Design and Implementation of a Test Tool for PSD2 Compliant Interfaces

Gloria Bondel', Josef Kamysek' and Markus Kraft> and Florian Matthes!
Yechnical University of Munich, Faculty of Informatics, Garching, Germany

2mngillardon AG, Munich, Germany

Keywords: PSD2, XS2A, Test Tool.

Abstract:

The Revised Payment Services Directive (PSD2) forces retail banks to make customer accounts accessible

to TPPs via standardized and secure ”Access to Account” (XS2A) interfaces. Furthermore, banks have to
ensure that these interfaces continuously meet functional and performance requirements, hence testing is very
important. A known challenge in software testing is the design of test cases. While standardized specifications
and derived test cases exist, the actual implementations of XS2A interfaces often deviate, leading to the need to
adapt existing or create new test cases. We apply a design science approach, including five expert interviews,
to iteratively generate a concept of a test tool that enables testing of several XS2A interface implementations
with the same set of test cases. The concept makes use of files mapping deviations between the standardized
specification and the implemented interfaces. We demonstrate the concept’s feasibility by implementing a
prototype and testing its functionality in a sandbox setting.

1 INTRODUCTION

The European Union published the Revised Payment
Services Directive (Directive (EU) 2015/2366, ab-
breviated PSD?2) to address risks resulting from new
online and mobile services that emerged in retail
banking. One measure prescribed by the PSD2 is
the realization of standardized and secure “Access
to Account” (XS2A) interfaces enabling TPPs to ac-
cess customer accounts, given the customers’ pro-
vided their consent (Scheja and Machielse, 2019;
BG, 2018). However, while the PSD2 and the ad-
ditionally published regulatory technical standards
(RTS) require banks to implement an XS2A interface,
they do not specify a technical solution (Scheja and
Machielse, 2019).

The prescription for implementing secure XS2A
interfaces does not only lead to additional effort for
the bank implementing the interface but also for TPPs
who consume it. The TPPs need sufficient time to
adapt their systems and continuously well perform-
ing interfaces to prevent disruption of their business.
Hence, the regulations define strict testing require-
ments for XS2A interfaces. Even now, after the tran-
sition phase (14.09.2019) has passed, the banks have
to ensure that the interface continuously meets func-
tional and performance requirements.

A major challenge in software testing is test case
generation, which is perceived as being a tedious and

Bondel, G., Kamysek, J., Kraft, M. and Matthes, F.
Design and Implementation of a Test Tool for PSD2 Compliant Interfaces.
DOI: 10.5220/0010439502490256

erroneous process (Arcuri, 2019). In the context of
the PSD2 regulation, industry standardization institu-
tions design XS2A interface specifications and derive
test cases from these specifications. Thus, it would
be intuitive that banks can leverage the existing test
cases if they adapt the standard. However, banks usu-
ally implement XS2A interface standards with devi-
ations. These deviations lead to the need to create
new test cases or adapt the existing test cases for each
bank. To address this issue, we aim to answer the fol-
lowing research question: “How can we design and
implement a test tool for XS2A interfaces exploiting
existing sets of test cases?”

We apply a design science research approach
(Hevner et al., 2004) to answer this research ques-
tion and conducted five expert interviews to iteratively
design the artifact. As a result, we present a test
tool concept that enables testing interfaces that devi-
ate form standards with one set of test cases. We show
our concept’s feasibility by implementing a prototype
and testing its functionality in a sandbox setting. The
test tool enables banks to save time on the design of
test cases and provides automatic testing facilities to
TPPs. Furthermore, we contribute to the scientific and
practical community by presenting a concept for effi-
ciently testing RESTful Web APIs based on a stan-
dard that could also be transferred to other fields with
emerging interface standards.

249

In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 249-256

ISBN: 978-989-758-509-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

2 FOUNDATIONS

We will introduce the background of the PSD1 and
PSD2, the importance of testing in the context of
PSD?2, and the challenges of testing Web APIs.

