
An Empirical Study about the Adoption of Multi-language Technique in
Computation Offloading in a Mobile Cloud Computing Scenario

Filipe Fernandes S. B. de Matos1, Paulo A. L. Rego2 and Fernando A. M. Trinta2

1GOHaN Research Group, Federal University of Ceará, Crateús, Brazil
2GREat Research Group, Federal University of Ceará, Fortaleza, Brazil

Keywords: Multi-language, gRPC, Offloading, Performance Evaluation, Mobile Cloud Computing.

Abstract: Low processing capabilities and limited energy autonomy are common restrictions faced by most mobile
devices. In order to address these issues, the computation offloading technique has been proposed to transfer
tasks from low processing devices to other machines with higher computing capability. This paper presents an
empirical study on the performance of multi-language techniques in offloading procedures. Our experiments
evaluate the processing time and the energy consumed by a mobile device when executing methods of two
applications locally (on a mobile phone) and remotely (via offloading) on a server process developed using
distinct programming languages (Go, C++, Java, and Python). Google’s gRPC and Protocol Buffers were used
as a data serialization mechanism to allow offloading between client and server processes. The results show
that using a multi-language approach for offloading can reduce the processing time by up to 39 times and the
mobile device’s energy consumption by up to 96% approximately.

1 INTRODUCTION

It is widely well-known the increase in the num-
ber of mobile devices (for example, smartphones or
tablets) available in the global market in the last
decade (O’Dea, 2021). Sales growth motivated the
emergence of new applications and constant improve-
ments in the hardware of these devices. However, de-
spite all this technological progress, these devices still
have severe computational restrictions (enhanced by
the emergence of increasingly complex and demand-
ing applications in processing and storage), and issues
related to power consumption (Coulouris et al., 2011).

A recent study (Cisco, 2020) presents impressive
projections about mobile devices and applications’
demand until 2023. It reports a global increase of 5%
and 8% in the number of mobile users and connec-
tions, respectively. The same document also estimates
an increment in the number of application downloads
in the range of hundreds of billions and a more exten-
sive exploration of machine-learning techniques and
other computationally expensive procedures. Studies
like this indicate that the restrictive problems of mo-
bile devices could become more critical soon.

Computation offloading is a possible solution to
mitigate such a problem. This method allows a more
restrictive device (especially concerning computa-

tional and energetic aspects) to submit a task/method
to be processed in another equipment (less restric-
tive) via network and then receive the processing re-
sult. The offloading technique can also be applied
for storage purposes, where a more restrictive device
can send data to be persisted remotely in another ma-
chine with a larger storage capacity. The decision on
whether the offloading will be enforced locally or re-
motely depends on factors like network quality and
task complexity, for example.

There are too many programming languages avail-
able in the market. Each has peculiar features that
vary from simple technical aspects (such as the data
types and code structures available) to more complex
differences (portability or parallelism support, for in-
stance). These differences make each language better
suited to specific activities, and their programs have
different computational performances when running
the same task (Sebesta, 2012). Due to all these dis-
tinctions, developers can create systems (or part of
them) using multiple programming languages, mak-
ing communication between components a challenge.
One possible solution for this problem is the marshal-
ing/unmarshaling multi-language technique, which
consists of standardizing data representation and al-
lows programs written with different programming
languages to communicate with each other (Coulouris

B. de Matos, F., Rego, P. and Trinta, F.
An Empirical Study about the Adoption of Multi-language Technique in Computation Offloading in a Mobile Cloud Computing Scenario.
DOI: 10.5220/0010437802070214
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 207-214
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

207



et al., 2011).
This paper presents an empirical study about the

performance of offloading methods when performed
in a multi-language approach. In this method, pro-
cesses developed with different programming lan-
guages can perform computation offloading with each
other. We aim to investigate the impact caused on
the offloading performance by adopting different pro-
gramming languages on the server-side. We con-
ducted several experiments using two applications
that performed the offloading of execution methods
in processes implemented in four different languages.
The results indicate that it is possible to reduce the
processing time and the energy consumption of com-
putationally complex tasks when submitted to pro-
cesses implemented with compiled or partially com-
piled languages. The processing time in scenarios
with these types of languages was 39% lower, while
the mobile device’s energy consumption decreases up
to 96% caused by the offloading performance. The
main contributions of this work are:

1. Adapt two applications in the literature and de-
velop eight server processes (four for each appli-
cation) able to performing offloading via gRPC;

2. Contribute with new experiments and results that
indicate gRPC as a promising framework for com-
putation offloading solutions;

3. The results obtained in this paper indicate that
the adoption of a server process developed with a
non-Java programming language can provide sig-
nificant gains in computation offloading.

