
A Comparison between Textual Similarity Functions Applied to a Query
Library for Inspectors of Extractive Industries

Junior Zilles a, Jonata C. Wieczynski b, Giancarlo Lucca c and Eduardo N. Borges d

Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, 96203-900, Rio Grande, Brazil

Keywords: Textual Similarity, Engineering Inspection, RESTful API.

Abstract: The mineral extraction industries, including oil and gas extraction, use a series of equipment that requires
several inspections before they are ready to be used. These inspections should only be carried by certified
inspectors, since the equipment works under a lot of pressure and deals with toxic and dangerous materials for
both human life and the environment, increasing the risk of accidents. In order to facilitate the search for qual-
ified professionals with different certifying techniques, this article presents the construction of a RESTful API
that implements a Web service for querying by inspectors, using textual similarity. The experiments included
48,374 inspectors, containing 74,134 certifications and 85,512 techniques. We evaluated the performance and
quality of the system using a set of distinct similarity functions.

1 INTRODUCTION

One of the most critical activities in the Brazilian mar-
itime industry is the inspection of welds, equipment,
and works. This activity involves hiring profession-
als with diverse qualifications, including specific non-
destructive testing techniques.

The inspection is an essential part of the process
of integrity management, in addition to be a resource
to monitor the performance of the structure and make
sure about its safety (Carvalho et al., 2009). Weld-
ing and gluing must be continuously monitored and
supervised at every stage of the application (Rogal-
ski et al., 2019). The testing of the welding tech-
nology (the so-called qualification) and the certifica-
tion of the personnel using the joining process allow
these requirements to be met. For this reason, many
subject standards and international and national reg-
ulations have been created that control these issues.
This approach and behavior allow us to prove that the
welding technology used guarantees the achievement
of welded or brazed joints that meet specific or as-
sumed acceptance criteria.

Consulting the enabled techniques of a specific
inspector can be done checking the website of each

a https://orcid.org/0000-0001-5748-4788
b https://orcid.org/0000-0002-8293-0126
c https://orcid.org/0000-0002-3776-0260
d https://orcid.org/0000-0003-1595-7676

certifying institution. These organizations publish
information on certified professionals and qualified
techniques in different HTML structures, and none
of them has an Application Programming Interface
(API) to retrieve the data easily. In addition, inspec-
tors are identified by separate registration numbers, or
keys, in each certifying agency. A company in need of
such professionals would search for them on all these
agencies. Also, queries are performed without con-
sidering more challenging searches. For instance, the
name searched must have the same inner construction
as the one saved in the institution’s database. Varia-
tions in spelling or typos are not considered.

The idea for this project came from a Brazilian
extraction company’s need to validate, in a single and
unified database, the records of construction projects
and assembly of extraction and processing units. The
digital records were extracted with an Optical Char-
acter Recognition (OCR) process, which may contain
errors from the pattern detection. Therefore, this ar-
ticle presents a Representation State Transfer (REST)
API for a web service that allows search of inspectors
in multiple sources, i.e. certifying institutions. Addi-
tionally, the API is able to handle typos and spelling
variations applying a set of effective and efficient tex-
tual similarity measures.

The text is organized as follows. Preliminary con-
cepts and related work are introduced in sections 2
and 3. Section 4 specifies our methodology. Last sec-
tions present the results achieved and the conclusion.

200
Zilles, J., Wieczynski, J., Lucca, G. and Borges, E.
A Comparison between Textual Similarity Functions Applied to a Query Library for Inspectors of Extractive Industries.
DOI: 10.5220/0010437202000207
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 200-207
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 PRELIMINARY CONCEPTS

Information retrieval (IR) (Baeza-Yates and Ribeiro-
Neto, 2011) is a subarea of computer science that
studies the storage and automatic retrieval of doc-
uments.Textual similarity functions (Cohen et al.,
2003) are widely used in information retrieval sys-
tems to deal with typos, spelling variations, and dif-
ferent metadata patterns. The principal use is to ref-
erence the similarity of queries and documents, of
which we want to retrieve.

