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Abstract: Several classification techniques have been proposed in the last years. Each approach is best suited for a
particular classification problem, i.e., a classification algorithm may not effectively or efficiently recognize
some patterns in complex data. Selecting the best-tuned solution may be prohibitive. Methods for combining
classifiers have also been proposed aiming at improving the generalization ability and classification results.
In this paper, we analyze geometrical features of the data class distribution and the diversity of the base
classifiers to understand better the performance of an ensemble approach based on stacking. The experimental
evaluation was conducted using 32 real datasets, twelve data complexity measures, five diversity measures,
and five heterogeneous classification algorithms. The results show that stacked generalization outperforms
the best individual base classifier when there is a combination of complex and imbalanced data with diverse
predictions among weak learners.

1 INTRODUCTION

Machine learning (ML) is a field of study in the ar-
tificial intelligence area. Among others, ML is used
to deal with classification problems. Under a super-
vised point of view, such problem consists of finding
a model or a function that can identify patterns and
describe different data classes. The goal of the clas-
sification is to label new examples by applying the
learned model or function. This model is based on a
set of features extracted from the available data.

There are several techniques proposed in the liter-
ature to tackle this problem. Support Vector Machines
(SVM) (Steinwart and Christmann, 2008), Decision
Trees (DT) (Quinlan, 1986), Artificial Neural Net-
works (ANN) (Haykin, 2007) and Fuzzy Rule-Based
Classification Systems (FRBCS) (Ishibuchi et al.,
2005) are examples of well known classifiers.

In recent years, some strategies have been pro-
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posed to relate classification algorithms’ performance
with structural and geometric properties of the data.
(Michie et al., 1994) proposed a method based on sta-
tistical data measures to predict the applicability of a
classifier. These domains codify the characteristics of
the problems that are suitable or not for the classifier.

Techniques that combine multiple classification
algorithms, known as ensemble methods (Opitz and
Maclin, 1999) have also been proposed. The objec-
tive was to improve the classification results, since
it takes advantage of several classification schemes.
Classifiers that implement different algorithms poten-
tially provide additional information on the patterns to
be classified. Based on this hypothesis, an ensemble
approach called stacked generalization was proposed
(Wolpert, 1992). This method consists of training
a meta-classifier (strong learner) with the outputs of
several diverse base classifiers (weak learners) (Ting
and Witten, 1999; Dzeroski and Zenko, 2004). Each
base classifier is trained from the same dataset, but
using different algorithms.

Diversity can be defined as how much classifiers
disagree when predicting class labels (Wang and Yao,
2009). Stacking models benefit greatly when there
is diversity among the weak learners since others can
balance a pattern wrongly detected by an algorithm.
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For both majority voting ensembles and stacking, di-
versity as an indicator of an ensemble’s accuracy is
innapropriate (Kuncheva and Whitaker, 2003) (Lanes
et al., 2017a).

In this paper, we are interested in investigating the
following research questions: what is the effect of
data complexity on the ensemble’s quality? Can the
relationships between data complexity and classifiers
diversity influence the performance of the ensemble?
Therefore, we aim to explore the relations between
data complexity measures and diversity measures to
understand better the performance of an ensemble ap-
proach based on stacking. Our experiments were per-
formed over 32 datasets using 12 different DCMs and
five distinct diversity measures. Moreover, we have
constructed an ensemble composed of five individual
heterogeneous classifiers.

2 PRELIMINARIES

In this section, we recall some concepts that are rel-
evant to this paper. Precisely, we start presenting the
data complexity measures that are used. After that,
we define some diversity measures and finally the en-
semble approach based on stacking.

2.1 Data Complexity Measures

(Ho and Basu, 2002) introduced the concept of Data
Complexity Measures (DCMs) used to analyze the
characteristics of the dataset, which are crucial in
the classification accuracy. The authors have orga-
nized these measures into three sets according to their
characteristics. In what follows, we present the used
DCMs of the study.

