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Abstract: Serverless functions are a popular trend on the cloud computing market offered by many cloud platform
providers. The statelessness of serverless functions enables the dynamic scalability by providing additional
instances running these functions. However, statelessness doesn’t guarantee the persistence of the state of a
container running a serverless function for the next call. Therefore, serverless functions must interact with
other services to save their state. This results in systems whose interaction with other services is complex and
hard to test.
Considering the data flow resulting from the integration of different components is an adequate approach in
an integration testing process. Therefore, we investigated the external factors influencing the execution of
serverless functions to use this insight for the creation of a testing framework.
The framework helps measure important data flow coverage aspects supporting developers in their evaluation
of test cases for the integration process of a serverless application. We showed that data flow criteria between
serverless functions can be measured with a small overhead of run time making it attractive for developers to
use.

1 INTRODUCTION

Serverless computing started to become popular with
the introduction of Amazon’s AWS Lambda1 in 2014.
Other tech companies, like Google2, Microsoft3 and
IBM4, followed and started to offer their own server-
less solutions. Not only commercial serverless com-
puting solutions are available but also open-source so-
lutions, such as OpenFaas5 or Fission6. In contrast to
the proprietary ones, they can be deployed on an on-
premise infrastructure.

Serverless computing is based on serverless func-
tions, whereas serverless is in some way a misnomer
since servers are still used in serverless computing.
The term serverless means that servers are abstracted
away. This enables developers to focus on the busi-
ness logic without worrying about the infrastructure
laying below (Baldini et al., 2017). In contrast to

a https://orcid.org/0000-0002-4526-286X
b https://orcid.org/0000-0002-0438-8482
1https://aws.amazon.com/de/lambda/
2https://cloud.google.com/functions/
3https://azure.microsoft.com/en-us/services/functions/
4https://www.ibm.com/cloud/functions/
5https://github.com/openfaas
6https://fission.io/

other cloud solutions, serverless functions only have
to be paid for if they are actually used. The costs for
the usage of serverless functions depend also on the
composition of the function and its computing power
assigned (Elgamal et al., 2018). But also other ser-
vices provided by the cloud platform provider are usu-
ally used in a serverless application and have to be
paid which could make alternative approaches like a
VM running in the cloud cheaper, in particular if the
computing workload is constant (Leitner et al., 2019).

The automatic scalability of serverless functions
managed by the cloud platform provider makes them
attractive for applications with an infrequent and
bursty workload (Baldini et al., 2017). The scalabil-
ity is based on the assumption that the serverless func-
tions are stateless. Thus, cloud platform providers can
host new instances running the serverless functions
without violating the functionality of the application.
Depending on the workload having to be processed
by a serverless function, the cloud platform provider
can deploy new instances of functions handling the
requests or reduce the number of instances. How-
ever, statelessness simply means that the state within a
serverless function is not guaranteed to be saved if the
same function is executed again. Therefore, the state
of an application is not eliminated, it is just moved to
other parts of the application.
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The scalability provided by serverless functions is
tempting and might give the impression that there are
no bottlenecks at all. However, the services used to
handle the state by reading or changing data are the
actual bottlenecks of a serverless application.

Connecting these services to serverless functions
leads to an overall complex structure which makes it
hard to find faults. While stateless serverless func-
tions simplify unit testing, integration testing be-
comes more complex in serverless applications and
tool-support is still missing (Kratzke, 2018). Integra-
tion testing is an important testing phase for server-
less functions and is a challenge in industrial prac-
tice (Leitner et al., 2019). In order to improve the
testing process of serverless functions and their de-
pendencies, we investigated how serverless functions
interact with their environment and how the knowl-
edge of the data flow with their environment can be
used for testing.

Therefore, we sifted through the hosting platform
GitHub to identify some publicly available serverless
functions and analyzed their source code looking for
external dependencies and their usage. The analysis
showed that most of the serverless functions use ex-
ternal stateful services making it hard to scale server-
less functions independently without considering the
external services. But also the return values and pa-
rameters passed are potential data flows which have
to be monitored.

