel-
independently actuated electric vehicles by 
minimizing the total longitudinal forces of all wheels. 
In (Luan et al., 2020), the side slip angle of the centre 
of mass and the side slip angle of the tire as hard 
constraints and the lateral acceleration as a soft 
constraint are considered to propose an Adaptive 
Model Predictive Control for Uncertain model 
(UMAMPC) algorithm to predict control variables 
for the next sampling time and alleviate the target 
angle discontinuity. In (Geng and Liu, 2020), they 
develop a fault tolerant path tracking control 
algorithm through combining the adaptive model 
predictive control algorithm for lateral path tracking 
control and Kalman filtering approach with two states 
chi-square detector and residual chi-square detector 
for detection and identification of sensor fault in 
autonomous vehicles by using the incremental 
constraint of tire and the incremental constraint of 
lateral acceleration.  

In all of the above works, that are proposed for 
controlling the autonomous vehicles by AMPC, 
below than five constraints are used. In this work, we 
use five constraints in an AMPC that minimize the 
MSDV with consideration of comfort.  

3 CONTROL SYSTEM 

To design the controller, we defined a Vehicle Model 
and used the tire forces to specify our state space. 
Then, we entered our state space in AMPC and 
defined our constraints in it.  

3.1 Vehicle Model 

For an MPC control design, we require to define our 
Vehicle Model. It was found that the vehicle side slip 
angle is less than 1◦ in the highway autonomous or 
manoeuvre driving under clothoid constraints (Kang 
et al., 2014). Thus, it is considered that the tire slip 
angle is also negligible under highway driving 
conditions, including cases employing an advanced 
driver assistant system (ADAS). It makes it possible 
to use a standard dynamic “bicycle model” 
(Rajamani, 2011) to describe the Vehicle Dynamics. 
Such as a recent work (Antonelli et al., 2019) that uses 
the higher speed until 35 m/s (126 km/h) with a 

bicycle dynamic model, we use a bicycle dynamic 
model for our tests between the speed of 0 km/h to 80 
km/h and we use them in our first scenario. In the 
bicycle model, the two left and right wheels are 
represented by one single wheel. The model is 
derived assuming both front and rear wheels can be 
steered by δf and δr angles and the distances of front 
and rear wheels are a and b. The model neglects roll 
and pitch motions. The Motion of the vehicle is 
represented by X, Y and ψ. Figure 1 depicts a diagram 
of the vehicle model, which has the following 
longitudinal, lateral, and turning or yaw equations: 

𝑚𝑥ሷ ൌ 𝑚𝑟𝑦ሶ  𝐹𝑥  𝐹𝑥            (1) 

𝑚𝑦ሷ ൌ െ𝑚𝑟𝑥ሶ ሶ𝜓ሶ  𝐹𝑦  𝐹𝑦            (2) 

𝐼௭௭𝜓ሷ ൌ 𝑎𝐹௬ െ 𝑏𝐹௬             (3) 

The vehicle’s equations of motion in an absolute 
inertial frame are 

𝑌ሶ ൌ 𝑥ሶ sin 𝜓  𝑦ሶ cos 𝜓             (4) 

𝑋ሶ ൌ 𝑥ሶ cos 𝜓 െ 𝑦ሶ sin 𝜓              (5) 

Longitudinal and lateral tire forces lead to the 
following forces acting on the centre of gravity: 

Fy = Fl sin δ + Fc cos δ,              (6) 

Fx = Fl cos δ − Fc sin δ.              (7) 

Tire forces for each tire are  

Fl = fl(α, s, μ, Fz),                    (8) 

Fc = fc(α, s, μ, Fz),               (9) 

where α is the slip angle of the tire and s is the slip 
ratio. The tire model is considered as indicated in 
(Filip, 2018) velocities, respectively, are expressed as 

vl = vy sin δ + vx cos δ,             (10) 

vc = vy cos δ − vx sin δ,            (11) 

and 

vyf = ẏ + aψሶ    vyr = ẏ − bψሶ ,           (12) 

vxf = ẋ    vxr = ẋ.           (13) 