Strings are lexically similar if they have a close
character sequence. They can be semantically equiv-
alent, i.e., similar based on meaning as opposed to
form (Hahn and Heit, 2015). Different types of al-
gorithms were proposed in the literature (Gomaa and
Fahmy, 2013), such as Longest Common Substring
(LCS), Levenshtein, Jaro-Winkler, n-gram, euclidean
distance, Jaccard, cosine, and Latent Semantic (LSA).

Among the main components of an IR system, the
indexer stands out. Its function is to summarize the
collection of documents and speed up the search.The
most common techniques for indexing are inverted
and signature files (Zobel et al., 1998). Relational
Database Management Systems (RDBMS) support to
index columns. They use different types of indexing
techniques, like generalized index search tree (GiST)
(Hellerstein et al., 1995) and Generalized Inverted In-
dex (GIN) (Borodin et al., 2018).

Although many different string similarity func-
tions have been proposed in the literature, only a few
allow the efficient calculation of textual similarity us-
ing the index. N-gram is an example of an indexable
function implemented by several Database Systems.

The DBMS PostgreSQL provides a module
named pg trgm, which provides functions and oper-
ators for determining similarity of string based on
3-gram matching (Shresthaa and Behrb, 2011). It
also supports indexes such as GiST and GIN for
very fast similarity searches. The module fuzzys-
tringstrmatch provides the Levenshtein distance (Lev-
enshtein, 1966), which returns the minimum number
of single-element edits required to change one string
into the other. The edit operations are insertion, dele-
tion, and substitution of a single element. To con-
vert the Levenshtein Distance in the similarity range
[0,1] we applied the equation (1), that normalize the
distance using the maximum length of the compared
strings.

sim(sa,sb) = 1−
(

lev(sa,sb)

max(len(sa), len(sb))

)
(1)

Let ζ be an alphabet and ℜ be the set of real num-
bers in the closed range [0,1]. The trigram matching

(Borges et al., 2012) is a function similarity : {ζ×
ζ} → ℜ, that receives as parameter two strings s ∈ ζ

and returns a similarity score. Equation (2) defines the
function as the ratio between the number of elements
into the intersection between the sets of trigrams
Tsa,Tsb extracted from parameters sa,sb and the union
between the same sets. This is a commutative func-
tion, because similarity(sa,sb) = similarity(sb,sa).

similarity(sa,sb) =
|Tsa ∩Tsb |
|Tsa ∪Tsb |

(2)

The function word similarity returns a score that can
be understood as the greatest similarity between the
first string sa and any of the n substrings of the second
string sbi |1 ≤ i ≤ n. Using this function, the number
of additional characters present in the second string
is not considered, except for the mismatched word
boundaries. Equation (3) defines word similarity.

word similarity(sa,sb) =
maxn

i |Tsa ∩Tsbi
|

|Tsa|
(3)

The strict word similarity function makes use of
the greater similarity in the same way as the
word similarity function with a differential of taking
into account the word boundaries. The score is di-
vided by the intersection of the trigrams Tsa and Tsb.
Equation (4) defines strict word similarity.

strict word similarity(sa,sb) =
maxn

i |Tsa ∩Tsbi
|

|Tsa ∪Tsb |
(4)

The quality of an Information Retrieval system can be
evaluated using different measures. A Recall vs. Pre-
cision curve is often used. Equation (5) defines Recall
as the fraction of relevant documents (True Positives
- TP) that are successfully retrieved by the system.
Relevant documents not retrieved are False Negatives
(FN).

Recall =
|{docsrel}∩{docsret}|

|{docsrel}|
=

T P
T P+FN

(5)

Precision is defined by Eq. (6) as the fraction of re-
trieved documents that are, in fact, relevant. False
Positives (FP) are non-relevant retrieved documents.