2.1 Regulation of the European
Payment Market

The European Union introduced the first Payment
Service Directive (Directive 2007/64/EC, abbreviated
PSD1) in 2007 with the goal to increase competition
between banks and payment service providers, lead-
ing to a broader choice of convenient, efficient, and
secure cross-border payment services for end-users
within Europe. However, after the PSD1 became
effective, Third-Party Payment Service Providers
(TPPs) emerged and started offering new online and
mobile payment services (Cortet et al., 2016; Bram-
berger, 2019). More specifically, the regulators iden-
tified three services which are (1) the creation of an
integrated view of customer accounts even if differ-
ent banks manage these accounts, (2) the initiation
of a payment from an existing account, and (3) the
confirmation that a certain amount of funds are avail-
able (EU, 2015). These new services have in common
that the TPPs do not operate customer accounts them-
selves. Instead, they access the customer’s account
operated by a bank to enable their new services. Due
to missing regulations and standards, only fragmented
interfaces to securely access these accounts existed
(Scheja and Machielse, 2019). Hence, TPPs often
resorted to screen-scraping online banking websites
using the end-users online banking login credentials
(Scheja and Machielse, 2019; Cortet et al., 2016).

Addressing the resulting security risks in the
evolving online payment services industry, in 2015,
the European Union published the Revised Payment
Services Directive (Directive (EU) 2015/2366, abbre-
viated PSD2) replacing the PSD1. The overall goal
of the PSD2 is to foster innovative online and mo-
bile payment services while at the same time ensuring
customer protection (Bramberger, 2019) (Zachariadis
and Ozcan, 2017). The PSD2 defines several mea-
sures of which we focus on the PSD2’s prescription
to allow TPPs standardized and secure access to cus-
tomer payment accounts (BG, 2018).

The PSD2 requires that banks and TPPs im-
plement secure communication standards to enable
TPPs to access customer accounts securely (EU,
2015). However, the PSD2 does not detail such stan-
dards or any specific technical solutions (Scheja and
Machielse, 2019). Instead, the PSD2 commissioned
the European Banking Authority (EBA) to issue reg-

250

ulatory technical standards (RTS) (Art. 98 PSD2).
The RTS, published in the final version in March
2018, mandates that banks that provide online bank-
ing have to provide an ”Access to Account” (XS2A)
interface. An XS2A interface enables TPPs to request
information on payment accounts and to initiate pay-
ment orders securely (Art. 30 RTS). Although more
specific than the PSD2, the RTS still only provide a
high-level definition of the interface functionality and
do not detail any technical specification (Scheja and
Machielse, 2019). Nevertheless, all regulated entities
have to comply with the RTS provisions and provide
an XS2A interface 18 months after the RTS was pub-
lished, i.e., latest on the 14.09.2019.

The development of detailed technical standards
is thus left to the banking industry (Scheja and
Machielse, 2019). Several standardization bodies
formed and have since provided technical specifica-
tions of the XS2A interface, e.g., the Berlin Group1
or the Open Banking Initiative’. Among these, the
Berlin Group is one of the major standardization bod-
ies since it created an XS2A interface specification
in cooperation with 52 European banking entities, in-
cluding banks, banking associations, payment asso-
ciations, payment schemes, and interbank processors
active in the EU (Scheja and Machielse, 2019). The
XS2A interface specification of the Berlin Group is
named the Berlin Group Next-GenPSD2 Framework
which defines the XS2A interface as a RESTful Web
API (BG, 2018).

2.2 Testing of XS2A Interfaces

Testing plays an essential role during the transition
to XS2A interfaces as well as afterwards. The RTS
prescribe functional and performance testing. Func-
tional requirements are mentioned in the RTS but not
specified in detail (Art. 30 RTS). Banks are instead
encouraged to follow standards to realize these func-
tional requirements (EBA, 2018b). Regarding perfor-
mance testing, banks need to prove that the XS2A
interfaces perform as good as the old interfaces, i.e.,
online banking websites. Performance testing is nec-
essary since latency in the TPP’s product due to in-
ferior interface performance could lead to dissatisfac-
tion and loss of TPPs’ and banks’ customers.

