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Face Presentation Attack Detection (PAD) has drawn increasing attentions to secure the face recognition sys-
tems that are widely used in many applications. Conventional face anti-spoofing methods have been proposed,
assuming that testing is from the same domain used for training, and so cannot generalize well on unseen
attack scenarios. The trained models tend to overfit to the acquisition sensors and attack types available in
the training data. In light of this, we propose an end-to-end learning framework based on Domain Adaptation
(DA) to improve PAD generalization capability. Labeled source-domain samples are used to train the feature
extractor and classifier via cross-entropy loss, while unsupervised data from the target domain are utilized in
adversarial DA approach causing the model to learn domain-invariant features. Using DA alone in face PAD
fails to adapt well to target domain that is acquired in different conditions with different devices and attack
types than the source domain. And so, in order to keep the intrinsic properties of the target domain, deep clus-
tering of target samples is performed. Training and deep clustering are performed end-to-end, and experiments
performed on several public benchmark datasets validate that our proposed Deep Clustering guided Unsuper-
vised Domain Adaptation (DCDA) can learn more generalized information compared with the state-of-the-art

classification error on the target domain.

1 INTRODUCTION

Face detection and recognition is an important topic
in computer vision, it is used in many applications
from which authentication is the most sensitive. Since
the wide spread of smart mobile devices and the in-
corporation of latest vision technologies in these de-
vices, end users find it more convenient to use their
biometric data for authentication instead of classic
passwords typing. On the other hand, this ease of
use makes it easier for attacker to spoof the authen-
tication system using pre-recorded biometric samples
of the device user. Hence, the interest in developing
reliable anti-spoofing or Presentation Attack Detec-
tion (PAD) techniques is increasing. Through the past
years, several approaches were developed in litera-
ture (El-Din et al., 2020b) starting from basic meth-
ods relying on image processing and hand-engineered
features, till approaches depending on automatically
learnt features by deep-learning.
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These approaches have succeeded to obtain per-
fect attack detection results on intra-dataset scenarios,
where the dataset is split into training and testing sub-
sets, so both subsets are coming from the same sen-
sor model and acquisition environment. However, the
main drawback of such methods is their lack of gen-
eralization to different environments and attack sce-
narios. The performance of the learnt representations
in classifying the attack from the bona-fide (real) pre-
sentation degrades significantly when test data is cap-
tured by different sensor or in different settings or il-
lumination conditions. In view of this, Domain Adap-
tation (DA) (Ganin et al., 2016) and Domain Gen-
eralization (DG) (Li et al., 2018¢c) were introduced
recently in the PAD field. The target of DG is to
learn representations that are robust across different
domains, given samples from several source domains,
such as in (Li et al., 2018a), (Shao et al., 2019), (Jia
et al., 2020). While, DA aims at adapting a model
trained on labeled source domain to a different tar-
get domain. Unsupervised DA (UDA) uses labeled
samples from a source domain and unlabeled samples
from a target domain, with a goal to achieve low clas-
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sification error on the target domain though samples
are unlabeled, by learning domain-invariant features.

For example, (Li et al., 2018b) experimented with
both hand-crafted and deep learnt features in DA,
however their approach was not end-to-end and the
deep features did not generalize well. They achieved
their best results using a combination of hand-crafted
features. Adversarial training was used in DA for face
PAD in (Wang et al., 2019) to learn an embedding
space shared by both the source and target domain
models. The training process is still not end-to-end
where source pre-training, embedding adaptation and
target classification are done separately.

In this paper, we focus on developing an end-to-
end trainable solution for PAD based on DA, which
focuses on improving the generalization of the model
for cross-dataset testing without the need for several
labeled source domains as in DG. Existing DA-based
solutions solely aim to align the distribution of an un-
labeled target domain to that of a different source do-
main, neglecting the specific nature of target domain.
Target domain in face PAD is a different PAD dataset
usually using a different device for authentication, in
addition to different attack types in different illumina-
tion conditions. So solely trying to align the distribu-
tion of such different attacks scenarios to the distribu-
tion of attack scenarios in the labeled source dataset
would not succeed, especially when the device used
for authentication in one domain, is close to the one
used for attack in the other domain, e.g. mobile de-
vice. So, we propose an approach that utilizes DA for
PAD generalization to a different domain without ne-
glecting the intrinsic properties of this target domain.
We incorporate clustering based on deeply extracted
features, for guiding the feature extraction network to
generate features that are domain invariant, yet main-
tain the class-wise separability of the target dataset.

