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Abstract: In this paper, we propose a novel approach for malware detection by using description logics learning algo-
rithms. Over the last years, there has been a huge growth in the number of detected malware, leading to over
a million unique samples observed per day. Although traditional machine learning approaches seem to be
ideal for the malware detection task, we see very few of them deployed in real world solutions. Our proof-
of-concept solution performs learning task from semantic input data and provides fully explainable results
together with a higher robustness against adversarial attacks. Experimental results show that our solution is
suitable for malware detection and we can achieve higher detection rates with additional improvements, such
as enhancing the ontology with a larger amount of expert knowledge.

1 INTRODUCTION

In recent years, machine learning algorithms have
been increasingly applied to solve various problems
in the application domains such as image classifica-
tion or natural language processing. With an alarm-
ing rate of unique malware samples observed in the
wild every day, machine learning approaches are con-
sidered to be the final solution to malware detection
instead of traditional signature based algorithms.

In fact, there has been a lot of research focused
on using machine learning algorithms in malware de-
tection, utilizing static features, dynamic features or
their combinations. Hassen et al. (2017) used the
random forest algorithm with static features extracted
from disassembled malicious binaries. Kilgallon et al.
(2017), on the other hand, used dynamic features
in the form of an API calls made by the monitored
binary and applied various machine learning algo-
rithms such as SVM, decision trees or neural net-
works. Íncer Romeo et al. (2018) introduced an ad-
versarially robust classifier based on monotonic static
features and gradient boosting decision trees. Raff
et al. (2017) proposed a slightly different approach,
where they used whole binaries as an input into con-
volutional neural networks. An interesting approach
proposed by Nataraj et al. (2011), transformed a mali-

cious binary into a gray scale image and adopted tra-
ditional algorithms used in computer vision for mal-
ware classification.

Despite the potential of machine learning algo-
rithms and high accuracies reported in the literature,
we see few, if any, deployed in the real world systems
(Smith et al., 2020). Separating malicious and benign
binaries is a hard problem, therefore we argue that it
is most likely impossible to create a deployable clas-
sifier without enhancing our detection mechanisms
with a large amount of expert knowledge. Previously
mentioned approaches used either feature engineer-
ing techniques, to craft a vector representation, suit-
able for machine learning algorithms or used whole
binaries (and their transformations). Traditional vec-
tor representations often lack semantics and a lot of
valuable information is lost during the transformation
process. Solutions that are not using feature engi-
neering and apply the whole binary in an appropri-
ate form as an input, often rely on the fact that ma-
chine learning algorithms should automatically learn
the features. However, executable files lack proximity
relationships and continuity that are present in other
domains (Smith et al., 2020). Hence, in the image
classification domain, if two neighboring pixels have
similar values, the algorithm would assume a proxi-
mal relationship. In binaries, on the other hand, in-
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structions can jump to a different location in the code
section and the values next to each other can have sig-
nificantly different meaning. Saad et al. (2019) iden-
tified a few challenges that limit the success of ma-
chine learning based classifiers. That is: using larger
amount of smaller classifiers (specialized for different
malicious behaviors) instead of a single classifier, in-
terpretable results and robustness against adversarial
attacks (Kolosnjaji et al., 2018).

In this paper, we propose a proof-of-concept mal-
ware detection technique based on description logics
learning algorithms. Compared to traditional machine
learning techniques, our solution works on a semantic
input space and implicitly provides fully interpretable
decisions. Our experimental results show that de-
scription logics learning is in fact suitable for malware
detection systems and can achieve even higher accu-
racies with larger and richer ontologies, while main-
taining the explainability and to some degree robust-
ness against adversarial examples.

This paper is organized as follows. In Section 2,
we describe concept learning algorithms in descrip-
tion logics. In Section 3 we discuss our ontology we
used during the learning process. Section 4 describes
the malware dataset we used in our experiments and
its transformation to a semantic dataset annotated by
an ontology. Section 5 is devoted to evaluation of our
results. Finally, in Section 6 we summarize the re-
sults and ideas which we aim to further investigate in
the future.