This work is organized as follows: Section 2 ad-
dresses related works. Section 3 contextualizes
the main concepts related to conventional offloading
and gRPC. Section 4 defines the offloading multi-
language model and presents the configurations of the
tests performed. Section 5 presents the results ob-
tained and analyzes them. Finally, Section 6 presents
the obtained conclusions and future works.

2 RELATED WORKS

There are several works in the literature related to
the offloading technique in Mobile Cloud Computing
(MCC) contexts. However, few of them on adopt-
ing gRPC as a support technology for communica-
tion between devices. To the best of our knowledge,
(Chamas et al., 2017) was the first work to conduct
a study in this direction. The authors compared the
performance of REST, SOAP, Socket, and gRPC, an-
alyzing energy consumption and total processing time

as a communication resource during offloading proce-
dures. To this end, the authors used a data sorting ap-
plication in their tests. This application consisted of
sorting data (integers, floats, or objects) using well-
known sorting algorithms (Bubble Sort, Heap Sort,
or Selection Sort). Such an application can compute
tasks locally or send them to a server process devel-
oped in Java for processing using one of the commu-
nication resources. Although this work had adopted a
wider variety of data types, it was limited to analyzing
the offloading performance using only one application
and one programming language.

(Araújo et al., 2020) conducted a specific study
about the performance of gRPC in the Internet of
Things (IoT) context. The authors evaluated the total
time spent in offloading methods in a scenario with
two applications developed in Kotlin. The first appli-
cation performs the multiplication of random matrices
with order NxN, while the second one applies differ-
ent filters to images of different resolutions. The mo-
bile device offloads its tasks to a server process devel-
oped in C++, Python, Java, Go, or Ruby and hosted in
a BeagleBone Black device. The communication be-
tween the mobile application and the server process
used gRPC. Their study performed experiments with
more than one application and more than one pro-
gramming language on the server-side. However, the
proposed test environment is somewhat atypical since
the mobile device has better configurations than the
server-side (for instance, processor and primary mem-
ory resources). In typical offloading scenarios, mobile
clients offload their tasks to more robust server de-
vices with more significant computational resources
and energy capabilities.

(Georgiou and Spinellis, 2019) conducted a com-
parative study involving three widely known inter-
process communication mechanisms: gRPC, RPC,
and REST. The authors developed client and server
applications using some of the most popular lan-
guages, such as Java, Python, and C#. The scenario
for the experiments involved machines with both In-
tel (two Desktops) and ARM architectures (two Rasp-
berry Pi), interconnected by a wired local network
(LAN). The authors analyzed the processing time of
the tasks and the energy consumption on both de-
vices. The results showed that Go and JavaScript’s
implementations had the fastest execution time and
the lowest energy consumption. Despite using more
programming languages in the development of server
and client programs, the application proposed in the
experiments was a “toy application” (a Hello World
in a Request/Response fashion). The adopted envi-
ronment is also not consistent with a typical MCC
scenario because it does not use cell phones and inter-

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

208



Table 1: Comparison between this work and related works.

Work Apps Adopted Server Languages Metrics Evaluated
Time Energy Network

(Chamas et al., 2017) Sorting Java 3 3 7

(Georgiou and Spinellis, 2019) Request/Response
(HelloWorld)

Go, Java, JavaScript, PHP,
Python, Ruby, and C# 3 3 7

(Araújo et al., 2020) Image filtering and
Matrix multiplication

C++, Python, Java, Kotlin,
Go, and Ruby 3 7 7

This work Image filtering and
Matrix multiplication C++, Go, Java, and Python 3 3 3

connects the devices through a wired network, which
tends to simplify the network’s issues.

Table 1 summarizes the comparison between the
works. This paper presents the evaluation of gRPC
as a computation offloading tool (including using a
multi-language approach) as its main contribution.
None of the related works carried out tests, including
all the following aspects simultaneously: 1) Adopt
recurrent application types in offloading tests by the
literature (Silva et al., 2016); 2) Use different types
of languages in the development of the server pro-
cess (compiled, partially compiled and interpreted);
3) Evaluate processing time, energy consumption, and
network time as performance metrics.