The main contributions of this work are: (1)
proposing a novel end-to-end DA-based training ar-
chitecture for the generalization of face PAD based;
(2) utilize deep embedding clustering of target do-
main in guiding the DA process; (3) show substantial
improvement on SOTA in cross-dataset evaluation on
public benchmark face PAD datasets, with close to
0% cross-dataset error. The rest of the paper is or-
ganized as follows: Section 2 reviews the latest liter-
ature in face PAD and domain adaptation. Our pro-
posed algorithm is explained in Section 3, followed
by the experiments, benchmark datasets used and re-
sults in Section 4, then conclusions in Section 5.

2 RELATED WORK

2.1 CNN-based Face PAD

Recent software-based face presentation attack detec-
tion methods can be mainly categorized into texture-
based and temporal-based techniques. The texture-
based methods rely on extracting features from the
frames that would identify if the presented image is
fake or bona-fide. Features could be hand-crafted
features as color texture (Boulkenafet et al., 2016),
SIFT (Patel et al., 2016b) or SURF (Boulkenafet
et al., 2017) which obtained good results in differen-
tiating real from fake presentations. However, they
are often sensitive to varying acquisition conditions,
such as camera devices, lighting conditions and Pre-
sentation Attack Instruments (PAIs). Hence, the need
to automatically learn and extract meaningful fea-
tures directly from the data using deep representa-
tions, such as in (Nagpal and Dubey, 2018; El-Din
et al., 2020b).

In additional to texture-based features, temporal-
based models utilize the temporal information in face
videos for better detection of attack presentations.
Frame difference was combined with deep features
in (Patel et al., 2016a). In (Feng et al., 2016) im-
age quality information and motion information from
optical flow were combined with neural network for
classification. LSTM-CNN architecture was used
in (Xu et al., 2015) and in (Wang et al., 2018) mul-
tiple RGB frames were used to estimate face depth
information, and then two modules were used to ex-
tract short and long-term motion.

These methods obtain excellent results in intra-
dataset testing, yet still fail to generalize to unseen
environments and acquisition conditions. They show
high cross-dataset evaluation errors, hence the need to
incorporate domain adaptation techniques to decrease
the discrepancy in distributions of the domain used
for training and that used for deployment.

2.2 Unsupervised Domain Adaptation

Recently, Domain Adaptation (DA) has been intro-
duced in computer vision, to tackle the problem of
domain shift when applying models trained on a cer-
tain (source) domain to another (target) domain. Sev-
eral methods, such as (Ganin et al., 2016), rely on ad-
versarial training (Goodfellow et al., 2014) to guide
the feature extraction module to generate domain-
invariant features that make it harder for a domain dis-
criminator to decide the original domain of the sam-
ple. Specifically, unsupervised DA uses labeled sam-
ples from the source domain in addition to unlabeled
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samples from the target domain; to train a model that
reduces the classification error on the unlabeled target
domain.

Inspired by the success of DA in image classifica-
tion (Pei et al., 2018), (Long et al., 2018), (Saito et al.,
2018b), (Saito et al., 2018a), (Kurmi and Nambood-
iri, 2019), (Zhang et al., 2019), (Tang and Jia, 2020),
(Kang et al., 2020), we believe that it can be used to
address the problem of generalization in face PAD.
A model fine-tuned on certain small-sized face PAD
dataset fails to generalize when testing on different
PAD domains with different domain. The learnt fea-
tures become specific to the subjects or sensors avail-
able in the source dataset. Hence, by using domain
adaptation in face PAD, the model will be guided to
learn domain-invariant features that can differentiate
between bona-fide and attack face videos regardless
of the instance origin. However, learning domain in-
variant features can hurt classification of the target
face PAD dataset by ignoring the fine-level class-wise
structure of this target since the attack samples are
generated with different instruments, and bona-fide
samples may be captured by different sensors. Hence,
we propose to incorporate deep clustering of target
samples to constraint the model to keep the discrimi-
native structure of both classes in the target dataset.

2.3 Deep Unsupervised Clustering

Deep learning is adopted in clustering of deep
visual features since Deep Embedded Clustering
(DEC) (Xie et al., 2016). Clustering aims at catego-
rizing unlabeled data into groups (clusters). A DEC
is a method that jointly learns feature representations
and cluster assignments, where a neural network is
first pre-trained by means of an autoencoder and then
fine-tuned by jointly optimizing cluster centroids in
output space and the underlying feature representa-
tion using Kullback-Leibler divergence minimization.
Later, variants of DEC have emerged, such as (Guo
et al., 2018) which adds data augmentation.