These insights motivated us to implement a data
flow testing framework measuring the coverage of im-
portant and relevant data flow criteria between server-
less functions.

Furthermore, we described the workflow to mea-
sure the data flow of serverless applications and evalu-
ated the run time for our framework. By interviewing
some serverless experts, Lenarduzzi and Panichella
stated in (Lenarduzzi and Panichella, 2021) that
serverless applications need test adequacy criteria,
in particular since serverless applications need to
be tested with events generated by other serverless
functions. Besides our previous work (Winzinger
and Wirtz, 2019a; Winzinger and Wirtz, 2019b;
Winzinger and Wirtz, 2020) where we addressed cov-
erage criteria but didn’t investigate the influence of
external resources and measure the run time of an im-
plementation of coverage criteria, to our knowledge,
there is no work available yet handling this issue for
serverless applications. Formal models of serverless
computing were introduced in (Jangda et al., 2019)
and (Gabbrielli et al., 2019) but didn’t describe the
influential factors of serverless functions in detail.
While Lin et al. showed in their work (Lin et al.,
2018a; Lin et al., 2018b) how serverless functions

can be tracked causally which is useful for debug-
ging, data flow criteria cannot be measured by their
method. In (Sreekanti et al., 2020) an additional layer
was added between serverless functions and the data
storage service to improve fault-tolerance in contrast
to our work where we only manipulated the access
of serverless functions to data storage to measure the
data flow. Furthermore, there is also other work avail-
able investigating serverless applications and their
functions (Eismann et al., 2020), but without focus
on the data flow between the serverless functions.
Although coverage criteria considering the data flow
for integration are not new (compare (Spillner, 1995;
Frankl and Weyuker, 1988; Clarke et al., 1989)), they
were not yet applied to serverless applications.

The structure of the paper is as follows. Section 2
describes how we investigated serverless functions
and gives a model of data flows of serverless func-
tions. The implementation of a testing approach for
data flow coverage criteria is presented in section 3
followed by an evaluation of its run time. Finally, a
conclusion is drawn and an outlook is given to future
work in section 4.

2 DATA FLOW OF SERVERLESS
FUNCTIONS

The data flows of serverless functions with their envi-
ronment are relevant for the creation of test cases in
order to cover the dependencies to other resources of
the system. These data flows to other services can in-
fluence the state of the system. Therefore, we investi-
gated several serverless functions in order to see how
the execution process of a serverless function is influ-
enced by external data flows to use these insights for
our testing framework. Since there aren’t many appli-
cations currently available using serverless functions,
we searched for serverless functions on GitHub and
analyzed them. We built a model showing the factors
influencing the execution of serverless functions.

2.1 Selection of Serverless Functions

We decided to investigate serverless functions pub-
lished on GitHub to build a model of factors influ-
encing the execution of serverless functions. Similar
to our previous work (Winzinger and Wirtz, 2020),
we searched for applications focusing on Amazon
Web service (AWS) and its usage with the Serverless
Framework7 on GitHub. This framework is often ap-
plied to describe the components of serverless appli-

7https://www.serverless.com/
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Table 1: Languages used in applications.

Language Number of projects

JavaScript 459

Python 59

Java 6

dotNet 3

cations and deploy their serverless functions. We used
the GitHub REST API8 for our search which provides,
in contrast to GHTorrent9, the possibility to search for
filename and keywords contained in the files.

Files with the name ’serverless.yml’ were selected
which is the name of the file used by the Serverless
Framework10 describing the infrastructure of the ap-
plication. Furthermore, the request to the API was
set to filter for the keywords ’AWS’ and ’handler’ to
ensure that serverless functions were used on AWS.
Thus, files could be identified which are usable on
AWS Lambda and contain serverless functions which
are deployable by the Serverless Framework.