2.1.1 Measures of Overlap of Individual Feature
Values

This type of measure commonly analyzes the overlap
regions considering a binary classification problem.

Volume of Overlap Region - F2. For each feature,
the maximum and the minimum values for each
class are found. F2 performs the ratio between the
overlap regions and the range of values spanned
by both classes.

Feature Efficiency - F3. This DCM was designed
for high dimensional data because it describes
how much each feature contributes to the classes’
separation. The efficiency of each feature is de-
fined as the fraction of points possible to be used,
i.e., without overlapping values for the analyzed

Table 1: The relationship matrix between the classifiers Ca
and Cb, where each value ni j|i = 0∨ i = 1, j = 0∨ j = 1 is
the number of instances labeled correctly (1) or not (0).

Cb correct Cb incorrect
Ca correct n11 n10
Ca incorrect n01 n00
N = n11 +n00 +n01 +n10

classes. F3 returns the maximum efficiency for
all features.

2.1.2 Measures of Separability of Classes

Linear Separability - L1, L2. These measures are
also applied considering binary classification
problems. They verify whether the dataset is
linearly separable, fitting an objective function,
where the returned value is used as L1. If L1 = 0,
the problem is linearly separable. Also, L2 is
the error rate of the linear classifier. This mea-
sure is strongly affected by outliers or overlapping
points.

Mixture Identifiability - N1, N2, N3. In order to
perform these measures, a minimum spanning
tree is built connecting all data points. Using the
Euclidean distance between each point and the
nearest neighbor within or outside the class, N2 is
defined as the ratio between the average distances
to intraclass and interclass nearest neighbors.

2.2 Diversity Measures

Several diversity measures were proposed by
(Kuncheva and Whitaker, 2003). These measures are
not about how structurally different the classifiers
are, but how much they disagree when predicting
a class label. Considering two classifiers Ca and
Cb predicting N instances, there are four possible
scenarios for each instance: both predict correctly,
both predict wrongly, Ca predicts correctly and Cb
wrongly, and Cb predicts correctly and Ca wrongly.
Table 1 provides a visual explanation of possible
scenarios.

In the next subsections, we explain every measure
used in this paper. Most of them are adaptations from
other fields to machine learning classifier algorithms.
We use the same notation of Table 1. Besides, L refers
to the number of weak learners.

2.2.1 Q Statistics

This measure is inversely proportional to the diversity
between classifiers. The multi-class oriented version
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of Q Statistics is represented by Eq. (1). These equa-
tions return a value in the range [−1,1].

Q =
2

L(L−1)

L−1

∑
i=1

L

∑
k=i+1

Qik (1)

2.2.2 Disagreement

This measure proposed by (Skalak et al., 1996) is di-
rectly proportional to the diversity between the classi-
fiers and varies in the range [0,1]. Eq. (2) defines the
average disagreement between all weak learners.

Dis =
2

L(L−1)

L−1

∑
i=1

L

∑
k=i+1

Disik (2)

2.2.3 Kohavi-Wolpert Variance

This non-pairwise diversity measure was proposed by
(Bauer and Kohavi, 1999) and is directly proportional
to the diversity among L base classifiers. It is very
similar to the average disagreement measure, differ-
ing by a coefficient. Its possible value range is [0,1/2].

KW =
(L−1

2L

)
Dis (3)

2.3 Stacked Generalization

Stacked generalization consists in using the predic-
tion of multiple classifiers as training set for the meta-
classifier (Merz, 1999; Kotsiantis and Pintelas, 2004)
with the objective of achieving a greater accuracy.
This technique can be considered an excellent bias
filter when there are disagreement between the base
classifiers. As pointed out by (Breiman, 1996), stack-
ing can have better accuracy through linear combina-
tions of different predictors. Each classifier performs
differently according to the dataset. Figure 1 is pre-
sented to provide a visual scheme that is easier to un-
derstand.