Precision =
|{docsrel}∩{docsret}|

|{docsret}|
=

T P
T P+FP

(6)

The Mean Average Precision (MAP) (Cormack and
Lynam, 2006) is one of the most widely-used met-
rics because it gives a single numerical value to repre-
sent system effectiveness (Turpin and Scholer, 2006).
MAP can be defined by Eq. (7), where Q is the num-
ber of queries evaluated, and the avgP is the average

A Comparison between Textual Similarity Functions Applied to a Query Library for Inspectors of Extractive Industries

201

of precision of rankings defined by the positions of
the relevant documents retrieved by a single query q.
MAP is also often used for evaluating computer vi-
sion detection algorithms (Shanmugamani, 2018).

MAP =
∑

Q
q=1 avgP(q)

Q
(7)

3 RELATED WORK

We were unable to find related work that deals explic-
itly with a library of industrial engineering inspectors.
This was precisely the primary motivation of the work
presented in this paper and shows our contribution to
the naval and extractive industry. Despite that, several
studies have similar proposals in distinct areas, pro-
viding users data from several heterogeneous sources
requiring only a single query. We selected some stud-
ies that present a solution to share research data.

GNData (Sobolev et al., 2014) tries to solve prob-
lems when sharing research data in electrophysiology.
One of the problems encountered by the authors is the
difficulty of replicating research, as metadata is in-
comprehensible or not present. A second problem is
sharing research data with other researchers. GNData
overcame this by making available data management,
an API, and client tools in most common languages.
The system stores data and metadata together, making
it easier for researchers to share.

Serpa et al. (Serpa et al., 2018) present a web ser-
vices architecture that integrates oceanographic nu-
merical modeling systems and autonomous compu-
tational systems. They highlight the need for inde-
pendence and flexibility of the services, which corre-
spond to three APIs with different processing steps.
Mazzonetto et al. (Mazzonetto et al., 2017) ad-
dress the problem of getting climatic data from the
Center for Weather Forecast and Climate Studies of
the Brazilian National Institute for Space Research
(INPE). Data is stored in binary format inside the
server, causing several issues. Researchers often need
to make changes in the program that collects data to
meet the users’ queries. They proposed to develop an
API to make the data available in an automated way.

Reisinger et al. (Reisinger et al., 2015) introduce
the PRoteomics IDEntifications (PRIDE) Archive, a
new version of the system developed to handle a mas-
sive workload since it has become a worldwide leader
repository of mass spectrometry. PRIDE allows re-
covering peptide and protein identifications, project
and assay metadata, and the originally submitted files.
Searching and filtering are also possible by metadata
information, such as sample details (e.g., species and

tissues), instrumentation (mass spectrometer), key-
words, and other provided annotations. PRIDE fully
supports the storage of tandem mass spectrometry
data (by far, the primary approach used in the field
today). However, data coming from other proteomics
workflows can also be stored (e.g., top-down pro-
teomics or data-independent acquisition approaches).

Khan et al. (Khan and Mathelier, 2017) introduce
the JASPAR RESTful API, a widely used open-access
database of curated, non-redundant transcription fac-
tor binding profiles. The authors show their solution
based on a RESTful API, which makes available data
in different formats from an input query without rely-
ing on a specific programming language or platform.

Finally, Shresthaa and Behrb (Shresthaa and
Behrb, 2011) describe a full text search functionality
in Opengeocoding.org where they tested both Post-
greSQL modules fuzzystringstrmatch and pg trgm
to build the functionality, of which they found
that fuzzystringstrmatch functions weren’t suitable to
mistyping words, and pg trgm functions weren’t fast
enough to their case which was to build a autocom-
plete full text search functionality.

As the related work presented in this section, the
proposed solution aims to provide data, employing
a web service, who can be easily accessible, allow-
ing to build applications that can use it in a simpli-
fied way. We use some technologies in common with
some of the works, which will be detailed in the sub-
sequent section. The differential of our proposal is
that the data comes from multiple heterogeneous in-
dustrial sources.

4 METHODOLOGY

This section presents our methodology to build the
query library for inspectors of extractive industries.
Firstly, we introduce the data model and the process
of collecting and harvesting data. Then, the technolo-
gies used to implement the API in a microservice ar-
chitecture are described. Finally, we present the ex-
perimental evaluation setup.