During the transition to the standardized XS2A in-
terfaces, testing played an essential role. Timely ac-
cess to XS2A testing and production environments al-
lowed TPPs to explore the new interfaces and to adapt
their systems before access to old interfaces was re-
voked. Also, the RTS introduced a mandatory contin-

Thttps://www.berlin-group.org/
Zhttps://www.openbanking.org.uk/



Design and Implementation of a Test Tool for PSD2 Compliant Interfaces

PSD1 enters PSD2 enters
into force into force

PSD2is
published

states

RTS are
published

Deadline for
transposing
PSD2in
member

XS2A
interface
needs to be
accessible
for testing

XS2A test
environment
needs to be
accessible

interface
needs to be
accessible/
RTS enters
into force

Figure 1: Timeline of the PSD2 regulation.

gency measure, often referred to as fall back rule (Art.
33 RTS) (EBA, 2018b; EBA, 2018a) to enforce the
compliance with functional and performance require-
ments. The fall back rule prescribes that banks have
to enable TPPs to access customer payment accounts
not just through the XS2A interface, but also through
the customer-facing interface, i.e., the online bank-
ing website. However, the banks have to adjust the
customer-facing interfaces to comply with the same
security requirements as the XS2A interface, leading
to additional implementation effort for banks. An ex-
emption of the fall back rule is possible, if a bank
meets strict testing and reporting requirements (Art.
33 RTS). These requirements entail that banks have
to provide a test sandbox for connection and func-
tionality testing with mock data to certified TPPs as
well as appropriate documentation of the XS2A inter-
face half a year before the API goes into production
(14.03.2019) (Art. 30(5), 30(3) RTS). The productive
API has to be accessible for testing three months be-
fore the RTS becomes effective (14.06.2019). Dur-
ing that time, the bank has to promote the testing
of the XS2A interface by TPPs and address raised
issues (EBA, 2018b). After the testing period, the
banks have to report the number of TPPs that tested
the API, the issues raised, and measures to address
them and certain performance KPIs (EBA, 2018b).
An overview of the timeline is provided in Fig. 1.
After the transition period the essential role of
testing is not diminished. A bank has to continuously
ensure that the interface still meets the functional and
performance requirements, especially if the interface
implementation evolves. A failure to meet the re-
quirements, even after the end of the transition phase,
leads to the need to implement the fall back solution.

2.3 Challenges of Testing

Software development is a complex and error-prone
process that can lead to defects or unexpected behav-
ior in software systems or components. Thus, test-
ing activities are an essential part of software devel-
opment. Testing aims at evaluating the properties
of software and ensuring they meet the user’s needs
(IS0, 2013). Therefore, testing can prevent negative
impacts of releasing erroneous software, e.g., security
threats, losses, or a bad reputation (ISO, 2013).

As part of the test design and implementation, a
tester creates a test case for a test item. The test item
is the "work product that is an object of testing” (ISO,
2013), e.g., the software component to be tested. The
test case is the "set of test case preconditions, inputs
[... ] and expected results, developed to drive the ex-
ecution of a test item to meet test objectives” (ISO,
2013). The test execution can be performed manually
or automated with the help of a test tool.

In this research paper, the test item is a XS2A
interface of a bank. According to the Berlin Group
specification, the XS2A interface is a RESTful Web
API. A Web API makes functionality or data available
via endpoints, that can be accessed over a network
using the HTTP protocol (Bermbach and Wittern,
2016). For each endpoint, the API designers define
operations and parameters of a successful API call.
REST is an architectural pattern that prescribes cer-
tain constraints to Web API design (Fielding, 2000).
In this context, a test case is one HTTP request to a
RESTful Web API.

A major challenge of testing is test case genera-
tion. Test case generation is tedious and error-prone
(Arcuri, 2019). Several approaches to enable auto-
mated test case generation for RESTful Web APIs
have been previously presented, e.g., search-based
testing (Arcuri, 2019) or test case generation based
on a formal model (Fertig and Braun, 2015).