3 RELATED WORK

(Lucca et al., 2018) used data complexity measures
to analyze the behavior of different aggregations and
pre-aggregation functions when used to tackle classi-
fication problems with Fuzzy Rule-Based Classifica-
tion Systems. The authors found that there is a di-
rected relation between some measures and perfor-
mance. However, in this study, only binary datasets
were considered.

Stacking has been applied successfully in sev-
eral different fields. To name a few, (Lee, 2017)

Figure 1: Stacking method exemplified. The first level (0)
consists in training the weak learners with the original data.
In the next level, we use the generated dataset (first level
predictions) in order to train the meta-classifier. Then, the
classification schema is ready to be tested and used. The
used algorithms are presented in the ensemble construction
subsection.

uses stacking to predict depression among the elderly.
(Álvarez et al., 2016) uses stacked generalization to
better recognize emotion in speech and (Li and Zou,
2017) to detect the subject’s native language.

The connection between the diversity among
weak learners and the stacking accuracy was investi-
gated by (Lanes et al., 2017a; Lanes et al., 2017b).
The authors measured diversity in several datasets,
both real and synthetic ones. The results show that
3 out of 7 evaluated measures are related to the fi-
nal classification accuracy. Although there are proven
connections between diversity and accuracy in some
particular cases (Shipp and Kuncheva, 2002; Dymitr
and Bogdan, 2005; Kuncheva and Whitaker, 2003),
the results raised some doubts about the usefulness
of diversity measures in building sets of classifiers
in real-life pattern recognition problems. However,
other authors report success in using diversity to de-
tect noise to generate more accurate classification sys-
tems (Muhammad and Jim, 2010; Makhtar et al.,
2012; Whalen and Pandey, 2013; Faria et al., 2014).

4 METHODOLOGY

In this section, we present the methodology adopted
in this study. We start by describing the datasets that
are used. After that, we show how the DCMs are ap-
plied since some were proposed for binary classifica-
tion problems. Then, we discuss the ensemble con-
struction with the considered classifiers. Finally, the
statistical test is presented as well as the configuration
of the proposal.

4.1 Datasets

In order to provide a robust result, in this study we
apply the DCMs and diversity measures over 32 het-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

654



Table 2: Information about the datasets used in the experi-
ment. The datasets are alphabetically ordered.

Id Dataset #I #F #C Distribution
App Appendicitis 106 7 2 0.8:0.2
Bal Balance 625 4 3 0.46:0.46:0.8
Ban Banana 5300 2 2 0.55:0.45
Bnd Bands 365 19 2 0.63:0.37
Bup Bupa 345 6 2 0.58:0.42
Clv Cleveland 297 13 5 0.53:0.18:0.11:0.11:0.04
Con Contraceptive 1473 9 3 0.42:0.34:0.22
Gla Glass 214 9 6 0.35:0.32:0.13:0.07:0.06:0.04
Hab Haberman 306 3 2 0.73:0.27
Hay Hayes-Roth 160 4 3 0.4:0.4:0.2
Ion Ionosphere 351 33 2 0.64:0.36
Iri Iris 150 4 3 0.33:0.33:0.33
Led Led7Digit 500 7 10 0.114:0.114:0.106:0.104:0.104:

0.102:0.098:0.094:0.090:0.074
Mag Magic 19020 10 2 0.65:0.35
New Newthyroid 215 5 3 0.7:0.16:0.14
Pag Page-blocks 5472 10 5 0.9:0.06:0.02:0.015:0.005
Pen Penbased 10992 16 10 0.104:0.104:0.103:0.103:0.103:

0.096:0.096:0.096:0.096:0.096
Pim Pima 768 8 2 0.65:0.35
Pho Phoneme 5404 5 2 0.7:0.3
Rin Ring 7400 20 2 0.5:0.5
Sah Saheart 4625 9 2 0.65:0.35
Sat Satimage 6435 36 6 0.24:0.23:0.21:0.11:0.11:0.1
Seg Segment 2310 19 7 0.143 for each
Shu Shuttle 57999 9 5 0.78:0.15:0.05:0.002:0.0008:

0.002:0.000
Son Sonar 208 60 2 0.53:0.47
Spe Spectfheart 266 44 2 0.79:0.21
Tit Titanic 2201 3 2 0.67:0.33
Two Twonorm 7400 20 2 0.5:0.5
Veh Vehicle 846 18 4 0.26:0.26:0.25:0.23
Win Wine 178 13 3 0.4:0.33:0.27
Wis Wisconsin 683 9 2 0.65:0.35
Yea Yeast 1484 8 9 0.32:0.29:0.16:0.11:0.035:

0.03:0.023:0.01:0.0034

erogeneous datasets. They vary from 106 to 19,020
instances, from 2 to 60 features, and from 2 to 10
classes. These datasets are available in the UCI Ma-
chine Learning (Dua and Graff, 2017) and KEEL-
dataset (Alcalá-Fdez et al., 2011) repositories.

Table 2 summarizes the characteristics of each
dataset. We present an identifier (Id), the complete
name (Dataset), the number of instances (#I), the
number of features (#F), the number of classes (#C),
and the class distribution (Distribution). We also
highlight that, in this study, 16 datasets are multi-
class and 16 are binary. For example, App dataset
contains 106 instances of 7 features, distributed into
two classes, where 80% are labeled c1 and 20% c2.

4.2 Data Complexity Measures

For each dataset, we have computed all DCMs pre-
sented in Section 2.1. To calculate the average of
the binary DCMs F2,L1 and L2, we use two differ-
ent strategies: One vs. One (OvO) combines them
for all pairs of data classes, while One vs. All (OvA)
merges one measure per class, trained to distinguish
the samples in a single class from the samples in all
remaining classes. We have ignored invalid values re-
turned by some measures (−1, Infinity or 0/0) where

Algorithm 1: Stacking algorithm used in this exper-
iment.

Input : Original training samples s j ∈ S
Output: final predictions y j

f
1 begin
2 Select L weak learners (L1,L2,L3...LL)
3 for i=1 to L do
4 Train classifier Ci using Li on

cross-validated S;
5 y j

i = Ci(S);
6 p j

i = pCi(S);
7 end
8 Train strong learner estimator M using

CV y j;
9 Evaluate the model eval1 = acc(M,y j)

10 Train strong learner estimator M using
CV p j;

11 Evaluate the model eval2 = acc(M, p j)
12 if if eval1≥ eval2 then
13 y j

f = M(y j)

14 else
15 y j

f = M(p j)

16 end
17 end
18 return y j

f

there was no variance between pairs of features. So,
for these DCMs, we have reported the mean and the
standard deviation in the experiments.

4.3 The Ensemble Construction

In this subsection, we describe the ensemble construc-
tion process, which is defined by Algorithm 1.

After selecting a set of learning algorithms (line
2), the weak learners will be trained over a considered
dataset S (lines 3–7) using Cross-Validation (CV). In
this step, for each classifier i and sample j, we gener-
ate two new datasets: one containing the classifiers’
predictions (y j

i ) and another having their prediction’s
probability distributions (p j

i ). After that, having these
datasets, the meta-classifier estimator M is trained and
evaluated using accuracy (lines 8–11). The predic-
tions of the best model, i.e. with higher accuracy, are
returned by the Stacking algorithm (lines 12–18). The
best weak learner accuracy and the strong learner ac-
curacy are compared later, applying a statistical test
explained in 4.4.

To improve the method’s quality, we pick linear
and non-linear classifiers. We present the considered
classifiers discussing their main characteristics:

Exploring the Relationships between Data Complexity and Classification Diversity in Ensembles

655



Naı̈ve Bayes (NB). Proposed by (Zhang, 2005),The
Naı̈ve Bayes algorithm considers that the prob-
ability distribution is Gaussian. Based in Bayes
Theorem (Bolstad and Curran, 2016), NB as-
sumes features independence. This classifier fits
a probabilistic model.