4.1 Modeling and Harvesting Data

The construction of the library of inspectors began by
gathering the essential requirements and data sources:
Brazilian Association of Non-Destructive Testing and
Inspection (ABENDI)1, Brazilian Corrosion Asso-
ciation (ABRACO)2, Brazilian Welding Technology

1https://abendi.org.br/abendi
2https://abraco.org.br

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

202

Foundation (FBTS)3, and American Petroleum Insti-
tute (APInst)4. From the analysis of these sources, we
could observe that although they are different certifi-
cation institutions, their data structure is quite similar.
It describes the attributes of a certified inspector and
the set of techniques in which he/she is qualified.

Figure 1 shows the integrated relational data
model. We stored only the name of each inspector.
An inspector certification includes the following at-
tributes: certification institution, registration number
(alphanumeric code), data source, and an optional
register date. For each institution, an inspector can
specialize in more than one technique using the same
registration number. Each technique has the fields due
date (expiration date of the specified technique), type
and an optional level, which are stored only when
the source is a databook (PDF document). We im-
plemented this model using the PostgreSQL5, since
it has similarity functions already integrated, in ad-
dition to being the most advanced open-source rela-
tional database management system.

Figure 1: Relational model of the proposed inspector li-
brary.

The next step was to create and populate the database
with valid records, which could be used to test the
API. We harvested from the certification institutions’
web pages information about all inspectors (web
scraping), and we also collected it from a set of
PDF files available by an extractive industry com-
pany. Additionally about the data sources used in the
experiments (ABENDI, ABRACO, FBTS, and AP-
Inst) are published by trusted institutions, so the data
is not usually inconsistent. We have used simple
pre-processing operations, such as: tokenization, re-
moving accents, changing to lower case, and remov-
ing characters except alphanumeric. Figure 2 shows
the flowchart of the algorithm, which was developed
using Python using the libraries beautifulsoup46 for

3http://www.fbts.org.br
4https://www.api.org/
5https://www.postgresql.org
6https://pypi.org/project/beautifulsoup4/

Figure 2: Flowchart of data collecting and harvesting.

handling HTML, camelot-py7, which extracts tables
from PDF files and transform them into datatables,
and pandas8 to handle those datatables.

4.2 RESTful API

The API allows users to query by name, registration
number, or both, returning one or more inspectors.
The results are sorted by similarity. We use the Post-
greSQL fuzzystringstrmatch and pg trgm module, the
last of which provides a set of operators and similarity
functions that compare strings with 3-gram matching
(Ščavnický et al., 2018). This package was chosen
because it allows indexing 3-grams with GiST, speed-
ing up queries (Obe and Hsu, 2012). The database
was chosen mainly because of its features and because
other services from the microservice architecture also
use the same Data Base Management System.

Consider the following example route as a query:
./inspector?name=mateus®istration=5827&limit=
1&method=ws. The arguments are: name = “ma-
teus”; registration number = 5827; limit = 1; and
method = “ws”.

Figure 3 presents the returned data in JSON for-
mat, containing a list of inspectors and their tech-
niques, collected in the certifying organizations and
the PDF files. The list is sorted by the name similar-
ity score (line 2). For each data source, a PDF file or a
website (line 9), a set of techniques is retrieved (lines
12-15).

The API was developed using Node.js9 and Swag-
ger UI Express10 for creating standard documenta-
tion. Also, it is possible to perform tests on the API
in the generated user interface.

7https://pypi.org/project/camelot-py/
8https://pypi.org/project/pandas/
9https://nodejs.org

10https://www.npmjs.com/package/swagger-ui-express

A Comparison between Textual Similarity Functions Applied to a Query Library for Inspectors of Extractive Industries

203

1 "inspector": [{
2 "similarity": 0.53846157,
3 "id": 6394,
4 "name": "Mateus Lopes",
5 "certifications": [{
6 "id": 6644,
7 "number": "12238",
8 "register": "2019-10-02

T03:00:00.000Z",
9 "source": "WEB",

10 "institution": "ABENDI",
11 "techniques": [{
12 "id": 12002,
13 "due": "2024-09-30",
14 "type": "LP-N2-G",
15 "level": null }]

}] }]

Figure 3: Ranking of inspectors returned by a query.