 
Figure 1: Bicycle Model of the Vehicle. 
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If we consider δr =0, then: 

𝑥ሷ ൌ 𝑟yሶ 
ி ௦ሺఋሻିி௦ሺఋሻାி 


           (14) 

ÿ ൌ െ𝑟yሶ 
ி ௦ሺఋሻା ி௦ሺఋሻାி 


           (15) 

�͘� ൌ
ሺி ௦ሺఋሻିி௦ሺఋሻሻିி 

ூ௭௭
           (16) 

Using the equations (1)-(16), the nonlinear 
vehicle dynamics will have the states of 
ሾ𝑋ሶ 𝑌ሶ ψሶ 𝑣ሶ𝑥 𝑣ሶ𝑦 𝑟ሶሿ. 

3.2 Adaptive Model Predictive Control 
System 

MPC (Muske & Rawling, 1993) is a method for 
process control that actively uses the dynamic model 
of the system. If the nonlinearity is high, however, 
MPC performance could deteriorate. In this case, one 
can use an AMPC that constantly predicts the new 
operating conditions. (Önkol and Kasnakoğlu, 2018). 

An adaptive MPC algorithm is designed by using 
the recursively-identified state-space models with 
dynamic adjustments of MPC constraints and 
objective function weights (Hajizadeh et al., 2020). 
Adaptive MPC controllers adjust their prediction 
model at run time to compensate for nonlinear or 
time-varying plant characteristics. Furthermore, 
Adaptive control for constrained systems has mainly 
focused on improving performance with the adapted 
models, while the constraints are satisfied robustly for 
all possible model realizations and the worst 
disturbance bounds (Aswani et al., 2013).  In this 
paper, we used an Adaptive MPC to update our state-
space online and get the linear part of our nonlinear 
system. This approach is implemented with the most 
important costs that we wanted to control. 

In AMPC, the controller uses the time-varying 
Kalman filter (TVKF) instead of the static one to 
provide consistent estimation with the updated plant 
dynamics. The TVKF approach can be expressed as 
follows 

𝐿 ൌ  ൫𝐴𝑃|ିଵ𝐶,
்    𝑁൯൫𝐶,𝑃|ିଵ𝐶,

்    𝑅൯
ିଵ

 

𝑀 ൌ  𝑃|ିଵ𝐶,
் ൫𝐶,𝑃|ିଵ𝐶,

்    𝑅൯
ିଵ

          (17) 

𝑃|ାଵ ൌ  𝐴𝑃|ିଵ𝐴
் െ ൫𝐴𝑃|ିଵ𝐶,

்    𝑁൯𝐿
்   𝑄 

In equation (17), Q, R, and N matrices are 
constant covariance matrices, and Ak and Cm, k are 
matrices depicting the state-space description of the 
system. The Pk|k−1 is the state estimate error 
covariance matrix at k constructed from the 
information from time k−1. TVKF is constructed to 

update regularly the L and M matrices with the 
updated plant dynamics. 

3.2.1 Constraints 

The Model Predictive Control can directly include 
constraints in the computation of the control moves 
which leads to linear program (LP) or quadratic 
program (QP) to be solved at each sampling instance, 
with the constraints written directly as constraints in 
the LP/QP.  