3 BACKGROUND

This section presents the main concepts associated
with the computation offloading and the gRPC frame-
work. Both topics are essential for a better under-
standing of the paper’s proposal and the tests.

3.1 Computation Offloading

Computation offloading is an approach where devices
with low computational power can migrate tasks for
processing in a remote execution environment (RRE)
with better computational resources (Fernando et al.,
2013). RREs vary from virtual machines hosted by
public cloud providers to traditional devices on the
same local network where the weaker device is run-
ning. However, the effective performance of offload-
ing depends typically on a decision process to evalu-
ate whether migrating the task to another device with
higher computational power is advantageous or not.
In general, this decision making involves criteria such
as (i) performance, (ii) energy savings, or (iii) both
(Kumar et al., 2013). If performing offloading is
not advantageous, the task is executed locally by the
weaker device itself.

In general, the performance has been the most
evaluated criteria by offloading solutions (Silva et al.,

2016). At this point, it is crucial to highlight that the
total time of offloading comprises, in addition to the
process execution time remotely, the time related to
sending data to the offloading target and receiving the
response from it. Thus, factors such as the quality
of the connection between the client device and the
remote server, the amount of data sent, and the re-
sponse’s size significantly impact the advantage or not
of the offloading (De, 2016).

3.2 gRPC Framework

gRPC is a framework developed by Google to sim-
plify and potentialize Inter-Process Communication
(IPC) in a distributed system (Indrasiri and Kuruppu,
2020). gRPC adopts the Client/Server model and
supports advanced features such as load balancing,
data streaming treatment, multiplexing, cryptography,
among others. Another advantage of gRPC is the ex-
tensive support for several programming languages
such as Java, PHP, Ruby, C#, Dart, and Objective-C.

The development with gRPC is similar to the de-
velopment of other traditional RPC tools. Initially,
the developer must create the interaction interfaces
between the processes and define the messages ex-
changed between them using an Interface Definition
Language (IDL) with syntax based on another Google
tool: the Protocol Buffers. The gRPC also adopts Pro-
tocol Buffers as a standard mechanism for represent-
ing its messages, as well as marshaling and unmar-
shaling them. This standardization of messages al-
lows programs developed with different programming
languages to talk to each other. So, the main objective
of gRPC is to abstract from the developer how the re-
mote invocation procedure is performed.

Once defined the interfaces and the messages, the
generated code is submitted to a compiler (specific for
each language) that produces a standard code in the
target language. With the generated code, the devel-
oper must implement the client and server processes
and the server’s services. Finally, the developer must
inform the server process IP address and port to the
client process, and the system is ready for execution.

An Empirical Study about the Adoption of Multi-language Technique in Computation Offloading in a Mobile Cloud Computing Scenario

209



4 MULTI-LANGUAGE
OFFLOADING EVALUATION

Our work conducted a performance evaluation of
the computation offloading between an Android mo-
bile device and a server process developed with dif-
ferent programming languages (C++, Java, Python,
and Go) when performed using multi-language tech-
niques. Initially, we chose the languages based on
their type and popularity: compiled (C++), partially
compiled (Java), and interpreted (Python). Later, we
selected Go because it has a different architecture
compared to other languages in gRPC (Mastrangelo,
2018). Like traditional offloading techniques, the idea
is to allow devices with computational or power re-
strictions to submit part of their processing to remote
servers with better computing resources or unlimited
power sources (i.e., directly connected to a power sup-
ply). However, the possibility that a process devel-
oped in a programming language can submit tasks
to a remote process developed in another language
differentiates the multi-language approach from the
traditional ones. By adopting the multi-language ap-
proach, developers may take advantage of features,
optimizations, and other languages’ facilities.

Like traditional offloading, multi-language of-
floading is based on Client-Server architecture too. In
architectural terms, the difference between the mod-
els is how the communication occurs among the de-
vices. As the communication involves processes de-
veloped with different programming languages (i.e.,
with different resources and forms of information rep-
resentation), the messages exchanged must follow a
pre-defined pattern and compatible with adopted lan-
guages. In this respect, the gRPC is perfect because,
in addition to standardizing remote service invoca-
tion (and the messages involved), it also supports a
wide variety of programming languages. It is essen-
tial to highlight that we could have chosen any other
multi-language communication tool for this purpose,
as long as the above requirements are satisfied.