Unlike DEC, which require layer-wise pretraining
as well as non-joint embedding and clustering learn-
ing, DEeP Embedded RegularIzed ClusTering (DE-
PICT) (Dizaji et al., 2017) utilizes an end-to-end op-
timization for training all network layers simultane-
ously using the unified clustering and reconstruction
loss functions. DEPICT consists of a multi-layer con-
volutional autoencoder followed by a multinomial lo-
gistic regression function. The clustering objective
function uses relative entropy (KL divergence) min-
imization, regularized by a prior for the frequency of
cluster assignments. An alternating strategy is then
followed to optimize the objective by updating pa-
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rameters and estimating cluster assignments. Recon-
struction loss functions is employed in the autoen-
coder to prevent the deep embedding function from
overfitting. A joint learning framework is introduced
to minimize the unified clustering and reconstruction
loss functions together and train all network layers si-
multaneously.

Recently, clustering has been introduced in sev-
eral domain adaptation methods. (Wang et al., 2019)
proposed a method to alleviate the effects of nega-
tive transfer in adversarial domain matching between
source and target representations. They proposed to
simultaneously learn tightly clustered target repre-
sentations while encouraging that each cluster is as-
signed to a unique and different class from the source.
In (Tang et al., 2020), structural domain similarity is
assumed and the clustering solution is constrained us-
ing structural source regularization. By minimizing
the KL divergence between predictive label distribu-
tion of the network and an introduced auxiliary one;
replacing the auxiliary distribution with that formed
by ground-truth labels of source data implements the
structural source regularization via a simple strategy
of joint network training.

2.4 DA in Face PAD

Domain Adaptation (DA) and Domain Generalization
(DG) have been utilized recently to reduce the gap be-
tween the target domain and the source domain during
face PAD. (Shao et al., 2019) focuses on improving
the generalization ability of face PAD methods from
the perspective of the domain generalization. Adver-
sarial learning was proposed to train multiple feature
extractors to learn a generalized feature space. They
also incorporated an auxiliary face depth supervision
to further enhance the generalization ability. Later,
a Single-Side Domain Generalization framework was
proposed in (SSDG) (Jia et al., 2020) that is end-to-
end. They proposed to learn a generalized feature
space, where the feature distribution of the real faces
is compact while that of the fake ones is dispersed
among domains but compact within each domain.

One of the first work exploring DA for face PAD
is (Li et al., 2018b) were both hand-crafted features
and deep neural network learned features are adopted
and compared in DA. (Li et al., 2018b) found that the
deep learning based methods may not generalize well
under cross-database testing scenarios, and their best
results were achieved using concatenated CoALBP
and LPQ feature in HSV and YCbCr color space.

A 3D CNN architecture tailored for the spatial-
temporal input is proposed by (Li et al., 2018a) for en-
hancing the generalization capability of the network.
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Figure 1: Architecture of the proposed Deep Clustering-guided-Domain Adaptation (DCDA) for face PAD. ¥: Feature
extraction network, 2: Domain Discriminator, GRL: Gradient Reverse Layer, C: Categories Classifier, S: Source, T: Target.
Bona-fide images are highlighted in green border, while attack images are highlighted in red. Deep Features Clustering:
predicts target pseudo-labels 7 and cluster centers Z¥. Cluster Assignment: assigns target features to clusters based on

Student’s ¢-distribution.

A robust representation across different face spoof-
ing domains is presented by introducing the general-
ization loss as the regularization term. Given train-
ing samples from several domains, the network is op-
timized such that the Maximum Mean Discrepancy
(MMD) distances among different domains can be
minimized. They performed the experiments by com-
bining three publicly available face PAD datasets to
create 10 protocols. In each protocol, data from one
camera is set aside as the unseen target domain, and
a subset of the remaining cameras are used as source
domains.