The API provided 1000 results for files describing
serverless application with our search done on July
30, 2020. The files identified are part of 527 differ-
ent projects. The projects were sorted by its number
of stars which roughly indicates the popularity of a
project. Afterwards, we analyzed the first 27 projects
resulting in 323 serverless functions, after functions
of projects had been sorted out which were not com-
pletely implemented, just boilerplate code or just a
very simple demonstration. Furthermore, we only in-
vestigated projects with serverless functions written
in JavaScript which was the most popular language
used in the applications identified (see Table 1) in or-
der to stay in the same domain of a programming lan-
guage. The program with its data measured can be
found online11.

2.2 Investigation of Data Flows

We investigated several serverless functions and their
structure to identify factors influencing the execution
of serverless functions which have to be considered
for the interaction of serverless functions with their
environment. Therefore, we noted all types of calls
requiring dependencies not running within the con-
tainer of the serverless function.

8https://docs.github.com/en/rest
9https://ghtorrent.org/

10https://www.serverless.com/
11https://github.com/snwinz/ServerlessApplication

Searcher/releases/tag/v1.0

We divided the calls made into calls made to
platform-specific services, e.g., data storages, and
calls made to external services like calls made via
HTTP. If the service was a data storage service of
Amazon (i.e., DynamoDB or S3) where data are saved
or read, we took a note if data were written (e.g., up-
dating, deleting or creating data) or read. The direct
invocation of another serverless functions was noted
too.

Additionally, we checked if the arguments passed
to a serverless function were used at all. This indi-
cates the direct influence of an external call. Further-
more, we evaluated how the usage of services influ-
enced the return values of our functions.

Therefore, we categorized the return values of
functions using services in state, value and nothing.
State was noted if the return value just indicates that
the execution was successful by returning a simple
state message. The categorization value on the other
hand was used for return values which were calcu-
lated depending on the input of other resources and
contains more information than the pure state of the
successful execution. If no return value was returned
at all, nothing was used. Since usually the state of a
service call is returned if its call fails, all return values
investigated were influenced by the services called.

This categorization helps to see if there is a data
flow between the calling resource and the callee or if
the function is just called and only its successful ex-
ecution is relevant for the caller (e.g., an orchestrator
or a user).

Finally, we checked the function for the usage of
object variables of a previous call and potential back-
ground processes.

2.3 Influential Factors of Serverless
Functions

Based on our investigation, we could build a model of
the interfaces of a serverless function describing both
the influential factors to its execution coming from its
environment and the influential factors of a serverless
function to its environment (see Figure 1). In general,
a serverless function gets the information needed to be
processed by its arguments assigned to the parameters
of the serverless function and can return a value. But
there are also other factors we identified influencing
the execution and the result of a serverless function.

Environment variables set for the configuration of
the system can also be accessed by a serverless func-
tion during run time and influence its execution. A
typical example of such a variable is the name used
for a data storage. These variables cannot be set di-
rectly within a serverless function and are usually set
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when a new version of a serverless function is de-
ployed. Therefore, they are not really relevant for our
data flow evaluation since they can be considered as a
constant factor after deployment.

Another factor which influences the execution
process of a serverless function are processes run-
ning in the background. A serverless function can
return a value and stop its execution without having
background processes completed. These processes
are continued if the same container is started again
which can influence the state of the application even
if the background process was started by another in-
vocation. In the serverless functions we investigated,
we didn’t identify such processes started in the back-
ground.

A similar behavior occurs when a global variable
is used in the same container again and changed dur-
ing the execution of the container. If so, the value
used by a previous call could influence the state of the
application. If the instance variable is always instan-
tiated the same way, it doesn’t influence the system.
However, we didn’t identify such a behavior imple-
mented in the serverless functions investigated where
a previous call influences the value of a subsequent
one. This behavior could be utilized in order to cache
some data.