We choose two applications to analyze the perfor-
mance of the multi-language offloading proposed in
this work: MatrixGRPC and BenchImageGRPC. We
choose these applications because they are the most
adopted by literature in tests with offloading (Silva
et al., 2016). Both applications are modified ver-
sions of two applications already used in the litera-
ture (Rego et al., 2017). The modifications consist
of adapting them to work together with gRPC. Figure
1 shows the initial screenshot of the two applications
mentioned above. The objectives with the application
choices are as follows:

• MatrixGRPC. This application computes multi-

plication between quadratic matrices. Our objec-
tive is to analyze offloading performance with a
task that requires high computational power and
large input and output parameters;

• BenchImageGRPC. This application applies a
filter in images with different resolutions. Our ob-
jective is to analyze the performance of offloading
with a common task in users’ daily lives.

(a) MatrixGRPC (b) BenchImageGRPC
Figure 1: Main screens of the applications adopted.

In MatrixGRPC, the user must choose the dimension
of the matrices, the operation to be performed, and
whether the processing must be done remotely or lo-
cally. The matrices are quadratic and also formed by
integers. Upon receiving the response, the applica-
tion displays the task’s execution time. In BenchIm-
ageGRPC, the user must choose the image, its resolu-
tion, the filter to be applied, and whether the process-
ing must be done remotely or locally (choosing the
Local or Cloudlet option, respectively). Both applica-
tions have a benchmark mode where it is possible to
perform all tests automatically.

On the server-side, it is required to highlight the
libraries and resources adopted to perform mobile de-
vices’ offloading. In addition to gRPC, we used the
following libraries: in MatrixGRPC, Gonum, Numpy,
Eigen, and Apache Math in Go, Python, C++, and
Java implementations respectively; in BenchImage-
GRPC, we used OpenCV4 as a base library for ma-
nipulating the images. In Python, Java, and Go lan-
guages, we used wrappers from the base library devel-
oped in C++, respectively, opencv-python, opencv-
java e GoCV. The adoption of libraries can skew
(positively or negatively) the implementations’ per-
formance since they tend to execute the tasks effi-

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

210



Table 2: Details of the experiment.

System
(used
devices)

Smartphone with Qualcomm Snapdragon 600 Processor (1.9GHz, Quad Core), 2GB RAM and Android
5.0.2, Notebook with Intel Core i5-5200U Processor (2.20GHz, Quad Core), 8GB RAM and Ubuntu 19.04
64 bits, A Netgear WGR612 router was used to build an exclusive 2.4 GHz wireless network between the
devices. PowerMonitor connected to the smartphone to collect energy consumption data from it.

Factors/
Levels

Applications (MatrizGRPC and BenchImageGRPC), Processing Type (Local or Remote), Programming
Languages (Go 1.14.6, Java Openjdk 8, Python 2.7.16, and C++ 5.1.0), Matrix dimension of MatrixGRPC
(400x400, 700x700, and 1000x1000) and image resolution of BenchImageGPRC (0.3 MP, 4 MP, and 8 MP).

Iterations Each experiment was performed 33 times for each combination of factors/levels. Totalizing 990 iterations
(2 applications × 5 processing types × 6 matrix dimensions or image resolution × 33 iterations).

Response
Metrics

Total time of processing, Time spent in network operations (sending and receiving data), and Energy con-
sumption of the mobile device.

ciently. Thus, implementations that use libraries tend
to perform better than those that do not. As a con-
sequence, there is also no guarantee that different li-
braries adopt the same optimizations. It is also possi-
ble to find variations in performance results between
implementations that used different libraries.

Table 2 summarizes the main configurations and
parameters of the experiments performed. The test
environment consisted of a wireless network with a
star topology and exclusive to both devices involved
in the tests. Unfortunately, because it is a widespread
frequency of use (Dolińska et al., 2017), even though
it is a dedicated network, it was not possible to isolate
it from other networks and devices that operate on the
same frequency. Thus, data transmissions were not
free from external interference and collisions, which
can delay the effective delivery of packets and gener-
ate unwanted variations in the time spent on network
operations and, consequently, in the total offloading
time. We monitored the mobile device’s power con-
sumption during offloading using the Monsoon Pow-
erMonitor equipment1.