The approach presented in this research paper cir-
cumvents the challenge of test case generation by en-

251



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

abling banks to test an XS2A interface by exploit-
ing preexisting test cases provided by standardiza-
tion bodies. Thus, banks do not have to create and
maintain their test cases. To the best of the authors
knowledge, no scientific paper addressing the testing
of XS2A interfaces have been previously published.

3 RESEARCH APPROACH

We apply a design science research approach since it
ensures relevance and rigor while focusing “on cre-
ating and evaluating innovative IT artifacts that en-
able organizations to address important information-
related tasks” (Hevner et al., 2004). We describe the
research approach following the seven guidelines for
design science as presented by (Hevner et al., 2004).

Design as an Artifact. The goal of a design science
research approach is to create a purposeful artifacts
that address an organizational problem (Hevner et al.,
2004). The artifact presented in this research paper is
a concept of a prototypical implementation of a test
tool that enables the testing of several standardized
XS2A interfaces with a single set of test cases, even
if the XS2A implementations deviate from the stan-
dard. The organizational issue that the prototype ad-
dresses is the regulatory need to test XS2A interfaces
properly. The need to test XS2A interfaces is not lim-
ited to the PSD2 transition phase in 2019, but regres-
sion testing is also valuable afterwards since the in-
terface implementation is continuously evolving. Fur-
thermore, the concept could be applied to other fields
with emerging interface standards, e.g., in the health
sector with the Fast Healthcare Interoperability Re-
sources (FHIR) standard (Kasthurirathne et al., 2015).
Problem Relevance. In design science, the de-
veloped artifact has to solve a significant business
problem. Our attention has been brought to test-
ing of XS2A interfaces through discussions with in-
dustry experts specializing in XS2A implementation
projects. The implementation and testing of XS2A
interfaces is mandatory for retail banks but the ambi-
tious timeline for implementing and testing the inter-
faces is a challenge. Also, when evolving the inter-
face, regression testing is necessary. Our artifact en-
ables banks to save time on the design of test cases
and to provide automatic testing facilities to TPPs.
The relevance of the problem is further highlighted
by the emergence of several start-ups and consult-
ing companies that specialize in providing testing so-
lutions for XS2A interfaces, e.g., adorsys3, Forge-

3https://adorsys.com/de/produkte/xs2a-compatibility-
test-kit/

252

Rock?, and Tietod.

Design Evaluation. We use two evaluation methods
to show the “utility, quality, and efficacy” (Hevner
et al., 2004) of our design artifact for addressing the
problem of testing XS2A interfaces. First, we con-
ducted five interviews with experts for XS2A inter-
faces and API testing to iteratively evaluate and ad-
vance the artifacts. The experts have different roles
including a product owner, a head of department,
a test manager, a software architect, and a start-up
founder and are employed at different types of or-
ganizations including a retail bank, banking service
providers, and IT service providers. Secondly, we
show the feasibility of our concept by implementing
a prototype and testing its functionality in a sandbox
setting.

Research Contributions. The research contribution
is the artifact itself, i.e., a concept and a proof of con-
struction of a test tool for testing XS2A interfaces us-
ing a predefined set of test cases. The contribution is
novel since the current practice is that banks design
their own test cases and build their own test tools,
which is error-prone and costly. Thus, with the test
tool, testing XS2A interfaces can be realized more ef-
ficiently. Furthermore, the concept can be transferred
to other areas with standardized interfaces.

Research Rigor. Research rigor means that ”The ar-
tifact itself must be rigorously defined, formally repre-
sented, coherent, and internally consistent.” (Hevner
et al., 2004). Thus, we describe the artifact as well as
any assumptions and limitations in sections 4 and 5.
Design as a Search. The design science process is
“essentially a search process to discover an effective
solution to a problem” (Hevner et al., 2004). We de-
signed the test tool concept and prototype between
December 2019 and April 2020. During that time, we
conducted expert interviews to evaluate and advance
the artifacts. Furthermore, we regularly presented our
intermediate results to our main industry partner and
discussed improvement potentials.

Communication of Research. The results of design
science need to be communicated to a technical and
managerial audience (Hevner et al., 2004), hence we
motivate the research endeavor understandably and
provide information to reconstruct the artifact in ap-
propriate settings.