Besides these factors, there is also the possibility
that a serverless function gets data to be processed
by calling a service. The service can be platform-
specific, like a data storage access, or external, like
a call to an HTTP API. Of course, services can also
be used to store data.

func�on 
parameters 
(e.g., data as 
JSON)

services

pla�orm-specific services external services

(environment 
se�ngs)

(object variables)

(object variables)

services

pla�orm-specific services external services

return value

(event loop)

(event loop)

λ

Figure 1: Data interfaces of serverless functions.

2.4 Analysis of the Interfaces of
Serverless Functions

Our analysis showed that nearly all of the functions
used services. Therefore, it is not enough to test only
the function in isolation, but also other dependencies
have to be considered. 306 (≈ 94.44%) of the func-
tions investigated used at least one service. A pop-
ular service containing and preserving the state of
an application are data storages. More than half of
the functions (162) used at least one platform-specific

data storage like DynamoDB or S3 where 142 of these
(≈ 87.65%) used at least once DynamoDB. 68 of
these functions read data from and 77 changed data
on DynamoDB. This shows the importance of plat-
form services, in particular data storages.

Furthermore, all return values of the functions us-
ing services were influenced by the service called.
Only 40 functions (≈ 12.38%) didn’t return anything
explicitly at all, whereas nearly every third function
(104) returned a value. The majority of the func-
tions (179) returned a value indicating the successful
execution of the function. A return value indicating
only if the execution was successful is an indicator
that the return value is only used for its orchestration,
e.g., reexecuting the function by an orchestrator if the
function fails. The parameters of a serverless function
are instantiated by the events triggering the serverless
functions and had also an effect on the execution of
the serverless functions. 271 functions (≈ 83.90%)
used the parameter for its execution. However, there
were only 13 serverless functions (≈ 4.02%) invoking
another serverless function directly.

Even if this analysis on GitHub cannot be
representative for all serverless applications since
many projects on GitHub are personal and inactive
(Kalliamvakou et al., 2014), it still shows the differ-
ent usages of serverless functions and its reliance on
services, in particular data storages.

3 TESTING DATA FLOW
BETWEEN FUNCTIONS

The investigation described in the previous that there
are different ways serverless functions can exchange
data with their environment. Even if there are several
ways how the internal data flow during execution is
influenced, the most relevant factor are services be-
ing called. So, the data flow of these services can
influence the state of the system if data are written.
If data are read, the execution process depends on an
external state. Therefore, the state of the application
resides in the data flow and the state of other services,
mostly data storages. The services where the infor-
mation is passed to, can process, save or route the
information to another service. The most common
service detected in our investigation was DynamoDB
which is a key value storage. In general, each of the
services called by a serverless function is a potential
data storage where data could be saved and read by
other parts of the system. Therefore, while develop-
ing a serverless application, it is not enough to test
only the serverless function in isolation but also the
influence of the data changed to the system. Thus,
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not only the relations between services are tested, but
also a direct influence between different services. We
evaluated different coverage criteria and showed the
applicability of data flow coverage for several appli-
cations in our previous work (Winzinger and Wirtz,
2020). Here, we show an implementation of a frame-
work measuring the data flow coverage of a serverless
application while focusing on different kinds of data
flow: data flow between serverless functions via a ser-
vice, here DynamoDB, data flow via return values and
data flow via function invocation demonstrating the
usage of a parameter set by an event. In addition, we
present the work flow to measure this data flow and
the minimal run time overhead of this measurement.

3.1 Data Flow Criteria

The data flow of the serverless functions is measured
by modifying the source code with additional instru-
mentations. These instrumentations help to pass the
information where the definition of a value took place
and evaluate its usage. The data flow is only measured
between serverless functions where the definition is
in one serverless function and the usage of data is in
another serverless function. Other services, like data
storages, can interrupt the data flow between server-
less functions. Therefore, the information of the data
definition has to be stored in such services too.