Finally, we adapted the services to work inde-
pendently, following the principles of microservice
architecture.This task was done by using docker-
compose11 with services in three containers: our API,
PostgreSQL, and pgAdmin412. The API was also
configured to accept requests from different sources
by means of CORS. Because our API is a part of an ar-
chitecture, we don’t need to create an interface using
technologies like Angular or React, since our main
purpose is just to make a search tool available.

4.3 Experimental Evaluation

The proposed API’s primary objective is to return
queries of inspector names and/or registration num-
bers obtained from an OCR process. In order to eval-
uate the quality of the proposed API, we performed an
experiment simulating the OCR errors. We built a set
of queries sampling the inspector database and ran-
domly replacing multiple characters in different posi-
tions of the first and last names. For each name, we
generate two distinct queries, one using the function
similarity another using word similarity. The gold-
standard dataset was composed of these queries and
the expected correct result, i.e., the original name’s
identifiers in the four web sources and all PDF files.
When there were homonyms, these identifiers also
compose the result, since we do not consider the mid-
dle names when building the queries.

We varied the parameters: the size of the sample,
the limit of documents retrieved in the ranking, the
number of random replacements per token, and the
similarity functions. Then, for each combination of

11https://www.docker.com
12https://www.pgadmin.org

the parameters, we have performed MAP. An aver-
aged 11-point precision-recall curve across all queries
was plotted concerning the best results for each simi-
larity function. We also calculated the area under the
curve (AUC). In the following section, we present all
the parameter values used in the evaluation.

We performed the experiments on a computer with
an Intel I5 8250U processor, 8 GB of RAM, and SSD
storage. The application and API were run locally,
while the PostgreSQL instance was loaded into a
Docker container inside a VM running Ubuntu Server
18.04.

5 RESULTS

The API was developed with three base routes that
made resources available through a GET request. The
first one, ./docs-api, allows access to the documen-
tation screen generated by Swagger. Figure 4 shows
the routes available with the accepted HTTP meth-
ods. The second base route is ./inspector. This route
is used to query for inspectors, given the name or
the registration number, or both information. In ad-
dition to these parameters, it is possible to inform
the limit of returned records and the similarity search
method (see Table 1): substring (lk), equality (eq),
levenshtein similarity (lv), defined by Eq.(1), 3-gram
similarity (s), defined by Eq.(2), 3-gram word simi-
larity (ws), defined by Eq.(3), or 3-gram strict word
similarity (sws), defined by Eq.(4). These last three
methods are lexical character-based similarity func-
tions based on n-grams (see Section 2). The last route
./inspector/{id} is used to return an inspector from the
database using his or her identifier.

The database feeding algorithm resulted in the in-
clusion of 48,374 inspectors, containing 74,134 cer-

Table 1: API methods for querying inspectors.

Identifier Operation
lk Query using part of the name
eq Query the name by equality,

e.g. Name = John
lv Query the name using levenshtein
s Similarity query using the function

similarity*
ws Similarity query using the function

word similarity*
sws Similarity query using the function

strict word similarity*
distance*

*Functions implemented by the modules pg trgm and
fuzzystrmatch from PostgreSQL.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

204

Figure 4: Swagger documentation screen.

tifications and 85.512 techniques. Table 2 shows the
result of time execution of the extraction algorithm
from each source. Rows are sorted by the column sec-
onds per certification. The best result was achieved by
ABRACO, which spent 0.5309 seconds per certifica-
tion, followed by ABENDI, FBTS, PDF, and APInst.
Getting data from API can be expensive because to
get all names, we need to iterate through all vowels,
which can bring us more than once the same inspector
to handle again.