Each application consisted of two parts: an An-
droid client hosted in the smartphone and one server
developed in Go, C++, Java, or Python hosted in the
notebook. About MatrixGRPC, the tests consisted
of multiplying matrices of integers with dimensions
400x400, 700x700, and 1000x1000. About BenchIm-
ageGRPC, the tests consisted of applying the gray fil-
ter in the same image in different resolutions (0.3 MP,
4 MP, and 8 MP). When executing the client part, it is
possible to choose whether the processing is local (on
the smartphone itself) or remote (on the notebook).
We conducted the tests 33 times for each combina-
tion of factors. For example, we repeated 33 times
the experiment in a scenario where the multiplication
of two 400x400 matrices was processed remotely by
a Go server process. The number of repetitions was
chosen according to (Jain, 1991).

We choose as metrics: 1) total processing time; 2)

1https://www.msoon.com/high-voltage-power-monitor

time spent with the network; and 3) the mobile de-
vice’s energy consumption; The total processing time
is the period between the beginning and the end of the
task execution. The task starts when the button gen-
erating the request is pressed and ends the moment
before the result display. Only one connection was
opened for each remote processing performed. The
time spent with the network consists only of the pe-
riod that involves uploading the request and down-
loading the response. It is clear that this last metric
only exists in offloading scenarios since the task’s lo-
cal processing does not use network resources.

5 RESULTS

This section presents the results of the experiments
performed with the devices and applications de-
scribed in Section 4. The results are displayed in ta-
bles and bar charts with a 95% confidence interval.

5.1 MatrixGRPC Application

The results about processing time and time spent with
the network are compiled in Figure 2. Note that,
for all matrix dimensions, all multi-language solu-
tions were faster than the respective local approach.
The Go language presented the best results among all
other languages. For instance, offloading to a process
implemented with Go reduced the multiplication time
of the 1000x1000 matrices around 39 times compared
to the local execution. In the same scenario, even
the process developed with Python language (the one
with the worst performance) reduced around 15 times
the local processing time.

In all scenarios, it is possible to notice that net-
work operations consumed most of the 50% time
spent on computation offloading, which indicates a
strong influence of the network on multi-language of-
floading performance. For all languages, we believe
that these delays caused by the network are due to

An Empirical Study about the Adoption of Multi-language Technique in Computation Offloading in a Mobile Cloud Computing Scenario

211



(a) 400x400 (b) 700x700 (c) 1000x1000
Figure 2: Total processing time and network time spent during the MatrixGRPC’s experiments. Note there is no Network
time when the filter is executed locally, and the chart uses a logarithmic scale.

Table 3: Average energy gain of the mobile device during MatrixGRPC’s experiments.

Matrix Dimension 400x400 700x700 1000x1000

Method (Language) Energy Cons
(in uAh) % Gain Energy Cons

(in uAh) % Gain Energy Cons
(in uAh) % Gain

Local (Android) 23908.68 NA 383591.64 NA 1173827.79 NA
Remote (Go) 6578.56 72.49% 19273.02 94.98% 41568.77 96.46%

Remote (C++) 6938,14 70.98% 19980,85 94.79% 42606,12 95.97%
Remote (Java) 7435,55 68.90% 23848,72 93.78% 55925,93 95.24%

Remote (Python) 8347.34 65.09% 28277.73 92.63% 67494.83 94.25%

external interference caused by other devices and/or
networks that operate on the 2.4 GHz frequency. This
fact indicates that multi-language offloading becomes
even more attractive if the network’s transmission
quality is improved.

Table 3 presents the results related to the mo-
bile device’s power consumption during the experi-
ments with the MatrixGRPC application. It also pre-
sented the percentage values of each multi-language
offloading solution with the local approach’s power
consumption as a reference (baseline). In general,
we observe that all offloading multi-language solu-
tions obtained better performances than the local ap-
proach in this metric. We observed that the multi-
language solutions reduced between 65% and 72%
the energy consumptions of the local approach in the
worst case (1MP images). In the best case (8MP im-
ages), the improvement was between 94% and 96%.
We also highlight the Go language results that showed
the most significant reductions in power consumption
in all scenarios, as well as the task’s total process-
ing time (Figure 2). We believe that this behavior
is mainly because the local approach is significantly
slower than the others. In this way, the task process-
ing consumes more time, resources, and power from
the device to be concluded.

5.2 BenchImageGRPC Application

Figure 3 shows the results about processing time and
time spent with the network of the experiments with
the BenchImageGRPC application. The results indi-
cate that all multi-language offloading solutions have
reduced local processing time by up to 5 times in sce-
narios with images with 4 MP or 8 MP resolutions. In
contrast to MatrixGRPC, for the simplest data (0.3MP
images), local processing proved to be more advanta-
geous than any multi-language solutions. Thus, the
results discourage the use of offloading for small im-
ages. Just like in the MatrixGRPC app, the time spent
with the network consumes most of the time dedi-
cated to offloading in all scenarios, especially where
the amount of data to be processed is relatively small.