Decision Tree (DT). Decision Trees classifiers are
one of the most popular algorithms in the field,
mainly for its simplicity and explainability (Loh,
2011). A decision tree is composed of nodes (that
represents features) and links that represent a de-
cision. The decision aims to reduce the highest
impurity possible. Impurity can be computed us-
ing indices based on Gini or Entropy.

Logistic Regression (LR). Proposed by (Nelder and
Wedderburn, 1972), Logistic Regression is a pow-
erful classifier that is mainly used to predict bi-
nary classes. It describes the relationship between
a dependent variable and independent variables.
The OvA approach is used to deal with multi-class
problems. All data are regularized by default.

Support Vector Machines (SVM). The SVM ana-
lyzes the point distribution in space and tries to
separate them in categories divided by the widest
gap possible, as pointed by (Cortes and Vapnik,
1995). It is very versatile since it can be a lin-
ear and non-linear classifier, depending on the se-
lected kernel.

k-Nearest Neighbours (K-NN). k-NN is a non-
parametric algorithm proposed by (Altman, 1992)
that can be used for classification and regression
problems. This algorithm estimates how likely a
sample is to be part of one group or another. It
measures the distance between the sample and the
neighbors and labels it to the nearest neighbor.

All diversity measures defined in 2.2 are computed.
The classifier picked as the strong learner was the Lo-
gistic Regression because this is a well-known clas-
sifier that offers good performance for different data
types.

To obtain the accuracy score, we consider a cross-
validation method. For each partition, one will be se-
lected at random to be the validation set. The remain-
ing parts will be used as a training set. It is important
to note that the folds were stratified since it reduces
bias and variance compared to non-stratified models
as pointed by (Kohavi, 1995).

4.4 Statistical Study

In order to give statistical support of the obtained re-
sults, we used a paired Student’s t-test on the perfor-
mance results. We guarantee that a sample only ap-

pears as part of the training or validation set with 2-
fold cross-validation for a single performance estima-
tion. As suggested by (Dietterich, 1998), this statisti-
cal test is recommended for situations in which time
or computational resources are not a problem, mainly
because it needs several performance evaluations to
obtain the p-value.

The 5x2 cross-validated t-test was proposed
by (Dietterich, 1998) to compare machine learning
models. Considering two classifiers, Ca and Cb, we
repeat five times a two-fold cross-validation. Both
classifiers are then fitted and validated using these
generated sets. Equation (4) shows how the t statis-
tic is computed, where p(1)1 is the performance differ-
ence in the current iteration and s2

i is the variance of
performance differences.

t =
p(1)1√

1/5∑
5
i=1 s2

i

(4)

Considering a t distribution with five degrees of free-
dom, we obtain the p− value. The null hypothesis
means the models have equal performance. When the
p-value is smaller than the significance level, we can
say that there is a significant difference between Ca
and Cb.

5 RESULTS AND DISCUSSION

In this section the obtained results are summarized
and discussed. Table 3 summarizes the results for
each dataset presented in the first column (Id). The
second to the fourth columns are related to the diver-
sity measures Q, Dis and KW . The fifth to eighth
columns are related to the performance of the clas-
sifiers, where L0best is the learning algorithm of the
best base classifier, L0bestAcc is the best base classi-
fier accuracy, and L1bestAcc is the accuracy reached
by the ensemble. The values between parenthesis in
these columns are the standard deviation. The p-value
obtained by the statistical test is also presented. The
remaining columns are related to the different DCMs
using One vs. One (OvO) and One vs. All (OvA) ap-
proaches.