2 DESCRIPTION LOGICS
LEARNING

In this section we describe basics of description log-
ics and knowledge bases. Next, we discuss the fun-
damentals of a concept learning problem. Lastly, we
briefly describe our approach and compare the work-
flow with a traditional machine learning approach.

2.1 Description Logics

Generally, description logics (DLs) are a family
of formal knowledge representation languages used
mainly for expressing structured knowledge about
a specific domain (Baader et al., 2003). DLs are
based on three disjoint sets of basic elements: con-
cepts NC = {A,B, ...}, referring to classes of enti-
ties; roles NR = {R,S, ...}, denoting a binary rela-
tionships between individuals of a domain; individ-
uals NI = {a,b, ...} referring to instances of concepts.
More complex concepts can be built by using a set
of various operators such as conjunction, disjunction,

etc. The set of provided operators determines the ex-
pressiveness of a particular language.

In DLs, the specific domain knowledge is modeled
using terminological axioms (TBbox), assertional ax-
ioms (ABox) and relational axioms (RBox). TBox
represents intensional knowledge between the con-
cepts such as Av B (A is subsumed by B). ABox con-
tains assertions about named individuals. Such facts
are called concept assertions such as A(a) (the indi-
vidual a belongs to the class A) and role assertions
R(a,b) (the individual a is in the relation that is de-
noted by R to the individual b). RBox refers to addi-
tional properties of roles such as Rv S (R is a subrole
of S) and in our work it is considered to be a part of a
TBox.

Hence, a DLs knowledge base K is defined as
a couple K = (T ,A), where T is the TBox and A
refers to the ABox.

2.2 Concept Learning Problem

Concept learning can be defined as follows (Lehmann
and Hitzler, 2010). Suppose we have a knowledge
base K = (T ,A), a target concept C and a training
set T = Ps∪Ns, where Ps are positive examples and
Ns are negative examples. The goal of the learning
algorithm is to find a concept description D, which
approximates C, such that:

∀a ∈ Ps : K |= D(a) (1)

∀b ∈ Ns : K |= ¬D(b) (2)

Generally, the concept learning algorithms can be de-
fined as a search process in the space of all the pos-
sible concepts. These algorithms use a so called re-
finement operator, which returns a set of more spe-
cific concepts (in case of a downward operator) from a
given concept and heuristics to control how the search
tree is traversed.

For our experiments we investigated two learning
algorithms: OCEL (OWL Class Expression Learner)
and CELOE (Class Expression Learning for Ontol-
ogy Engineering). Both are implemented in DL-
Learner, which is considered to be the state of the
art framework for supervised machine learning in DL
(Bühmann et al., 2018).

OCEL is the most basic concept learning algo-
rithm. It uses the ρ refinement operator (Lehmann,
2010). The Algorithm provides various techniques to
cope with redundancy and infinity by revisiting nodes
in the search tree several times and performing addi-
tional refinements.

CELOE is a variation of the OCEL algorithm.
It uses the same refinement operator, but different
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heuristics that are biased towards shorter concepts. As
the algorithm was designed mainly for ontology engi-
neering, shorter concepts are usually more useful for
enhancing knowledge bases.

Except from previously mentioned algorithms,
there are more approaches that are yet to be fully
supported by the DL-Learner framework. Tran et al.
(2012) proposed the PARCEL algorithm; parallel im-
plementation of a concept learning algorithm. Hua
and Hein (2019) presented an interesting hill climb-
ing heuristics for concept learning. Rizzo et al. (2016)
proposed new DL concept learning algorithms in-
spired by the traditional decision trees that can also
handle uncertainty in the dataset. There are also simi-
lar systems to DL-Learner, such as DL-FOIL (Fanizzi
et al., 2008) and its variation for fuzzy DLs (Straccia
and Mucci, 2015).

2.3 Approach

We can see our approach in Figure 1. Compared to
traditional machine learning approaches, first step is
the same; that is preparing the dataset. It is important
to have a quality dataset, which is sufficiently repre-
sentative. Specifically in our case, this step includes
gathering the benign/malicious binary samples.

One of the most important step in our workflow is
ontology modelling. As we will see in the next sec-
tions, designing a rich ontology that is suitable for DL
concept learning algorithms is a crucial step. More
details are provided in Section 3.