“https://www.forgerock.com/open-banking-sandbox
Shttps://openbanking.api.tieto.com/



Design and Implementation of a Test Tool for PSD2 Compliant Interfaces

derived from

Test Data

Test Case

Ef—

Mapping Files

B —

Test Report

API Specification

deviates from

Test Tool
API

Figure 2: Test tool concept.

4 CONCEPT OF A XS2A
INTERFACE TEST TOOL

In this section we present the test tool concept and the
roles involved in operating the test tool.

4.1 Test Tool Concept

We assume that standardized interface specifications
and associated test cases exist. One or several banks
have implemented an XS2A interface guided by the
standardized interface specification, but the actual im-
plementations diverge from the specification. The
goal is to nevertheless test the API implementations
with the predefined set of test cases. Thus, two chal-
lenges arise that have to be addressed.

First, the structure of valid API calls can differ be-
tween the implemented API and the test cases. Our
concept addresses this issue with mapping files, that
map the structure of each implemented API endpoint
with the structure defined in the standardized speci-
fication. A mapping file describes how a standard-
ized test case is modified by the test tool to generate
a valid API request to a specific interface implemen-
tation. The mapping files are an input to the test tool
and can easily be adapted. Hence, the test tool itself
does not have to be modified if a bank changes its API
implementation or a new API is tested.

The second challenge is that the banks’ systems
store different data. If a tester executes a predefined
test case without considering the deviation in (test)
data, a test case will fail even if the bank implemented
the API functionality correctly. We address this issue
by designing the test cases in a data-driven way, i.e.,
the data is separated from the test case structure and
can easily be adapted for each API implementation.

In summary, we present a test tool concept for test-
ing APIs which use the same standardized specifica-
tion as a starting point but deviate with regards to the
implemented endpoint structure and the test data (see
Fig. 2). A standardization body prescribes the API
specification and the derived test cases. The test cases
with the corresponding test data and the mapping files
are inputs to the test tool. The test tool uses the in-
puts to generate an API call taking into account the
specifics of the actually implemented API. The test
tool then makes the API call to the implemented API
and receives a response. The tool evaluates if the re-
sponse matches the expected response and creates a
test report. The concept addresses the differences in
the endpoint structure with a mapping file and the dif-
ferences in the test data with a data-driven testing ap-
proach. Thus, the test tool itself does not have to be
adapted if an API implementation and the test data
changes or if a new API is tested.

4.2 Involved Roles

In this subsection, we present five relevant roles for
operating the test tool. The first role is the standards
provider, who creates a standard, usually in cooper-
ation with several interested parties, e.g., the Berlin
Group. The second role is the test case provider,
who derives a set of test cases from an XS2A stan-
dard. This role can be taken by an industry standard-
ization body with expertise in testing, e.g., the NISP.

The test tool provider maintains the test tool. The
test tool provider’s tasks are to adapt the test tool in
case standards change and to add new standards if
they emerge. This role should be taken by an inde-
pendent party.

The mapping file provider needs to know the
XS2A interface standard and the implemented XS2A

253



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

interface. This role could be taken by an external
party as long as the bank provides good API docu-
mentation. However, since a banks XS2A develop-
ment team knows the actual implementation best and
has studied the standardized specification, this team is
particularly suitable to create the mapping file.

Finally, the test tool user utilizes the tool to test an
XS2A interface. The test tool user needs to have the
right test data for a specific XS2A interface. Thus, the
test tool user could be a bank that wants to test their
own interfaces. Also, a TPP with an eIDAS certificate
and access to test data could use the test tool to verify
an XS2A interface functionality.

S PROTOTYPICAL
IMPLEMENTATION

In this section, we present a prototypical implemen-
tation of the concept of a test tool that enables testing
of different XS2A interfaces. Furthermore, we report
on the challenges that we encountered.