It is important to note that some data complexity
and diversity measures were not presented, mainly be-
cause we could not see a relation between them and
the ensemble’s performance. The omitted DCMs are
F1, L2, L3, N1, N3, N4, T 1, and T 2. The diversity
measures is double-fault and entropy. However, full
reports are available in the provided results. The Iris
dataset does not contain information about diversity
measures because the weak learner’s predictions were
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Table 3: Obtained results considering the ensemble performance and different diversity and data complexity measures.

Diversity Measure Performance metrics

Id Q Dis KW L0best L0bestAcc L1bestAcc p

App 0.4672 0.0454 0.0113 k-NN 0.8660 (0.0362) 0.8500 (0.0000) 0.5623
Bal 0.4491 0.0368 0.0122 SVM 0.9011 (0.0057) 0.8996 (0.0136) 0.6507
Ban 0.2874 0.1311 0.0327 SVM 0.9023 (0.0027) 0.9017 (0.0045) 0.7151
Bnd 0.0330 0.2739 0.0684 LR 0.6684 (0.0316) 0.6281 (0.0256) 0.8850
Bup 0.2591 0.1652 0.0413 LR 0.6707 (0.0235) 0.6152 (0.0246) 0.2681
Clv 0.3534 0.0950 0.0380 LR 0.5818 (0.0479) 0.5713 (0.0363) 0.2216
Con 0.1735 0.1630 0.0540 LR 0.5116 (0.0125) 0.5243 (0.0129) 0.0390
Gla 0.0040 0.2069 0.0862 k-NN 0.6271 (0.0500) 0.6175 (0.0339) 0.8109
Hab 0.4027 0.0564 0.0141 NB 0.7464 (0.0281) 0.7057 (0.0209) 0.6383
Hay 0.3746 0.0843 0.0281 DT 0.8012 (0.0452) 0.7766 (0.0504) 0.2414
Ion 0.4494 0.0436 0.0109 SVM 0.9373 (0.0136) 0.9464 (0.0144) 0.1606
Iri - 0 0 k-NN 0.9653 (0.0199) 0.9467 (0.0163) 0.3577
Led 0.4598 0.0790 0.0355 LR 0.7360 (0.0179) 0.7030 (0.0145) 0.4819
Mag 0.4121 0.0813 0.0203 SVM 0.8205 (0.0024) 0.8385 (0.0042) 0.0111
New 0.4079 0.0348 0.0116 NB 0.9702 (0.0108) 0.9744 (0.0136) 0.4225
Pag 0.4430 0.0421 0.0168 DT 0.9625 (0.0037) 0.9625 (0.0030) 0.6131
Pen 0.3970 0.0543 0.0244 SVM 0.9922 (0.0011) 0.9921 (0.0010) 0.5367
Pho 0.3980 0.0760 0.0190 k-NN 0.8615 (0.0031) 0.8704 (0.0072) 0.0213
Pim 0.3980 0.0779 0.0194 LR 0.7625 (0.0126) 0.7616 (0.0207) 0.0593
Rin 0.3297 0.0639 0.0159 NB 0.9796 (0.0016) 0.9802 (0.0015) 0.1132
Sah 0.3316 0.1225 0.0306 LR 0.7060 (0.0164) 0.7198 (0.0167) 0.9113
Sat 0.3813 0.0766 0.0319 k-NN 0.8979 (0.0028) 0.9064 (0.0019) 0.0272
Seg 0.4017 0.0658 0.0282 DT 0.9506 (0.0073) 0.9643 (0.0082) 0.0101
Shut 0.0598 0.0749 0.0321 DT 0.9995 (0.0001) 0.9995 (0.0002) 1
Son 0.2590 0.1214 0.0303 SVM 0.7375 (0.0480) 0.7723 (0.0512) 0.6063
Spe 0.2119 0.1685 0.0421 SVM 0.7939 (0.0186) 0.7953 (0.0254) 0.5443
Tit 0.4838 0.0297 0.0074 DT 0.7867 (0.0092) 0.7827 (0.0071) 0.0254
Two 0.4313 0.0213 0.0053 NB 0.9781 (0.0009) 0.9786 (0.0021) 0.6070
Veh 0.1286 0.1805 0.0677 LR 0.7047 (0.0214) 0.7343 (0.0165) 0.2415
Win 0.2151 0.0694 0.0231 NB 0.9752 (0.0149) 0.9563 (0.0204) 1
Wis 0.4858 0.0131 0.0032 SVM 0.9677 (0.0049) 0.9707 (0.0073) 1
Yea 0.1351 0.1781 0.0801 SVM 0.5855 (0.0210) 0.3243 (0.0006) 0.9504