The MPC algorithm solves a quadratic 
optimization problem at each time interval. The 
solution of the problem determines the so-called 
manipulated variables (MV), which are essentially 
the input variables adjusted dynamically to keep the 
controlled variables (CV) at their set-points. The 
AMPC approach follows the same cost optimization 
algorithm as MPC with the cost function 

𝐽௬ሺ𝑧ሻ ൌ ∑ ∑ ቊ
௪,ೕ

ೕ

௦ೕ
 ൫𝑟ሺ𝑘  𝑖|𝑘ሻ െ 𝑦ሺ𝑘  𝑖|𝑘ሻ൯ቋ

ଶ

     
ୀଵ



ୀଵ (18) 

where k represents the current control interval, p 
is the prediction horizon (interval number), 𝑛௬ is the 
number of plant output variables, 𝑧 is the quadratic 
problem (QP) selection which is depicted as the 
formula 𝑧

் ൌ ሾ𝑢ሺ𝑘|𝑘ሻ்  𝑢ሺ𝑘  1|𝑘ሻ் … 𝑢ሺ𝑘  𝑝 െ
1|𝑘ሻ் 𝑘ሿ,    𝑦ሺ𝑘  𝑖|𝑘ሻ is the jth CV at the ith 
prediction horizon step, 𝑟ሺ𝑘  𝑖|𝑘ሻ is the ith 
references variable at the ith prediction horizon step, 
𝑠

௬ is the scale factor for the jth plant output variable, 

and 𝑤,
  is the tuning weight coefficient reflecting the 

relative importance of the plant output variable. 
Among these variables 𝑛௬, 𝑠

௬, p, and 𝑤,
 , are 

determined during the controller design and stay 
constant. 

Acceleration Frequency. The range of Frequency in 
which Motion Sickness is tested in 0.0315<F<0.8 Hz. 
However, the maximum Motion sickness occurs at 
0.2 Hz (Donohew & Griffin, 2004). So we fixed 
frequency at 0.2 Hz which means T= 5 s. In particular, 
that we prevent inserting acceleration every 5 
seconds.  

Speed Limit. As discussed, the test speed is in the 
range of 20 – 60 km/h (Standard, 1987). Since we 
need to consider having acceleration and braking in 
our work, we raised this limitation to 0 - 80 km/h and 
in our tests, we consider these values. 

Acceleration Limit. Acceleration limitation is an 
important source for comfort and the different level 
of comfort is measured based on it (Standard, 1987). 
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Based on ISO 2631 (Standard, 1987) for 
determination of acceleration, the best range of the 
acceleration is <0.315 m/s2 that is named not 
uncomfortable. In this standard, the best range of 
acceleration is <1 m/s2 that is fairly uncomfortable 
and it is the border of the uncomfortable range of 
measurements. So we maintain this range.  

Distance to the Front Vehicle. With a higher 
distance from the next vehicle, we decrease the 
braking acceleration. It means that we will have more 
time to plan smooth braking, with the consideration 
of our acceleration limit, and it lowers the MSDV.  
There is a Two-Second Distance rule from the next 
vehicle (Road Safety Authority, 2011). The mean 
deceleration is 2.5 m/s2 (Yimer et al., 2020) and our 
deceleration should not exceed 1 m/s2. Therefore, we 
raised the distance to Five-Seconds Distance to fulfil 
these requirements.  

Lane Keeper. As discussed, we have high 
importance in lateral acceleration to minimize the 
MSDV. Therefore, our system maintains the 
boundaries and controls the Y as the centre of the road 
lines. It is obtained by having a reference Y of the 
road and try to follow it. In the results, we show that 
our controller follows it properly. 

3.3 Motion Sickness Evaluation 

The total MSDV resulted from lateral and 
longitudinal motion is given as (Standard, 1987): 

MSDV=ට ሺ𝑎௫,௪
்



మ
ሺ𝑡ሻሻଶ + ට ሺ𝑎௬,௪

்


మ
ሺ𝑡ሻሻଶ      (19) 

where ax,w(t) and ay,w(t) are the frequency weight 
acceleration in the longitudinal and lateral direction. 

ax,w (t) = ax (t) × Wf                   (20) 

ay,w (t) = ay (t) × Wf          (21) 

where ax(t) and ay(t) are the longitudinal and lateral 
acceleration. Wf is the weighting factor defined in 
British Standard 6841 (Standard, 1987) for evaluating 
low frequency motion with respect to motion 
sickness. From the standards (Standard, 1987), 
(Anon, 1997), a simple linear approximation between 
MSDV and mean passenger illness rating is given as: 

IR = K × MSDV           (22) 

where IR is predicted illness rating and K is an 
empirically derived constant. The illness rating value 
is divided into four levels; 0 indicates feeling fine, 1 
indicates slightly unwell, 2 indicates quite ill, and 3 
indicates absolutely dreadful (Standard, 1987), 
(Anon, 1997). 