The coverage criteria all-resource-defs and all-
resource-uses were implemented in our tool which
can be found online with the data of its run time anal-
ysis12. These criteria were introduced in (Winzinger
and Wirtz, 2019a) and are defined as follows where x
is a definition of a value within a serverless function
which is used by another resource:

• All-resource-defs: requires that every x is at least
used once in another resource without being rede-
fined before its usage.

• All-resource-uses: requires that every x is used by
all other usages of x in other resources without
being redefined before its usage.

Applied to our serverless applications, resources are
to be considered as serverless functions which use the
value defined.

In contrast to all-resource-defs, all-resource-uses
considers the coverage of uses explicitly. This re-
sults in a potential higher amount of test cases needed
to fulfill this criterion. The maximal number of test
cases required for both criteria to be fully fulfilled is
listed in Table 2 if each testing aspect is covered by
only one test case where I is the set of couplings (e.g.,

12https://github.com/snwinz/ServerlessApplicationTool/
releases/tag/v0.2-beta.1

couplings via data storages or function invocations)
and Di are the defs and Ui the uses of a coupling i ∈ I.
Serverless functions are often coupled externally by

Table 2: Coverage items of criteria.

Criterion Maximal Number of Items

All-resource-defs ∑
i∈I
|Di|

All-resource-defuse ∑
i∈I
|Di|+ |Ui|

All-resource-uses ∑
i∈I
|Di| · |Ui|

communicating through an external data storage. If
there is a data storage with many functions writing
and reading data from it and each test case is respon-
sible for only one coverage aspect, the test cases to
fulfill all-resource-uses are much higher. Therefore,
we defined and implemented an additional coverage
criteria. While the fulfillment of the all-resource-uses
criterion requires that all def-use pairs are covered,
we defined the weaker criterion all-resource-defuse
which requires that:

• each definition of a value within a serverless func-
tion which is used by another resource is used at
least once in another resource without being rede-
fined before its usage.

• each usage of a value defined in another resource
is used at least once in combination with any def-
inition without being redefined before its usage.

This requires less coverage objects than all-resource-
uses but has the advantage that all usages have to be
tested at least once. The three test criteria result in the
subsumption hierarchy shown in Figure 2.

All-resource-uses

All-resource-defs

All-resource-defuse

Figure 2: Subsumption hierarchy of data flow criteria.

3.2 Criteria Implementation

Our implementation of the criteria is done be extend-
ing our previous work (Winzinger and Wirtz, 2020).
By instrumenting the source code with our tool, the
information of the location where a value was defined
is added to the arguments which are passed when the
context of the serverless function is left. For example,
if another serverless function is called where a value
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is passed or a service like write access to data storage
is made, the information of the definition of the data
is passed too. Thus, when the value is used, a corre-
sponding log statement can be created indicating that
the definition is used with the actual usage. Based on
our investigation from section 2, we implemented the
data flow criteria for different kinds of data flows.

We implemented this for serverless functions
which were invoked by other serverless functions
by attaching the relevant information to the payload.
Even if direct function invocation wasn’t used very
often in our analysis, this behavior is relevant, since
the callee uses the information passed via a parame-
ter of the event which is a common scenario, e.g., if a
data storage triggers a serverless function when a new
entry is added.

If a function returns a value, we attached also
an identifier of its definition making it possible for
the caller to interpret the source of the result. This
was only implemented if the return value is a JSON-
Object where the information can easily be attached
to an additional field. If another data format is used,
the usage of the additional information has to be
adapted in a way that other resources using the return
value can handle the additional information. Thus, if
a string value should be returned, it would only make
sense to attach the identifier of the definition if all
services using the return value can handle it, e.g., by
parsing the relevant value by a delimiter.

Finally, we implemented the criteria for serverless
functions which are coupled via a data storage, here
DynamoDB, by supporting write and get operations.
Additionally, we implemented a support for the delete
operation to measure the usage of deleted values. This
required to replace the delete operations by write op-
erations which added a marker to the corresponding
value but removed the value. The get operation had to
be replaced too in order to interpret the marked entry.
If they identify a marker, an empty entry is returned
to indicate that the entry is not available.