Data Complexity Measures

L1OvO F2OvO F3OvO L1OvA F2OvA F3OvA N2

0.4182 0.0446 0.2925 0.5266 0.0154 0.5733 0.2120
0.3687 1 0 1.4386 0.2169 0.1215 0.3318
0.8966 0.6257 0.0042 0.4483 1 0 0.0278
0.7855 0 0.0493 0.4182 0.0446 0.2925 0.6388
1.0068 0.0732 0.0319 0.4855 1 0 0.6064
0.5757 0.1602 0.0539 0.4523 0 0.1909 0.6308
0.9025 0.7659 0.0679 0.4321 1 0 0.6770
0.3304 0.0416 0.2897 53.2287 0 0.0185 0.2603
0.4705 0.0017 0.0294 0.8313 0.0041 0.0097 0.7819
0.5533 0.7177 0.0813 0.7174 0.0815 0.0059 0.6497
0.6645 0.5309 0.1909 0.5502 0.0004 0.8837 0.3244
0.4523 0 0.5733 0.5533 0.7177 0.0294 0.7948
0.2917 0.0179 0 0.6331 0 0.9944 0.1814
0.2089 1 0.0059 0.6887 0.2516 0.0065 0.8397
0.7174 0.0815 0.8837 8.5841 0.2105 0.3930 0.3239
0.7013 0.0005 0.0185 0.6672 0.2708 0.1223 0.2693

60.5615 0.0004 0.3930 2.4677 0 0.5674 0.5343
4.2620 0.0458 0.1223 0.7515 0.2963 0.0813 0.4857
0.6672 0.2708 0.0065 0.2932 0.1170 0.0539 0.9117
0.6887 0.2516 0.0538 0.9081 0.3590 0.0498 0.8125
0.7206 0 0.0498 0.7206 0 0.0538 0.8657
0.9081 0.3590 0.5674 0.8966 0.6257 0.0042 0.1513
6.2676 0 0.9944 1.0068 0.0732 0.0319 0.9271
0.3740 0 0.9990 0.6469 0 0.0481 0.7413
1.8729 0 0.0481 0.4029 0.0005 0.7640 0.5747
0.6469 0 0.2959 3.6855 0 0.2959 0.8033
3.6855 0 0 0.6626 0.7633 0.0679 1.0166
0.4483 1 0.0097 0.2148 0.0056 0.0357 0.9515
0.8313 0.0041 0.4574 2.4908 0.0009 0.4574 0.7178
2.8113 0.0282 0.7640 4.6044 0.0016 0.9990 0.1287
0.2915 0 0.1215 0.7855 0 0.0493 0.5275
0.3837 0.0037 0.0357 0.3414 0.0043 0.2897 0.6895

the same and, hence, there was no diversity between
them.

When analyzing the results, it is possible to see a
significant difference between the maximum and min-
imum value of the complexity and diversity measures,
making it easier to collectively analyze their behavior.
For instance, Q Statistics maximum value calculated
for our experiment was 0.4858 for the Titanic dataset,
which is considered a very low diversity ensemble.
For the Glass dataset, this measure was 0.004.