ADA (Wang et al., 2019) is the first to incorpo-
rate adversarial domain adaptation in a learning ap-
proach to improve face PAD generalization capability.
A source model optimized with triplet loss is first pre-
trained in source domain, and then adversarial adap-
tation is used for training a target model to learn a
shared embedding space by both the source and target
domain models. Finally, target images are mapped
with the target model to the embedding space and
classified with k-nearest neighbors’ classifier. How-
ever, as the first attempt to use adversarial training for
domain adaptation, the training is not performed end-
to-end. In (Mohammadi et al., 2020), authors relied
only on bona-fide samples of the target domain for
DA. They hypothesize that, in a CNN trained for PAD
given a source domain, some of the filters learned in
the initial layers are robust filters that generalize well
to the target dataset, whereas others are more specific
to the source dataset. They propose to prune such fil-
ters that do not generalize well from one dataset to
another in order to improve the performance of the
network on the target dataset. Feature Divergence
Measure (FDM) is computed to quantify the level of
domain shift at a given layer in a CNN.

(Wang et al., 2020) proposed disentangled repre-
sentation learning for cross-domain face PAD. Their

approach consists of Disentangled Representation
learning (DR-Net) and Multi-Domain feature learn-
ing (MD-Net). DR-Net learns a pair of encoders via
generative models that can disentangle PAD informa-
tive features from subject discriminative features. The
disentangled features from different domains are fed
to MD-Net which learns domain-independent features
for the final cross-domain face PAD task. They tested
single-source to single-target cross-domain PAD and
also multi-source to multi-target and obtained state
of the art results on four public datasets. Their later
work (DR-UDA) (Wang et al., 2021) consists of three
modules, ML-Net, UDA-Net and DR-Net. ML-Net
uses the labeled source domain face images to learn a
discriminative feature representation. UDA-Net per-
forms unsupervised adversarial domain adaptation in
order to optimize the source domain and target do-
main encoders jointly, and obtain a common feature
space shared by both domains. Furthermore, DR-
Net disentangles the features irrelevant to specific do-
mains by reconstructing the source and target domain
face images from the common feature space.

3 METHODOLOGY

In this section, we introduce the frameworks of unsu-
pervised DA and unsupervised clustering. Then, we
present our proposed model for UDA in face PAD.
Figure 1 shows a brief overview of the proposed ar-
chitecture.

Since the most common target platform is mobile
devices, we follow (El-Din et al., 2020a) and use lat-
est architecture of MobileNet; MobileNetV3 (Howard
et al., 2019) instead of the commonly used Resnet-
50 (He et al., 2016). MobileNet is tuned for mobile
phone CPUs which helps preserve the mobile battery
life by reducing power consumption. With ~ 80%
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less parameters, MobileNetV3 achieves comparable
ImageNet accuracy as Resnet50 with reduced infer-
ence time.

3.1 Deep Unsupervised Domain
Adaptation

Unsupervised Domain Adaptation (UDA), depends
on having a set of labeled source samples § =
{(x, y,')}?il and another set of unlabeled samples
from target domain 7 = {(x;) 1}]’:1. The goal is to
train a model that is capable of achieving low classi-
fication errors on the unlabeled target domain guided
by the labeled source samples. The feature extraction
module is trained to be able to extract features that
benefit the categories classification without differen-
tiating the domain origin of the sample.

As (DANN) (Ganin et al., 2016), adversarial
training is incorporated to guide the feature extrac-
tion module, F, to generate features that confuse a
domain discriminator, D, to not be able to determine
the domain of the input features. The categories (task)
classifier, C, is then trained on top of these generated
domain-invariant features; using the labeled source
samples, to decide the final classification label.

The task classification loss is calculated as

le

L= ﬁsi;Ly(C(T(xi))a)’i)a (1)

where L, is categorical cross-entropy loss, F is the
feature extractor network and Lj is the task classifi-
cation loss from all source samples using. Similarly,
domain discrimination loss,

1 (NAJFNI)
L;= N.+N, mgl Ld(g)(}—(xm))ydm); (2)

where L, is categorical cross-entropy loss, d, is do-
main label, zero for source samples, and one other-
wise. This loss is minimized over the parameters of
fflD while maximized over the parameters of ¥ via
the gradient reverse layer (GRL).

3.2 Proposed DC-guided UDA for Face
PAD

For handling the problem of generalization in face
PAD, we propose to use UDA, in combination with
Deep Embedding Clustering (DEC) of the unlabeled
target samples during training. Motivation for UDA
is to alleviate the shift between the source and target
domains. However, we do not want to lose the target
properties for each class.
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Aligning both source and target domains in face
PAD with source and target coming from different
sensors and attack instruments, might lead to target
samples being misclassified and shifted towards the
wrong class. For example, a target mobile attack in-
stance can be assigned to the closest source sample
which might be bona-fide class if bona-fide samples
of source dataset are captured with same instrument
(mobile device). So motivation for adding target clus-
tering is to preserve the class-wise separation of tar-
get domain samples. Which together with adversar-
ial DA, will guide ¥ to generate features that reduce
domain shift without corrupting the class-wise sepa-
rability of target domain.