5.1 Test Tool Implementation

Assumptions. First, we want to disclose the un-
derlying assumptions of the prototype. We choose
the Berlin Group Next-GenPSD2 Framework as the
XS2A interface standard since it is a dominant stan-
dard used by many banks in Europe. Also, it is freely
accessible. The Berlin Group provides a detailed
XS2A interface specification, including the paths of
all endpoints and the methods, parameters, and pos-
sible responses for each endpoint. The Berlin Group
standard defines JSON or XML as the data exchange
format in the API request and response bodies. In our
prototype, we choose the data exchange format JSON,
since it is the most common media type used in Web
APIs (Arcuri, 2019). We use the well-recognized li-
brary REST-assured® to execute test cases.
Inputs of the Test Tool. A test tool user has to pro-
vide three types of inputs for the test tool to work.
These inputs are the test cases, the mapping files, and
a certificate. We will describe each of these inputs.
Test Cases. The test tool user has to provide the
test cases derived from the standardized XS2A inter-
face specification. The NISP’ derived test specifi-
cations from the Berlin Group XS2A specification®,
however, these test specifications are not publicly ac-

Ohttp://rest-assured.io/

7https://nisp.online/

8https://berlingroup.stackstorage.com/s/1 FBrOIC7Iquz
G35B

254

cessible. Also, no information regarding the format
of these test cases is available. Hence, we define test
specifications using a JSON schema.

The test case contains test metadata, all data nec-
essary for generating the API request to be tested,
and the expected API response. The test metadata in-
cludes a unique test ID, a test name, and a descrip-
tion. Each test case holds all information for one API
call, but the tester can indicate that several test cases
belong together in the metadata. The test tool then
executes these test cases sequentially. Being able to
execute test cases sequentially can be necessary for
XS2A interfaces since an interaction often consists of
first verifying if a client authorized an action and then
performing said action, e.g., triggering a payment.

Additionally, the test case holds all information to
create a valid API call according to the Berlin Group
specification, including the endpoint, method and pa-
rameters structure and names. Also, the test case con-
tains the expected response to the API request, i.e., a
specific status code. This information enables the test
tool to evaluate if the test was successful or not.

Mapping Files. The test service user has to pro-
vide two mapping files for each test case, a header
and a body payload mapping file. The mapping files
have two purposes. First, they provide specifics for
accessing a specific bank’s interface, e.g., the host
and port. Secondly, they account for the differences
between the standardized API specification and the
actual API implementation. The mapping files are
JSON files that use a specific notation to map vari-
ations in the naming or structure of the implemented
API and the standardized API specification. Thus, the
mapping files are basically JSON API adapters.

At this point, we will shortly describe the nota-
tion used to map two JSON structures. JSON defines
two data structures, which are objects and arrays. In
our notation, we characterize an object with its name
and a subsequent dot (.). The string after the dot is
the name of the object, array or key of a key/value
pair located inside the object. An exception is the
highest-level object, the JSON object, that is indicated
by a dot preceding the first element inside the object.
An array is described with a subsequent colon (:) fol-
lowed by a number indicating the position of the rel-
evant value inside the array. The number is followed
by a dot and the name of the object, array, or key of
a key/value pair located at that position in the array.
To make the notation clear, we present the following
example.

".customer.accounts:0.balance"

In this example, the object “customer” is located
in the JSON object. The object ’customer” contains



Design and Implementation of a Test Tool for PSD2 Compliant Interfaces

an array “accounts”, and a key/value pair with the key
“balance” is located at position 0 within the array.

We also provide an example of the mapping be-
tween two JSON schemas. The schema reflecting the
standardize API specification is placed on the left of
the colon with whitespaces around it. The schema re-
flecting the actual implementation of the APl is on the
right side of the colon.

".customer.acc:0.balance"
".customer.acclist:2.balance"

The mapping in this example accounts for differ-
ences in the naming within the JSON schemas, i.e.,
the array is named “acclist” instead of “acc”. In the
prototype, this would reflect a difference in the nam-
ing of endpoints or parameters. Also, the key/value
pair with the key “balance” is stored in the third in-
stead of the first position in the array, which accounts
for a change in the structure of the JSON schemas.