If a variable of a serverless function is used to pass
information via a coupling, each of its definitions be-
fore the coupling was instrumented adding the infor-
mation of the usage to the variable. Thus, when the
variable is used, the latest definition of the variable
can be read. The usage of variables is implemented
similarly. Each usage of a variable coming from a
coupling is instrumented by logging its usage. Thus,
the first usage after a coupling can be identified later.

3.3 Workflow for Measuring Coverage

First of all, our program reads the source code with
a parser. We used ANTLR13 to create a parser for
JavaScript. Other languages have to be implemented
explicitly in the framework. The parser was adapted
to identify relevant parts of the source code, e.g.,
statements responsible for passing data and defini-
tions and usages of variables. These parts were en-
riched with JavaScript source code which added rele-
vant information to the variables and added log state-
ments to the source code. The generated source code
has to be deployed afterwards and the test cases be
run. In contrast to the implementation of (Offutt et al.,
2000) where a global array is used to log usages,
serverless applications are distributed. Therefore, we
used CloudWatch for saving our information of us-
ages, definitions, calls etc. However, in contrast to a
global array where the values could be read directly,
the log files have to be downloaded and evaluated ex-
plicitly. This is done after the execution of test cases.
Monitoring the coverage of a system during its execu-
tion could be supported by scripts constantly polling
and evaluating these logs. For each variable which
was defined and passed, the log file is searched for an
entry where the corresponding variable is used. This
log statement contains the information of the defi-
nition which was originally attached to the variable
passed and, if necessary, relevant information of the
usage. By reading the log statements, all usages are
counted and can be displayed.

3.4 Run Time Evaluation

This section shows the run time behavior of the code
instrumented by our framework compared to the orig-
inal code without instrumentation. We evaluated three
different scenarios covering different kinds of data
flow between serverless functions.

3.4.1 Scenarios

Our first scenario (Figure 3) is a serverless function
calling another serverless function where the callee
uses a value of the caller. The serverless function
called returns a value to the calling serverless func-
tion which results in another coupling. Therefore,
there exists a def-use pair both between the caller and
the callee and the callee and the caller. The first def-
use pair is a typical example for a serverless function
using the argument of an event, whereas the second
def-use pair is an example for a coupling through a
return value. We measured the run time of the calling

13https://www.antlr.org/
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function on cloud side since the caller calls the callee
synchronously and has to wait for its answer. There-
fore, the run time of the calling function includes the
run time of the callee.

sync

Caller Callee
Figure 3: Model of function calling another function.

The second scenario (Figure 4) is a scenario with a
write operation to a DynamoDB data storage whose
value is read by another serverless function. Both
functions are called synchronously by another server-
less function whose run time is measured on cloud
side. The read operation is set to be a consistent read
which guarantees that the latest value of the data stor-
age is read. Otherwise, only eventual consistency is
guaranteed where potentially the latest write opera-
tion is not read. Thus, both serverless functions are
coupled by a value on the DynamoDB storage.

Coordinator

Writer

Getter

1. sync

2. sync

Figure 4: Model of scenario for coupling via a write opera-
tion.

The third scenario (Figure 5) is similar to the second
one, but a value written to a data storage is deleted
by a serverless function. This value is read by an-
other serverless function with a consistent read like
in the previous scenario. Both the deleting and read-
ing functions are coordinated by a serverless func-
tion calling these functions synchronously. All values
were written to the data storage before the coordinator
function was called.

3.4.2 Execution

All tests were run on September 25, 2020. We exe-
cuted each of these scenarios with its original source
code and a version instrumented by our tool for each
of the three coverage criteria. Furthermore, we veri-
fied that each def-use pair was tracked correctly.