Algorithm 1: Training of DCDA: Deep Clustering-guided-
Domain adaptation for face PAD.

Let {6, 0, 0} be the learnable parameters for
each model component.
Let {Z5, , Zk} be the learnable cluster centers for
bona-fide and attack classes respectively.
Input:
Labeled source videos S : (X*,Y*) and unlabeled
target videos T : (X")
Batch size: B
QOutput:
Feature extractor: 7 (-)
Classifier: C(-)
Deep Descriminative Clustering:
Fix model parameters
{20} = F () for all x5 € X
{2} = F () forallx; € X'
7K = avg({z}}) for y{ = ¢ V ¢ € {BF,A}
i ,ZEF,,Zﬁ, + k-means clustering of {zg} using
Zk s, ZK, as initial centers
for c € {BF,A} do
ZK = avg({zf}) foryi = ¢
Zé{ = avg(Zf,s,Zé‘,)
ep=0
while ep < max_epochs do
for b = 0 to iter_per_epoch do
Draw  random  batch  {(x},y)}£ .
{71
ef = 6; — Vef (L; —&-L;—I—Ld +Ltcl)
ec = GC — VQC(L; +L§-,)
0 = 05— Vo, Ly
Z¢ =7t —VulL,,¥c € {BF,A}
end for
Update target pseudo-labels ' based on {2/} dis-
tance to Z&, and ZX
ep=ep+1
end while
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3.2.1 Deep Clustering for DA

Our training follows the unsupervised deep clustering
methods (Xie et al., 2016), (Dizaji et al., 2017) which
alternates between cluster assignment while fixing
model parameters, then model update while fixing
these cluster assignment. At the start of each epoch,
k-means clustering is performed on the deep features
generated by F to generate pseudo-labels, ¥, for the
unlabeled target samples. Then, during epoch itera-
tions, two losses based on Kullback-Leibler (KL) di-
vergence (Xie et al., 2016) are minimized to update
the parameters of ¥, C and cluster centroids ZF via
back-propagation.

These learnable centroids Z* = {Zk ., ZX } for each
of the bona-fide and attack classes are re-updated at
the start of each epoch, while fixing the model pa-
rameters. Guided by the labels of source samples,
and the source features generated by the current 7,
clusters centers for the source domain; Z%;, can be ob-
tained in the embedding space. On the other hand,
for the unlabeled target samples, k-means clustering
is used on the generated latent features of all target
samples. This obtains both pseudo-labels for all tar-
get instances in training, ¥’, and clusters centers for
the target domain, Zf,. Finally, the learnable cluster
center for each class Z¥ is updated to be the mean of
both Z¥ and Z&,.

During training iterations of an epoch, target sam-
ples are used to minimize KL divergence two-way.
The loss to be minimized can be written as

Ldec = KL(Q' IP) +Lreg (3)
1 N K

== Z Z qjklogi + Z grlog g ,

jlk

where P’ is the cluster assignments for target samples
and Q' is an auxiliary target distributions, and the pur-
pose of Kl divergence minimization is to decrease the
distance between the model predicted P’ and the dis-
tribution Q. The second term follows (Krause et al.,
2010) for incorporating class balance to avoid degen-
erate solutions, where gy = N Z l 1q .

As in (Dizaji et al., 2017), optimization of loss in
equation 3 alternates between updating auxiliary dis-
tribution Q' then using Q' to update model parame-
ters. Q' is calculated in closed-form solutions as

1
o Pl (Ej Pye)? @
jk 1-
%Ptjk//(zj" Ptj/k/) 2

For further regulation of target clustering, we use the
previously estimated target pseudo-labels as part of
Q' by setting ¢; = 0.5% ¢, +0.5* 3,

Then using calculated P and Q', parameters of F
and C are updated by minimizing

l:_izijklogpjk7 (5)

t_]lk

As mentioned earlier, we use KL divergence min-
imization with target domain samples for two losses
which update parameters of feature extraction mod-
ule ¥ via backpropagation. The first loss additionally
aims to update the classifier C as well, and the second
loss updates the cluster centroids Z¥. For the first loss
(L%), we set P as the classifier prediction probabili-
ties after softmax; Pl = softmax(C(F (x;))), so that
it becomes like cross-entropy classification loss using
pseudo-labeled target samples.