".customer.acc:0.balance"
".creditcard.customer.acc"

Also, the notation can handle more severe differ-
ences in the structures of the JSON schema as shown
in this last example. Instead of a nested structure with
an object, an array, and a key, the implemented API is
reflected in a JSON schema nesting two objects and a
key.

Certificate. Finally, the test tool user needs to
provide her ”Electronic Identification, Authentication
and Trust Services (eIDAS)” certificate in every API
request. The eIDAS certificate verifies a tester’s iden-
tity and ensures that the respective national bank-
ing regulation institution approved the tester. A re-
quest to an XS2A interface without an eIDAS certifi-
cate will invariably fail. In Germany, an organiza-
tion or tester has to undergo a complicated registration
process with the Bundesanstalt fiir Finanzdienstleis-
tungsaufsicht (BaFin) to receive the eIDAS certificate
(EBA, 2018c).

Test Tool Execution. Finally, we describe the process
of the test tool execution. First, the test tool checks
if the test service user provided all necessary inputs,
i.e., the test case, the mapping files, and a certificate.
Secondly, the test tool transforms the generic test case
specification into a test case that accounts for a bank’s
API’s specifics using the mapping files. Thirdly, the
tool generates an API request from the transformed
test case and routes it to the respective banks’ APIL
Once the test tool receives the response, the response
is modified back from the specific bank API response
to the generic Berlin Group specification. Finally, the
test tool compares the API response message to the
expected response in the test case derived from the

Berlin Group specification and determines if the test
was successful.

5.2 Limitations of the Test Tool

Overall, we implemented and tested the prototype
successfully, thus providing a proof of construc-
tion. However, we also encountered some challenges
which lead to limitations. First of all, the test tool
can currently only test XS2A interfaces based on the
Berlin Group standard. Furthermore, the test tool
is limited to testing the eight API endpoints neces-
sary for the account information service (AILS) use
case. The AIS use case entails the creation of account
holder consent and retrieval of information on the bal-
ance and transactions of the account, e.g., to create a
service providing an integrated view of the account
holder’s accounts operated by different banks.

Furthermore, since we did not have access to the
NISP test cases, we derived test cases for the Berlin
Group specification ourselves.

Another challenge is that we could not access
XS2A test sandboxes or productive interfaces of
banks. The access to these sandboxes and productive
interfaces is limited to TPPs with a valid eIDAS cer-
tificate, i.e., TPPs approved by the respective national
banking regulation institution. Since we could not ob-
tain such a certificate, we resort to testing the test tool
using a publicly available sandbox of a financial ser-
vices provider’. The sandbox is based on the Berlin
Group standard but slightly differs in some points.

Finally, the last challenge that we want to report is
the handling of the customer authentication process.
Except for a few exceptions, most use cases consist
of two steps. First, an account owner has to provide
her consent on an action performed on her account.
Afterward, the respective operation can be execute,
e.g., a payment is triggered. As part of giving con-
sent, the customer has to be authenticated by a strong
customer authentication (SCA) approach (EU, 2015).
Even though many different approaches are defined,
in most cases, a combination of a login and a One
Time Password (OTP), e.g. a TAN, is used. Automat-
ing this process in a test tool is complex.

In summary, we had to make some assumptions
and limit the test tool’s scope, mainly due to a lack of
access to specific resources.

9https://adorsys.com/de/produkte/xs2a-sandbox/

255



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

6 CONCLUSION

The PSD2 prescribes banks to provide secure ac-
cess to customer accounts via XS2A interfaces that
continuously meet predefined functional and perfor-
mance requirements. Thus, testing is essential. A
known challenge in software testing is creating test
cases since it is tedious and error-prone(Scheja and
Machielse, 2019). For XS2A interfaces, standardiza-
tion bodies have designed specifications and already
derived test cases from these specifications. However,
the standards are not legally binding, and the actual
implementations of the XS2A interfaces often deviate
from the standardized specification. Thus, banks have
to adapt their test cases or create new ones. To address
this issue, we address the research question ”"How can
we design and implement a test tool for XS2A inter-
faces exploiting existing sets of test cases?”