Another point in these results is how libraries,
even wrappers from other libraries, can improve of-
floading performance. As already mentioned, all lan-
guages have adopted the same library for manipu-
lating images: OpenCV4. This decision provided
greater equality in the performance of languages. The
results seen with Python and Java are examples of this
performance improvement. Unlike the MatrixGRPC
(Figure 2) where such languages (mainly Python) pre-
sented the worst results, in BenchImageGRPC (Fig-

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

212



Figure 3: Total processing time and network time spent during the BenchImageGRPC’s experiment. Note there is no Network
time when the filter is executed locally, and the chart uses a logarithmic scale.

Table 4: Average energy consumption (in percentages) of the mobile device during BenchImageGRPC’s experiment.

Image Resolution 0.3MP 4MP 8MP

Method (Language) Energy Cons
(in uAh) % Gain Energy Cons

(in uAh) % Gain Energy Cons
(in uAh) % Gain

Local (Android) 3796.35 NA 40786.24 NA 84483.09 NA
Remote (Go) 4177.95 110.05% 9401.84 76.95% 18813.86 77.73%

Remote (C++) 4331.52 114.09% 10156.79 75.10% 19847.76 76.51%
Remote (Java) 4599.55 121.15% 10382.93 74.55% 21269.56 74.83%

Remote (Python) 4506.77 118.71% 9794.64 75.90% 18810.57 77.74%

ure 3), their results were very close to other languages
and, in some cases, even better (for example, those re-
lated to 0.3MP images). By allowing a greater variety
of languages on the server-side, the multi-language
approach increases the number of libraries available
for processing tasks. So, this more generous offer
enables even more significant performance improve-
ments than those seen in traditional offloading solu-
tions, where many of them are limited to only libraries
and resources supported by mobile devices.

The results of energy consumption obtained in the
experiments with the application BenchImageGRPC
are presented in Table 4. In general, it is important to
highlight the exception that occurred with 0.3MP im-
ages. In this scenario, the energy consumption when
processing the task on the mobile device was slightly
lower than processing it remotely using any of the
multi-language solutions. In the worst case, the Java
server consumed 21.15% more energy than the local
approach for this kind of image. When we compare
this result with the one presented in Figure 3, we re-
alize that the local processing time was lower than
the time of any of the multi-language approaches.
The speed when computing the task justifies this low
power consumption on the device. For larger images
(4MP and 8MP), all multi-language offloading solu-
tions showed significantly better results than the local
approach. These solutions saved between 75% and
77% energy of the device.

6 CONCLUSION AND FUTURE
WORKS

This work evaluated the performance of multi-
language techniques applied in computation offload-
ing in MCC scenarios. We have conducted experi-
ments with four server processes (developed in C++,
Go, Java and Python) that receive offloaded tasks via
gRPC, from two Android applications: multiplica-
tion of quadratic integer matrices (MatrixGRPC) and
an application that applies different filters in images
(BenchImageGRPC). In these experiments, we have
evaluated the overall processing time, the device’s en-
ergy consumption, and the elapsed network time.

The results obtained were promising for the pro-
posed technique. Regarding the task processing time
metric, the results showed a reduction in the local pro-
cessing time of up to 5 times in BenchImageGRPC
and up to 39 times in MatrixGRPC. The only ex-
ception was for the scenario that involved applying
a filter to 0.3 MP images, where the local process-
ing was slightly better than remotely. We believe
that was a consequence of the small size of the im-
ages used, making it more advantageous to process
the task locally. Considering MatrixGRPC, solutions
with servers developed with compiled languages ob-
tained better results, while in BenchImageGRPC, the
languages’ performance was very close. We believe

An Empirical Study about the Adoption of Multi-language Technique in Computation Offloading in a Mobile Cloud Computing Scenario

213



that the choice of the adopted libraries justifies this
behavior. Regarding the metrics related to the net-
work, we observed that the network has a strong in-
fluence on multi-language offloading performance. In
extreme cases, 97% of the offloading time was dedi-
cated only to network operations.