For the second loss (L!,), P' is estimated using the
Student’s z-distribution to measure the similarity be-
tween target features Z' and cluster centroids Z* as
in (Xie et al., 2016)

o+l

(1415 =281 o) 2
k -l
Lo (L4l =251 /o)~ 2
Finally, the estimated pseudo-labels for target
samples are used to update the parameters of both the
feature extractor # and the classifier C by minimizing
the following task classification loss

o
je

Li=—=Y L(C(F (x))).5)), (6)

Jj=1

where Lj; is categorical cross-entropy loss.

3.2.2 Complete Model Learning

The complete end-to-end training methodology of our
proposed DC-guided-DA for face PAD is listed in Al-
gorithm 1. We use only one frame per video.

4 EXPERIMENTS AND RESULTS

4.1 Face PAD Datasets

Table 1 summarizes the total number of samples
present in each subset of the datasets used, in addition
to the Presentation Attack Instruments (PAI) used and
the sensors used in recording videos for authentica-
tion.

Replay-Attack (Chingovska et al., 2012) is one of the
earliest datasets presented in literature for the prob-
lem of face spoofing It consists of 1200 short videos
from 50 different subjects with resolution 320 x 240
from 50 different subjects. Attack scenario include
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Table 1: Number of samples per class per subset for each used PAD dataset.

Database PAI Sensor used for authentication Subset | Bona-fide Attack | Total
1) PR (A4) train 300 60 360
Replay-Attack | 2) VR on iPhone (1) Webcam in MacBook laptop | devel 300 60 360
3) VR on iPad test 400 80 480
1) PR (A3) . - -
. . 1) Webcam in MacBook Air train 90 30 120
MSU-MFSD | 2) high-def VR on'iPad | ») o ¢ Google Nexuss Mob | test | 120 84 204
3) VR on iPhone
. .. train 192 120 312
. 1) PR (A4) 1) FC of iPad Mini2 Tablet
Replay-Mobile . devel 256 160 416
2) VR on matte-screen | 2) FC of LG-G4 Mobile test 192 110 302

FC: Front-Camera, PR: Hard-copy print of high-res photo, VR: Video replay

Table 2: Results of Proposed DC-guided-DA for Face-PAD in ACER% at threshold 0.5.

train—test RA—-M RA—RM | M—RA M—RM | RM—RA RM—M | Average
Source-only 34 49.8 39.4 15.6 423 42 37.18
DA w/o clustering 29.6 472 49.25 11.35 45 2.9 30.88
DCDA w/o L; 18.35 49.2 10.40 2.25 11.65 37.80 19.94
DCDA 0 0 0.15 1.6 1.15 1.65 0.76

RA: Replay-Attack, M: MSU-MFSD, RM: Replay-Mobile

S L by S
. .
(e) M—RA) () M—RM()
X%, §;; x "
::x*}‘&ﬁ x;:",,( S
K Bk 4 g o,
s, a7 u%}* :'0:& )
S X e o e
- NS sl © e S
x o B 0% 028 2a® @™ o
5 E TP os ©
we . * g
Py %
() RAM () (d) RA—RM(**) (g) M—RA (™) (h) M—RM®*)

(k) RM—RA () (1) RM—M**)

Figure 2: t-SNE visualization analysis. Upper row (=): DA without clustering, Bottom row (). Proposed DC-guided-DA.
Blue: Source, Green: Target, o: Bona-fide, x: Attack. Best viewed in color.

4



Adversarial Unsupervised Domain Adaptation Guided with Deep Clustering for Face Presentation Attack Detection

Table 3: Comparison with SOTA in HTER%.