4 IMPLEMENTATION 

The system was tested in MATLAB/Simulink 
(MATLAB, 2020) and then implemented by an 
NVIDIA Xavier AGX.  This platform is 
representative of next-generation AV Domain 
Controller where AD software components, such as 
our controller, will execute. 

To verify the validity of the proposed AMPC 
controller. CarSim (Mechanical Simulation 
Corporation, 2020) is used to provide a vehicle 
dynamics model and MATLAB/Simulink is mainly 
for providing control function. 

Two different scenarios, straight and turn, were 
tested. The scenarios were designed in 
drivingScenarioDesigner and tested by using Unreal 
Engine (Epic Games, 2019) for the visualization of 
the output. 

4.1 Scenarios 

Since the MSDV is mainly a result of the lateral and 
longitude accelerations, we require to define the 
scenarios based on the existence of longitudinal 
acceleration, braking, and lateral acceleration. 
Therefore, we define a straight scenario that has the 
longitudinal acceleration and braking, and a turn 
scenario that has longitudinal and lateral 
accelerations.  

4.1.1 Straight Road 

In the straight scenario, we made a velocity profile. 
As it has shown in Figure 2, there were two vehicles 
in the scenario that the front vehicle (the truck) had 
60 km/h speed and our vehicle model was 200 meters 
back of this vehicle with 80 km/h.  

 
Figure 2: Our scenario in the drivingScenarioDesigner 
schematic in MATLAB. 

4.1.2 Turn 

We designed the other scenario for a comparison 
between our method and the other works. This 
scenario consists of different turns as shown in Figure 
3. The speed limit of this scenario is between 0 to 40 
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km/h and at the first, the vehicle reaches the 40 km/h 
with our acceleration limitation that we discussed in 
constraints. 

 
Figure 3: The Scenario visualization in Unreal Engine.  

4.2 Adaptive Model Predictive 
Controller Design 

We designed our AMPC using mpcDesigner 
(MATLAB, 2020) and Simulink. For each time step, 
our controller updated to make new states for the next 
prediction horizon. In Simulink, as shown in Figure 
4, we used the Adaptive MPC block for this 
implementation which in it, the constraints and the 
MPC parameters are attached to it by mpcDesigner 
tool. The different blocks are to build the 
requirements of the Adaptive MPC block. We also 
brought our reference scenarios as discussed before. 
The prediction horizon considered as 10 seconds and 
the control horizon was 5 seconds with the sample 
time of 0.1 seconds. The tuning of weights was done 
by mpcDesigner tuning tool for closed-Loop 
Performance and State Estimation along with  
 

 
Figure 4: The Simulink implementation of Adaptive MPC. 

considering the system stability. The constraints, as 
discussed before, were defined in our controller using 
the mpcDesigner tuning tool. 

4.3 Simulator 

The system is tested with the Unreal Engine simulator 
(Epic Games, 2019) which connects to the Simulink. 
Our simulator considered the scenario data made by 
drivingScenarioDesigner, and added the output of the 
system to visualize and evaluate our system.  

4.4 Embedded Platform 

The target embedded platform, NVIDIA Jetson AGX 
Xavier is representative of the next-generation AV 

Domain Controller. This platform with a GPGPU of 
512-core Volta with Tensor Core and a CPU of ARM 
8-core v8.2 64-bit is an appropriate choice for the AD 
systems. 

To have a realistic implementation, we can’t rely 
on the Matlab/Simulink implementatn, and we 
utilized embedded coder of MATLAB/Simulink to 
convert our algorithm into C++ source code, which is 
then compiled for the target platform.  