We answered the research question by applying
a design science research approach including inter-
views with five experts to create a concept and a pro-
totypical implementation of a test tool for XS2A in-
terfaces. We addressed the issue of interface imple-
mentations diverging from standardized implementa-
tion using mapping files. We use a simple notation to
map changes between the structure and naming of the
specification and the implementation. Furthermore,
we introduce relevant roles for operating the test tool.
A bank benefits from the artifact since it can use a pre-
defined and collaboratively developed set of test cases
for testing its XS2A interface instead of having to de-
sign test cases, which is an effortful and error-prone
task. Also, the bank can use an existing test tool and
provide access to the test tool to TPPs. Finally, the
concept can be applied to other fields with emerging
interface standards.

Several limitations of the tool have been men-
tioned in section 5.2. Thus, our future work will focus
on evaluating the test tool in a real-world setting, i.e.,
using the test cases created by the NISP and testing
the tool with a productive XS2A interface. Further-
more, we will extract general guidelines and findings
on testing standardized interfaces and evaluate them
by transferring them to other industries with interface
standards.

REFERENCES

Arcuri, A. (2019). Restful api automated test case genera-
tion with evomaster. ACM Transactions on Software
Engineering and Methodology (TOSEM), 28(1):1-37.

Bermbach, D. and Wittern, E. (2016). Benchmarking web
api quality. In International Conference on Web Engi-
neering, pages 188-206. Springer.

256

BG (2018). Joint initiative on a psd2 compliant xs2a in-
terface - nextgenpsd2 xs2a framework - operational
rules. Technical report, Berling Group. Technical Re-
port.

Bramberger, M. (2019). Open Banking: Neupositionierung
europdischer Finanzinstitute. Springer.

Cortet, M., Rijks, T., and Nijland, S. (2016). Psd2: The
digital transformation accelerator for banks. Journal
of Payments Strategy & Systems, 10(1):13-27.

EBA (2018a). Commission delegated regulation (eu)
2018/389 of 27 november 2017 supplementing direc-
tive (eu) 2015/2366 of the european parliament and of
the council with regard to regulatory technical stan-
dards for strong customer authentication and common
and secure open standards of communication (text
with eea relevance). Official Journal of the European
Union.

EBA (2018b). Final report - guidelines on the condi-
tions to benefit from an exemption from the contin-
gency mechanism under article 33(6) of regulation
(eu) 2018/389 (rts on sca & csc). Technical report,
EBA. Technical Report.

EBA (2018c). Opinion of the european banking authority
on the use of eidas certificates under the rts on sca and
csc. Technical report, European Banking Authority.
Opinion.

EU (2015). Directive (eu) 2015/2366 of the european par-
liament and of the council of 25 november 2015 on
payment services in the internal market, amending di-
rectives 2002/65/ec, 2009/110/ec and 2013/36/eu and
regulation (eu) no 1093/2010, and repealing directive
2007/64/ec (text with eea relevance). Official Journal
of the European Union.

Fertig, T. and Braun, P. (2015). Model-driven testing of
restful apis. In Proceedings of the 24th International
Conference on World Wide Web, pages 1497-1502.

Fielding, R. T. (2000). Rest: architectural styles and the de-
sign of network-based software architectures. Techni-
cal report, University of California. Doctoral disserta-
tion.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
quarterly, pages 75-105.

ISO (2013). Isofiec/ieee 29119-1: Software and systems
engineering — software testing — part 1: Concepts
and definitions — first edition 2013-09-01. Technical
report, ISO.

Kasthurirathne, S. N., Mamlin, B., Kumara, H., Grieve, G.,
and Biondich, P. (2015). Enabling better interoper-
ability for healthcare: lessons in developing a stan-
dards based application programing interface for elec-
tronic medical record systems. Journal of medical sys-
tems, 39(11):182.

Scheja, O. and Machielse, W. (2019). The nextgenpsd2
framework in a pan-european psd2 account access
context. Journal of Payments Strategy & Systems,
13(1):54-65.

Zachariadis, M. and Ozcan, P. (2017). The api economy and
digital transformation in financial services: The case
of open banking. Technical report, SWIFT Institute.
Working Paper.