Table 2: Web scraping results.

Source Time(hours) Included
certifica-

tions

Seconds
per certi-

fication
ABRACO 0.1359 922 0.5309
ABENDI 2.0797 9,007 0.8312
FBTS 0.7970 2,765 1.0377
PDF 0.0225 56 1.4512
APInst 32.5245 61,384 1.9074

∑ =
35.5596

∑ =
74,134

avg =
1.7267

The best results were achieved setting the parameters:
size of the sample = 10,000; limit of documents re-
trieved in the ranking = 20; and number of random
replacements per token = 1 and 2.

Table 3 summarizes the quality results. It shows,
for each similarity function, the Mean Average Preci-
sion considering one (MAP1) and two (MAP2) char-
acter replacements per token. As we limited the rank
to maximum of 20 documents it can be seen that the
increase of wrong characters causes the decrease of

Table 3: Best MAP and AUC results for each similarity
function, considering one and two character replacements
per token.

Function MAP1 MAP2 AUC1 AUC2
s 0.8073 0.5341 0.5786 0.2716
sws 0.6486 0.3771 0.4070 0.1699
ws 0.5661 0.3040 0.3169 0.1251
lv 0.3893 0.3298 0.1739 0.1423

the quality of the results. The best function was 3-
gram similarity (s) which achieved MAP1 = 0.8073,
and MAP2 = 0.5341. It was followed by strict word
similarity (sws) with MAP1 = 0.6486 and MAP2 =
0.3771. Finally, word similarity and Levenshtein al-
ternated 3rd and 4th place.

Figure 5 shows, for each similarity function,
the averaged 11-point precision-recall curve for the
10,000 queries with one random replacement per to-
ken. Analyzing the curves, we can see detailed re-
sults. All 3-gram based functions achieved the max-
imum recall of 90%. This behavior happens because
we limited the API to retrieve 20 positions in the
rank. Similarity (s) performed the best result drop-
ping the precision to almost 78% to achieve 10% of
recall. This precision was stable until it reaches Re-
call = 50%. After this point, the precision drops al-
most linearly. We can see an analogous behavior for
strict word similarity (sws) and word similarity (ws),
where stable levels of precision, 58 and 47%, oc-
curred up to Recall = 40 and 30% respectively. Leven-
shtein (lv) performed poorly, dropping the precision
to a value lower than 30% to achieve 10% of the rel-
evant documents. Besides, this function was able to
retrieve only 70% of them. The area under the curves,
for each similarity function, was reported in Table 3,
column AUC1.

Figure 5: The averaged 11-point precision-recall curves for
10,000 queries comparing the functions, considering one
character replacement per token.

When setting two character replacements per token,

A Comparison between Textual Similarity Functions Applied to a Query Library for Inspectors of Extractive Industries

205

we obtained the results reported in Figure 6. In this
case, levenshtein (lv), strict word similarity (sws) and
similarity (s) two of which 3-gram based functions
achieved the maximum recall of 70%. This behav-
ior happens because we limited the API to retrieve
20 positions in the rank. In this experiment, similar-
ity (s) only 3-gram similarity function (s) was able
to satisfactorily rank the correct inspectors dropping
the precision to almost 46% to achieve 10% of re-
call. This precision was stable until it reaches Re-
call = 30%. After this point, the precision drops al-
most linearly. We can see an analogous behavior
for strict word similarity (sws), levenshtein (lv) and
word similarity (ws), where stable levels of precision,
29, 24 and 21%, occurred up to Recall = 20, 20 and
10% respectively. Word similarity (ws) performed
poorly, dropping the precision to a value nearly to
20% to achieve 10% of the relevant documents. Ta-
ble 3 presents MAP2 and AUC2 scores. Considerable
quality degradation can be seen when more than one
character is incorrectly recognized by OCR. MAP de-
creased from 15% (lv) to 42% (sws) and AUC from
18% (lv) to 58% (sws).

Figure 6: The averaged 11-point precision-recall curves for
10,000 queries comparing the functions, considering two
character replacements per token.