Regarding the results of the mobile device’s en-
ergy consumption, we observed that, in general, en-
ergy consumption is proportional to the task pro-
cessing time. All multi-language solutions showed
lower energy consumption than processing tasks lo-
cally, except in the scenario with 0.3 MP images
in BenchImageGRPC, where remote processing per-
formed worse than local processing. In general, com-
piled languages obtained more significant gains with
MatrixGRPC (between 70% and 96%) and similar
gains with BenchImageGRPC (close to 76%).

As future work, we plan to expand the current
tests to new applications, particularly those that use
machine learning techniques (such as facial detection
apps). We also plan to conduct multi-language of-
floading experiments in D2D (Device-to-Device) sce-
narios by performing, through gRPC, computation of-
floading between Android and iOS smartphones. We
consider comparing the performance of gRPC with
other consolidated offloading frameworks from the
literature and other multi-language frameworks (for
example, Apache Thrift and Cap’n Proto). Finally, we
also intend to explore the native support that gRPC
offers to handle data streaming and evaluate its per-
formance in applications of this type.

ACKNOWLEDGEMENTS

The authors would like to thank The Ceará State
Foundation for the Support of Scientific and Tech-
nological Development (FUNCAP) for the financial
support (6945087/2019) and the National Institute of
Science and Technology for Software Engineering
(INES).

REFERENCES

Araújo, M., Maia, M. E. F., Rego, P. A. L., and De Souza,
J. N. (2020). Performance analysis of computational
offloading on embedded platforms using the gRPC
framework. In 8th International Workshop on AD-
VANCEs in ICT Infrastructures and Services (AD-
VANCE 2020), pages 1–8.

Chamas, C. L., Cordeiro, D., and Eler, M. M. (2017). Com-
paring rest, soap, socket and grpc in computation of-
floading of mobile applications: An energy cost analy-

sis. In IEEE 9th Latin-American Conference on Com-
munications (LATINCOM), pages 1–6.

Cisco (2020). Cisco annual internet report (2018–2023)
white paper. Available in: https://www.cisco.com/
c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.
html. Access in: 11-02-2020.

Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G.
(2011). Distributed Systems: Concepts and Design.
Addison-Wesley Publishing Company, 5th edition.

De, D. (2016). Mobile Cloud Computing: Architectures,
Algorithms and Applications. CRC Press, 1st edition.

Dolińska, I., Jakubowski, M., and Masiukiewicz, A. (2017).
Interference comparison in wi-fi 2.4 ghz and 5 ghz
bands. In 2017 International Conference on Informa-
tion and Digital Technologies (IDT), pages 106–112.

Fernando, N., Loke, S., and Rahayu, W. (2013). Mobile
cloud computing: A survey. Future Generation Com-
puter Systems, 29:84–106.

Georgiou, S. and Spinellis, D. (2019). Energy-Delay In-
vestigation of Remote Inter-Process Communication
Technologies. Journal of Systems and Software.

Indrasiri, K. and Kuruppu, D. (2020). gRPC: Up and Run-
ning: Building Cloud Native Applications with Go
and Java for Docker and Kubernetes. O’Reilly Me-
dia, 1st edition.

Jain, R. (1991). The art of computer systems performance
analysis - techniques for experimental design, mea-
surement, simulation, and modeling. Wiley profes-
sional computing. Wiley.

Kumar, K., Liu, J., Lu, Y.-H., and Bhargava, B. (2013). A
survey of computation offloading for mobile systems.
Mobile Networks and Applications, 18.

Mastrangelo, C. (2018). Visualizing grpc language stacks.
Available in: https://grpc.io/blog/grpc-stacks/. Access
in: 11-02-2021.

O’Dea, S. (2021). Number of smartphones sold to end
users worldwide from 2007 to 2021. Available
in: https://www.statista.com/statistics/263437/global-
smartphone-sales-to-end-users-since-2007/. Access
in: 11-02-2021.

Rego, P. A., Costa, P. B., Coutinho, E. F., Rocha, L. S.,
Trinta, F. A., and Souza, J. N. d. (2017). Performing
computation offloading on multiple platforms. Com-
puter Communications, 105(C):1–13.

Sebesta, R. W. (2012). Concepts of Programming Lan-
guages. Pearson, 10th edition.

Silva, F. A., Zaicaner, G., Quesado, E., Dornelas, M., Silva,
B., and Maciel, P. (2016). Benchmark applications
used in mobile cloud computing research: a system-
atic mapping study. The Journal of Supercomputing,
72(4):1431–1452.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

214