5 RESULTS AND DISCUSSION 

Firstly, we calculated our results regarding of the first 
scenario, Straight scenario. Then, we investigated the 
results of the second scenario which is Turn. Finally, 
we tried to understand our timing results in the 
embedded platform to be able to use it along with 
other infrastructures.  

We evaluated the scenarios by MSDV and IR then 
we compared our work with the latest works in this 
area. Our results shown different advantages 
compared to the previous approaches. 

5.1 Results of the Scenarios 

5.1.1 Straight Road 

The straight scenario included two vehicles and a 
velocity profile. Our vehicle was behind a truck that 
was slightly far. It started from 0 and reached 80 km/h 
(22.22 m/s) and as soon as founded the distance of 5 
seconds, it started slowing down to maintain the 5 
seconds of the distance. Afterwards, it followed the 
truck by the truck’s velocity. As shown in Figure 5, 
Figure 6, and Figure 7, the output of our controller 
follows the base-line with a small error. 

 
Figure 5: The scenario (blue) and our (orange) Y. 

 
Figure 6: The scenario (blue) and our (orange) Yaw angle. 

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

502



 
Figure 7: The scenario (orange) and our (blue) Velocity. 

5.1.2 Turn 

In the turn scenario, we maintained the acceleration 
limitation based on AMPC algorithm designed by 
Simulink and mpcDesigner. Figure 8, Figure 9, and 
Figure 10 show the results. 

 
Figure 8: The scenario (orange) and our (blue) Velocity. 

 
Figure 9: The scenario (blue) and our (orange) Y. 

 
Figure 10: The scenario (blue) and our (orange) Yaw angle. 

5.2 MSDV and IR Analysis 

Our evaluation is based on MSDV and IR. IR 
generally increases overtime during a motion 
sickening stimulus (Reason & Graybiel, 1969). In 
(Standard, 1987), IR is considered as 0 when the 
passenger feels fine, 1 with a feeling of slightly 
unwell, 2 as quite ill, and 3 when the passenger is 
absolutely dreadful. As shown in Table 1, the output 
of the system more than having a small amount of IR 
which almost is zero, it has a comparison between the 
minimum IR of the previous work. 
 
 

Table 1: The results of the IR evaluation. 

Scenario Time (s) IR (min)
Straight 50 0.07 
Turn 32 0.0017 
Turn in (Htike et al., 2020) 29.73 0.044 

Table 1 shows that the IR of the Turn scenario is 
much lower than the straight one. It is exactly what 
we expected considering the accelerations used in 
both scenarios since the Turn scenario has a much 
lower time of accelerating. 

The results show that our performance is better 
since we try to use the acceleration as small as we can 
and we try to make it limited to 1 m/s2. Furthermore, 
our planner can make an IR near to zero. Therefore, it 
has a fine feeling according to (Standard, 1987). 

5.3 Embedded Platform Performance 

When running on the production-like embedded 
domain controller, our controller achieves 8.7 FPS, 
making it suitable to interact with the other AV 
components. 

6 CONCLUSIONS 

In this paper, we showed that by having a complex 
cost function with an emphasis on Motion Sickness 
Mitigation and consideration of comfort, we can 
achieve a smooth controller that does not make 
people sick. This work showed that the AV can have 
an algorithm for Motion Sickness mitigation along 
with the other tasks and make the AV more reliable 
than before. 

For the next works, we can add other necessary 
features of AV such as LiDAR to detect and import 
the data for the Motion Sickness Mitigation 
Algorithm. It can finally be an algorithm which is 
used with the other infrastructures.   
We also plan to adopt more complex vehicle models, 
such as the kinematic and dynamic model, to validate 
our approach at highest speeds (i.e., > 150km/h), and 
to possibly include other classes of vehicles, such as 
busses and coaches, which potentially issue Motion 
Sickness much more than cars. 
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