In short, the 3-gram similarity function outperformed
the well-know Levenshtein by up to 107% consider-
ing MAP and 232% considering AUC.

The evaluation program (API client) took approx-
imately 27 hours to run the 10,000 queries. Table 4
shows the average processing time for each query and
similarity function. It is possible to notice that there is
no significant difference between max and min values
in the average time of the evaluated 3-ngram func-
tions. Levenshtein varied by 0.604 when compared to
the faster function because it does not use indexing.
This experiment also evaluated the client’s process-
ing time, which was almost irrelevant (≤ 0.0055 s)
and associated with the network delay.

Table 4: Average processing time (seconds) for each query
and similarity function.

Function Client* API Difference
s 1.0398 1.0357 0.0041
ws 1.0919 1.0878 0.0041
sws 1.0741 1.0687 0.0054
lv 1.6438 1,6383 0.0055
Difference 0.604 0.6026 0.0014
*Client program that performed the API requests.

6 CONCLUSION

In this paper, we presented the process of developing
an API for an engineering inspector search library,
motivated by a big company of extraction industry.
The implemented web service allowed search of in-
spectors in multiple certifying institutions websites
and from PDF files.

The experimental evaluation made us understand
that the 3-ngram approach using the function similar-
ity handles better for this case comparing to leven-
shtein distance, we acknowledge that there are other
approaches like using Apache Solr or Elasticsearch as
backend search engine that can in some way improve
the request time. Additionally, with the increase of
wrong letters on the searched query there will be a
decrease in results that are relevant to the search. In
our use case these results have shown to be enough
to work with, but we are going to keep checking the
results gathered when the API is going to face the real
querys with OCR problems.

The experimental evaluation shows a comparison
between four textual similarity functions. The re-
sults reported using precision-recall curves, MAP, and
AUC make it clear that 3-gram similarity function can
deal better in the simulated scenarios, therefore mak-
ing this function a better choice for dealing with OCR
interpreted words. The study showed that the require-
ments of handling variation in spelling and typos were
fulfilled.

Future work will focus on including more features
such as query by certified techniques, improving the
exception handling, improving the container to allow
database recovery automatically, deploying the API to
the cloud, and using a search engine to discover if it is
a better option. Also, a routine to update the collected
data needs to be programmed since inspectors can re-
new their certifications or leave the office. Besides,
new professionals can become certified. Finally, we
are working on adding more data sources.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

206

ACKNOWLEDGMENTS

This study was supported by CAPES Financial
Code 001, PNPD/CAPES (464880/2019-00), CNPq
(301618/2019-4), and FAPERGS (19/2551-0001279-
9, 19/2551-0001660).

REFERENCES

Ščavnický, J., Karolyi, M., Růžičková, P., Pokorná, A.,
Harazim, H., Štourač, P., and Komenda, M. (2018).
Pitfalls in users’ evaluation of algorithms for text-
based similarity detection in medical education. In
2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), pages 109–116, Poz-
nan, Poland. IEEE.

Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern In-
formation Retrieval: The Concepts and Technology
behind Search. Addison-Wesley Publishing Company,
USA, 2nd edition.

Borges, E. N., Pereira, I. A., Tomasini, C., and Vargas, A. P.
(2012). Argosearch: An information retrieval system
based on text similarity and extensible relevance cri-
teria. In 2012 31st International Conference of the
Chilean Computer Science Society, pages 133–141,
Valparaiso, Chile. IEEE.

Borodin, A., Mirvoda, S., Porshnev, S., and Ponomareva,
O. (2018). Improving generalized inverted index lock
wait times. Journal of Physics: Conference Series,
944:012022.

Carvalho, A. A., Pereira, M. C., Bouchonneau, N., Farias,
J. A. B., and Brito, J. L. F. (2009). Inspeção sub-
marina: perspectivas e avanços. Revista Tecnologia,
30(2):198–209.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003).
A comparison of string distance metrics for name-
matching tasks. In Proceedings of the 2003 Inter-
national Conference on Information Integration on
the Web, IIWEB’03, page 73–78, Acapulco, Mexico.
AAAI Press.