When we have our dataset prepared and the final
ontology is designed, binary samples from the dataset
have to be mapped in the ontology to create the final
knowledge base. Usually the data is in the different
format, so the samples have to be mapped to the cor-
rect format used by the ontology.

Training phase is again similar to traditional ma-
chine learning approaches. We can divide our dataset
into the training and the testing set. The training set
is used by a DL concept learning algorithm, which in-
crementally produces better and better class descrip-
tions until a sufficient accuracy is achieved.

The final output is in the form of a class expres-
sion (or alternatively a set of the most successful class
expressions), that can differentiate between malicious
and benign samples with a reasonably high accuracy.
Using the final class expressions on previously unseen
samples is similar as in the previous steps. We sim-
ply map the samples into ontology, creating a small
knowledge base and applying the class expressions.
If the sample is satisfied by the class expression, we
consider it to be a malware. Otherwise, we label it as
a benign application.

Figure 1: Description logics learning workflow.

3 ONTOLOGY DESIGN

As we mentioned earlier, designing an ontology is
a crucial step. During our experiments we designed
many models, starting from an overly generalized on-
tology, representing all aspects of a PE file with high
amount of classes, object properties and data proper-
ties. However, we found out that these kind of on-
tologies are too complicated for DL concept learn-
ing algorithms and we simply cannot expect to find
a sufficient concept description in a reasonable time.
Inspired by the work of Oyama et al. (2019), we re-
duced the complexity and added more granularity into
PE imports, creating a subclasses that group together
various imports that are used in a similar context.
Some examples include process manipulation func-
tions (e.g. CreateProcess, ExitProcess) or file manip-
ulation functions (e.g. ReadFile, WriteFile). With
these modifications, the results got better, nonethe-
less we also tried different approaches. We came to
the conclusion that we need to inject more semantics
and expert knowledge into the ontology, as we still
worked with features that are not sufficiently discrim-
inative between malicious and benign behaviour.

Our final ontology can be seen in Figure 2. It fea-
tures 15 classes, 9 object properties and 3 data prop-
erties. We decided to include the following main con-
cepts:

• Debug. This feature represents the fact that the
binary has debugging symbols. In many cases,
malware authors are stripping debugging symbols
from their executables, as they are used mainly
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during the development and their presence in the
deployed binary significantly helps with reverse
engineering.

• TLS. Thread-local storage is a special section in
PE files that enables malware authors to run code
stealthily before the original entry point.

• Signature. Official benign applications use sig-
natures to prove their non-maliciousness to the
operating system. Although signatures used to
be present solely in benign applications, in recent
years the malware authors are slowly finding their
ways on how to sign their binaries.

• Section. We also defined the concept of sections
in our ontology. This includes three additional
concepts representing facts that section has high
value of entropy, nonstandard section name (i.e.
name that is not usually generated by the most
common compilers) or has a read/write/execute
permissions enabled. These concepts are present
in an ontology mainly for detecting packed bina-
ries. Packers are popular tools that enable to hide
the original functionality of a binary (Marpaung
et al., 2012).

• Malicious Behavior. We decided to group the
imported functions based on a malicious behav-
ior they are used for. In total, we defined 6 dis-
tinct concepts. For example, anti-debug repre-
sents functions that are used for hindering the
dynamic analysis, such as IsDebuggerPresent or
OutputDebugString or load API, for dynamically
loaded API functions (common for packers) such
as LoadLibrary or GetProcAddress (Sikorski and
Honig, 2012).

It is important to note that the presented ontology is
only a proof-of-concept model. Additional concepts
can be added or existing concepts can be extended to
add more granularity into the ontology. For instance
we can define an injection concept and model various
injection techniques such as DLL injection, Reflective
DLL injection or Process Hollowing as its subclasses
(Mohanta and Saldanha, 2020).

Modelling an ontology is the most important step
in our approach. While creating an appropriate model
requires a lot of effort, well designed ontology should
be sufficiently universal for a specific domain. In
our case, the presented model is general for static
malware features and various datasets can be eas-
ily mapped to the ontology. Additionally, when new
trends emerge in the malware domain, ontology can
be easily extented by introducing new concepts.