Therefore, each scenario was executed with four
different versions. The four versions were tested for

Coordinator

Deleter

Getter

1. sync

2. sync

Figure 5: Model of scenario for coupling via a delete oper-
ation.

each scenario in one test run making sure that the uti-
lization of resources of the cloud platform is similar.
Each run was divided in 100 blocks where in each
block each version was executed eleven times.

Before each single execution, the configuration
of the serverless functions was upgraded. Thus, we
could enforce a cold start of the serverless function
for each first run of a block since the platform de-
ploys a new container if the description of a server-
less function is changed. This reduced the risk that a
serverless function is only running on the same ma-
chine. Furthermore, we set the memory assigned to
the maximal size of 3008 MB enforcing a deploy-
ment to a fast machine. Otherwise, slower machines
could be compared to faster ones since sometimes if
slower resources are assigned to a serverless func-
tion, faster ones are assigned by the cloud platform
provider (Malawski et al., 2018; Figiela et al., 2018).
Since logs got lost when the description of a server-
less function was changed immediately after its ex-
ecution, we waited 10 seconds after each execution
block.

All in all, we compared 1000 warm runs for each
of the versions of the scenarios and checked that the
coupling was tracked.

3.4.3 Results

The results of our first scenario showed that there was
nearly no difference in the execution times if a func-
tion was instrumented or it was run without any in-
strumentation, as can be seen in Figure 6 where a box
plot is shown with the median execution time. The
instrumentation is only limited to the addition of a
value to the parameter and a few log messages where
there were only small differences in the instrumenta-
tion added for the criteria.

The second criteria showed also no relevant differ-
ences in its run time (compare Figure 7). The instru-
mentation included additional checks for parameters
passed and the value received from the data storage.
The criteria themselves have only a few differences in
its implementation by logging the concrete statement
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Figure 6: Box plot of the run times of caller scenario.
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Figure 7: Box plot of run time of writer scenario.
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Figure 8: Box plot of run time of deleter scenario.

of the usage of a definition for all-resource-uses and
all-resource-defuse. The median execution time for
all-resource-uses was even faster, even if more state-
ments have to be executed.

Our last scenario showed a bigger difference in its
run time even if the scenario is quite similar to the
previous one (compare Figure 8). However, the in-
strumented versions of this scenario don’t use a delete
operation but a write operation. Additionally, the en-
tries on the data storage are overwritten which could

also be a source of additional run time on the data
storage caused by additional entries. Therefore, this
scenario depends more on the service than the previ-
ous scenario where the same write operation was used
with additional values whereas here the delete opera-
tion is replaced by a write operation.

There were only a small differences in the execu-
tion times of the instrumented scenarios compared to
the original ones which shows that the execution time
of the instrumentations is not so relevant for these sce-
narios. Even if these scenarios are very simple, they
cover all the interfaces where an additional instrumen-
tation is needed. Therefore, the execution of the in-
strumentation of a more complex function would only
take much longer if it used more services or required
more instrumentations to log the definitions and us-
ages of variables used by its interfaces.

4 CONCLUSION AND FUTURE
WORK

In this paper, we investigated the data flows of server-
less functions with their environment. Most of the
serverless functions of our analysis are influenced
by its parameters passed and the usage of services,
whereas data are mostly passed to the environment
via services and return values. Therefore, we intro-
duced a framework measuring the usage of these data
flows. Serverless applications consist of many in-
terconnected serverless functions and services whose
complexity of interactions has to be covered. The
measurement of the data flow with our framework
doesn’t require much additional run time. Therefore,
developers can benefit from using it to detect and
measure their data flows easily and create new test
cases.

Our tool supports a dynamic coverage of data
flows between serverless functions, whereas we plan
to develop some static testing support for our future
work, in particular to support the test case generation.
Furthermore, since our tool measures the coverage af-
ter the execution of test cases, a live measurement of
the coverage could support developers in the creation
of test cases. There is still a lack of practical evalua-
tions about the usage of the data flow coverage criteria
for serverless applications. Therefore, we plan to in-
terview some experts on the field and evaluate some
real life applications.
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