RA—-M M—RA Average
KSA? (Li et al., 2018b) 18.6* 23.3* 20.95
ADA (Wang et al., 2019) 30.5 5.1 17.8
PAD-GAN (Wang et al., 2020) 23.2 8.7 15.95
SSDG (Jia et al., 2020) 7.38* 11.7% 9.54
DCDA (Proposed) 0 0.15 0.08

* On concatenated CoALBP and LPQ features in HSV and YCbCr color space
** Source-domain includes two other datasets

“hard-copy print-attack”, “mobile-photo attack” and
“high-definition screen attack”. Attacks are presented
to the sensor (regular webcam) either with a "fixed”
tripod, or by an attacker holding the presenting device
(printed paper or replay device) with his/her “hand”.
MSU Mobile Face Spoofing Database (MSU-
MFSD) (Wen et al., 2015) targets the problem of face
spoofing on smartphones . The dataset includes real
and spoofed videos from 35 subjects . Two devices
were used, the webcam of a MacBook Air with res-
olution 640 x 480 and the front facing camera of a
smartphone with 720 x 480 resolution. Three attack
scenarios are used: print-attack on A3 paper, video re-
play attack on the screen of an iPad and video replay
attack on a smartphone.

Replay-Mobile (Costa-Pazo et al., 2016) was re-
leased by the same research institute that released
Replay-Attack. It has 1200 short videos from 40
subjects captured by two mobile devices at resolu-
tion 720 x 1280. Each subject has ten bona-fide ac-
cesses and 16 attack videos under different attack
modes. Two types of attack are present: photo-print
and matte-screen attack displaying digital-photo or
video.

4.2 Experimental Setup

Our experiments were performed on NVIDIA
GeForce 840m GPU with CUDA version 11.0. Bob
package (Anjos et al., 2012) was used for datasets
management and PyTorch was used for models and
training. Evaluation metrics for PAD are the ISO/IEC
30107-3:2017" metrics. Attack Presentation Clas-
sification Error Rate (APCER), Bona-fide Presenta-
tion Classification Error Rate (BPCER) and their Av-
erage Classification Error Rate (ACER) ((APCER +
BPCER)/2) is used for reporting results in the tables.

4.3 Results and Discussion

Table 2 presents results of our proposed DC-guided
UDA for face PAD on the 3 benchmark face datasets
used. Results are reported as the average ACER %

Uhttps://www.iso.org/standard/67381.htm]

of three runs, ACER is calculated on the test sub-
set of the target dataset. The first row represents
the results obtained by fine-tuning a MobileNetV3
classification network on source dataset only with-
out domain adaptation. We performed experiments
to study the influence of each model component on
the overall performance of the algorithm. Clustering
components and losses were removed and only Do-
main Adaptation was performed, results in the second
row of Table 2 show only slight improvement over
source-only trained models. Then, adding cluster-
ing components with target psuedo-labels estimation
and target clustering loss L!,, but without updating the
classifier C with target classification loss L§~,, yielded
a significant decrease in the target classification er-
ror on most datasets as shown in third row. How-
ever, though feature extraction network is trying to
learn domain-invariant features, the classifier trained
on source-samples only still fails in some cases to
achieve low errors on some target datasets. For ex-
ample, the classifier trained on Replay-Attack dataset
fails to discriminate the attack and bona-fide samples
on Replay-Mobile dataset.

Finally, the last row shows results obtained by
our full proposed DCDA framework, which achieves
near-perfect classification of the unlabeled target sam-
ples. Comparison with state-of-the art DA-based
face PAD solutions is provided in Table 3 showing
superiority of our proposed DC-guided-DA frame-
work. Furthermore, -SNE visualization analysis is
presented in Figure 2, comparing our proposed archi-
tecture, with models trained using Domain Adapta-
tion only. The visualizations show that our proposed
framework could align the classification boundaries
for both source and target datasets, it also shows the
diversity of attack and sensors types present in the
same dataset that form clusters in the same class of
the same dataset, for example Replay-Attack in Fig-
ure 2 parts 2¢, 2d, 2g and 2k.
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S CONCLUSION AND FUTURE
WORK

In this paper, we proposed an approach that exploits
unsupervised adversarial domain adaptation guided
with target clustering, in order to improve the gener-
alization ability for face PAD. Specifically, our frame-
work utilizes UDA to learn domain invariant features
that could leverage from the labeled source samples
to classify the unlabeled samples from target domain.
Yet, the approach succeeds to preserve the intrinsic
properties of the target domain via deep clustering of
target embedding features. Our approach is trained
in an end-to-end fashion and succeeds to reach per-
fect adaptation to the target domain when evaluated
on public benchmark datasets, reaching only 0 - 2%
cross-dataset error. Our future work would focus on
evaluating on more variable datasets, in addition to
reducing the dependency of the model during training
on target domain samples from both classes, trying
to let the model focuses on learning from bona-fide
samples with minimal attack samples contribution.
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