4 DATASET

For our experimental purposes we have decided to use
data from the EMBER dataset (Anderson and Roth,
2018). This dataset is a collection of statically ex-
tracted features from approximately 1.1 million be-
nign/malicious Windows executables. During the last
few years EMBER has emerged as one of the most
popular datasets and various research has been done
regarding the feature usefulness (Oyama et al., 2019).

Each sample in the dataset consists of a single
JSON file describing various features of a Portable
Executable (PE) file. Features are organized in the
following categories:

• General File Information. These set of fea-
tures are dedicated to a more general file infor-
mation such as virtual/raw size, number of im-
ported/exported functions, presence of a signa-
ture, etc.

• Header Information. This category contains var-
ious information from the Common Object File
Format (COFF) and Optional headers such as tar-
get machine, timestamps, linker version, etc.

• Section Information. Various properties of the
sections contained in the executable. These prop-
erties include section name, entropy or virtual
sizes.

• Imported Functions. This list contains imported
library functions organized by the library.

• Exported Functions. Similar to previous section,
this category includes list of exported functions.
These are usually included only in dynamic link
libraries.

Despite the large amount of different features for each
file, we have decided to use only a fraction of them,
based on our expert knowledge and their usefulness
in terms of malicious/benign file separation and their
suitability for DL representation (more on this in Sec-
tion 3). Traditional machine learning approaches that
use EMBER dataset, usually vectorize the whole fea-
ture space, which leads to almost trivial adversarial
examples generation simply by modifying/appending
a few bytes in an executable.

The malware classification problem is known for
its class imbalance issue. Huge case study was made
by Li et al. (2017), where they showed that distribu-
tion of benign/malicious files in the real world fol-
lows approximately 80:1 ratio. However, it is still an
open research question on how to correctly prepare
the datasets in terms of their malware/benign binaries
distribution. We have decided to prepare 4 training
sets and 3 testing sets of various distributions. Prop-
erties of datasets that we used can be seen in Table 1.
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Figure 2: Ontology for static malware features.

(∃has tls.{pe tls})t (≥ 3has malicious behaviour.¬load api) (3)

(∃has malicious behaviour.(dll in jectiont registry persistence))t (∃has tls.{pe tls}) (4)

Figure 3.

5 RESULTS

This section is devoted for discussion about our ex-
perimental results.

As we mentioned in previous sections, we evalu-
ated our approach with 4 training and 3 testing sets
(with various benign/malware samples distribution),
using two concept learning algorithms that is OCEL
and CELOE.

Results from the training phase can be seen in Fig-
ure 4. Although we selected a time window of 10 min-
utes, all the tests were run for exactly 1 hour. This is
mainly because we noticed the largest gains in terms
of accuracy, during the first 4 minutes. The training
accuracy continued to grow, however we observed a
radical slowdown after the initial 0 to 4 minutes. This
trend was observed in all tests. We can immediately
see that in all cases, the training accuracy starting
value was based on the percentage of malware sam-

ples we used in a particular dataset. The reason be-
hind this fact is that we defined malware binaries as
positive examples and the most simple concept that
can describe these examples with some value of ac-
curacy is the top concept > (which is usually the root
node in the traversal tree). Hence, if we use a dataset
with 10% of positive examples, > concept can differ-
entiate between positive and negative examples with
an accuracy of 10%. We can see that the OCEL algo-
rithm achieved higher training accuracies compared
to CELOE. This is mainly because the CELOE al-
gorithm heuristics implicitly prefer shorter class de-
scriptions that should be not suitable in malware ap-
plication domain as we need more complex concepts.
Although we can see that the accuracies are much
closer to each other with an increasing percentage of
malware samples in the dataset. It is also important
to note that while we used datatype properties in the
ontology, we disabled numeric and string constructors
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Table 1: Properties of datasets used during the experiments.