Cormack, G. V. and Lynam, T. R. (2006). Statistical pre-
cision of information retrieval evaluation. In Pro-
ceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’06, page 533–540, New York,
NY, USA. Association for Computing Machinery.

Gomaa, W. H. and Fahmy, A. A. (2013). A survey of text
similarity approaches. International Journal of Com-
puter Applications, 68(13):13–18.

Hahn, U. and Heit, E. (2015). Semantic similarity, cog-
nitive psychology of. In Wright, J. D., editor, In-
ternational Encyclopedia of the Social & Behavioral
Sciences (Second Edition), pages 579 – 584. Elsevier,
Oxford, second edition edition.

Hellerstein, J. M., Naughton, J. F., and Pfeffer, A. (1995).
Generalized search trees for database systems. In
Dayal, U., Gray, P. M. D., and Nishio, S., editors,
VLDB’95, Proceedings of 21th International Con-

ference on Very Large Data Bases, pages 562–573,
Zurich, Switzerland. Morgan Kaufmann.

Khan, A. and Mathelier, A. (2017). JASPAR RESTful API:
accessing JASPAR data from any programming lan-
guage. Bioinformatics, 34(9):1612–1614.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet physics
doklady, 10(8):707–710.

Mazzonetto, A., Borella, F., Chitolina, P., Tochetto, G.,
Casiraghi, J., de Oliveira, F. A. A., Chan, C. S., Pa-
van, W., and Holbig, C. A. (2017). Plataforma web
para acesso e disponibilização de dados climáticos. In
Anais do VIII Workshop de Computação Aplicada a
Gestão do Meio Ambiente e Recursos Naturais, pages
805–808, Porto Alegre, RS. SBC.

Obe, R. and Hsu, L. (2012). PostgreSQL - Up and Run-
ning: a Practical Guide to the Advanced Open Source
Database. O’Reilly, Sebastopol, CA, USA.

Reisinger, F., del Toro, N., Ternent, T., Hermjakob, H.,
and Vizcaı́no, J. A. (2015). Introducing the PRIDE
Archive RESTful web services. Nucleic Acids Re-
search, 43(W1):W599–W604.

Rogalski, G., Landowski, M., Świerczyńska, A.,
Łabanowski, J., and Tomków, J. (2019). Quali-
fication of brazing procedure for furnace brazing
of austenitic steel according to requirements of the
asme bpvc section ix. Welding Technology Review,
91(9):13–24.

Serpa, P., Weitzel, L., and Calado, L. (2018). Integração
de sistemas de modelagem numérica oceanográfica e
sistemas computacionais autônomos por meio de web
service. Revista de Sistemas de Informação da FSMA,
1(22):26–34.

Shanmugamani, R. (2018). Deep Learning for Computer
Vision: Expert techniques to train advanced neural
networks using TensorFlow and Keras. Packt Pub-
lishing Ltd, UK, 1st edition.

Shresthaa, S. and Behrb, F.-J. (2011). Implementation of
full text search for opengeocoding.org. In AGSE 2011
Applied Geoinformatics for Society and Environment
Fourth International Summer School and Conference,
volume 1, pages 81–89, Nairobi, Kenya. AGSE.

Sobolev, A., Stoewer, A., Leonhardt, A., Rautenberg, P. L.,
Kellner, C. J., Garbers, C., and Wachtler, T. (2014).
Integrated platform and api for electrophysiological
data. Frontiers in Neuroinformatics, 8:32.

Turpin, A. and Scholer, F. (2006). User performance versus
precision measures for simple search tasks. In Pro-
ceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’06, page 11–18, New York, NY,
USA. Association for Computing Machinery.

Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). In-
verted files versus signature files for text indexing.
ACM Trans. Database Syst., 23(4):453–490.

A Comparison between Textual Similarity Functions Applied to a Query Library for Inspectors of Extractive Industries

207