We can also see that our L0best selections are very
diverse: k-Nearest Neighbors had greater accuracy in
five cases, Support Vector Machines in nine, Logistic
Regression in eight, Naive Bayes in five, and Deci-
sion Tree in five. This reinforces the idea proposed
by Wolpert (Wolpert, 1996), that each classification
algorithm has a particular performance depending on
data. No particular scenario could be detected to pre-
dict which type of classifiers are better for complex or
non-complex datasets.

After comparing the best weak learner to the
strong learner for each dataset, we could see that the
strong learner was better, statistically significant with
a 5% confidence interval for five datasets, namely:
Contraceptive, Satimage, and Segment (multi-class
problems), Magic and Phoneme (binary problems).
The ensemble was significantly worse only in the Ti-

tanic dataset. In Table 3, these datasets and p-values
are highlighted in bold while the best accuracy is
underlined. It is observable that there were no sta-
tistical differences for the remaining datasets.

When comparing the measures and our perfor-
mance results, we could detect a relation between
the DCMs N2, F2, L1, and the diversity measures
Q Statistics, Disagreement, and Kohavi-Wolpert Vari-
ance. The statistically significant better ensembles
have the following characteristics: medium-high di-
versity ensembles applied in datasets with reasonable
complexity.

Contraceptive, in which the ensemble performed
statistically better, was measured as an above-average
complexity dataset, and the diversity was also sig-
nificantly above average. Moreover, for the Titanic
dataset, the only case in which our ensemble was sig-
nificantly worse, the complexity and diversity mea-
sures were one of the lowest.

It is also important to note that the datasets in
which our ensemble performed better are consider-
ably imbalanced or with a great number of class la-
bels. Magic dataset, per example, is a binary prob-
lem with the class distribution of 65% for the major-
ity class and 35% for the minority class. The pattern
can be observed for other datasets as well: Phoneme,
Satimage and Segment datasets present large class
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imbalance or a high number of classes, combined with
significant diversity and complexity.

6 CONCLUSION

In this study, we investigated the effect of data com-
plexity on the ensemble’s accuracy. Also, we ana-
lyzed the relationship between data complexity and
the diversity among classifiers. We discovered that
complexity and diversity measures alone are not good
indicators of when to use an ensemble. We believe
that there are several important factors other than
those. We could see a specific pattern between data
complexity, diversity measures and class imbalance,
though.

For all the datasets in which the ensemble per-
formed statistically better, there were a high diversity,
complexity and class imbalance. In cases that only
two of these factors are present, we could not see ben-
efit of using ensembles.

The combination of complex and imbalanced
datasets with diverse predictions among weak learn-
ers seems to be the cases in which stacking meth-
ods thrive. For instance, the Cleveland dataset pre-
sented a complexity very similar to the Contraceptive
dataset, and both are imbalanced. The difference be-
tween them is that the weak learners presented low
diversity in its predictions for Cleveland and one of
the highest for Contraceptive. The same pattern can
be observed in several other datasets, such as Page-
blocks and Yeast. Titanic can be an example, as well:
a low diversity ensemble applied over a simple dataset
resulted in a worse classifier.

We could not justify the use of stacked general-
ization for simple datasets, in which base classifiers
can already have almost perfect performance. If they
have an almost perfect accuracy, the base classifiers
do not differ and the ensemble does not benefit from
the combination. Hence, the ensembles provide the
same results or worse. We can also conclude that a
higher complexity measure does not necessarily trig-
ger diversity among weak learners.

After conducting this study, we can say that these
three measures can help when deciding when to use a
ensemble or not. For future studies, we intend to use a
greater number of datasets with different settings (i.e.
some of them complex and imbalanced, others com-
plex and balanced) to understand the nuances between
diversity, complexity and class imbalance. Also, we
aim to find other measures that could help to explain
when to use ensembles, since we firmly believe that,
even though these three measures can be used when
deciding to use or not ensembles, there could be some

others in which we could combine with them to better
understand this problem’s nature and provide a guide-
line to make the decision.
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