Name Malware Benign Class
assertions

Object property
assertions

Data property
assertions

Testing set T1 500 500 5674 7600 9324
Testing set T2 200 800 5796 7244 9598
Testing set T3 800 200 5693 8023 9362
Training set A 1000 9000 57 068 69 730 94 112
Training set B 2000 8000 57 030 71 434 94 036
Training set C 3000 7000 57 082 72 902 94 140
Training set D 6000 4000 57 791 78 391 95 558

Table 2: Accuracies detected for various class expressions.

A(OCEL) A(CELOE) B(OCEL) B(CELOE) C (OCEL) C (CELOE) D(OCEL) D(CELOE)
T1 66.20% 55.90% 66.20% 55.90% 66.60% 60.30% 66.40% 60.30%
T2 82.40% 40.10% 82.40% 40.10% 76.50% 54.40% 72.40% 54.40%
T3 54.80% 72.27% 54.80% 72.27% 79.70% 67.8% 60.10% 67.80%

for the refinement operator ρ, since they proved to be
very problematic during the learning process and in-
stead we defined concepts such as high entropy and
nonstandard section name. Despite that we kept that
information in the ontology for more explainability.

We can see some of the most successful class de-
scriptions in (3) and (4). Class description (3) can
be directly interpreted as follows: a binary is mali-
cious if the TLS section is present or if it has at least
three malicious behaviors, except dynamic API load-
ing. Second class expression (4) can be interpreted
similarly: binary is malicious if it has a malicious
behavior that is either DLL injection or registry per-
sistence or if the TLS section is present. So we can
see that from the limited training dataset we used,
concept learning algorithms considered concepts such
as TLS or malicious behaviour important in terms of
malware/benign separation.

Then, we applied the most successful class de-
scriptions learned from various training sets to 3 dif-
ferent testing sets, which contained samples that were
not used during the training phase. We can see the
results in Table 2. As expected, the OCEL algo-
rithm performed much better almost in all cases. Al-
though at first glance the results may seem average,
especially compared with the state of the art ma-
chine learning classifiers, we consider them to be very
promising. It has to be noted that the experiments
were done with limited dataset and more importantly,
limited ontology. We believe that with richer and
more complex ontology we can achieve similar re-
sults as current classifiers, while offering additional
properties. As previously mentioned, one of the prop-
erties is full explainability. Another property is higher
robustness against adversarial attacks. Current ma-
chine learning classifiers are vulnerable against var-

ious forms of attacks, especially in the static detec-
tion that includes appending bytes to binaries, adding
imports or perturbating unused sections (Suciu et al.,
2019). These attacks would simply not work even for
our smaller class expressions. In order to evade our
class expression based classifier, the attacker would
need to get rid of the TLS section or rewrite the orig-
inal code, so that it uses dynamic loading (however
this behavior may be also learned as dangerous in case
of previously mentioned possible improvements). So
there are definitely methods of evasion, however, they
come at a higher cost.

6 CONCLUSION AND FUTURE
WORK

Our work has led us to the conclusion that DL concept
learning algorithms are in fact suitable for malware
detection. Further possible improvements have to be
investigated in the future research, which include:

• Ontology Enhancement. As we mentioned in
previous sections, in order to achieve higher ac-
curacy and robustness, we need to inject more ex-
pert knowledge. This includes specifying various
additional malicious properties as concepts or ex-
panding different concepts into subclasses.

• Larger Datasets. Since our work is mainly proof-
of-concept, we used relatively small datasets for
training and testing. This could be the main rea-
son why various concepts included in our ontol-
ogy were ignored in the final class expressions.
Using larger amount of samples could improve
DL heuristics and lead the algorithm to find addi-
tional malicious patterns, hence producing more
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(a) Training set A . (b) Training set B .

(c) Training set C . (d) Training set D .

Figure 4: Training results for various datasets.

complex and robust class expressions.

• Parallelism. In this work we explored two differ-
ent DL concept learning algorithms, that is OCEL
and CELOE. However, both algorithms suffer in
terms of performance, as they are both imple-
mented as single threaded applications. There are
two parallel algorithms available in DL-Learner,
such as PCELOE or PARCEL, although currently,
they are not fully supported. Since the DL con-
cept learning is a search problem, utilizing more
threads would potentially result in traversing more
concepts, hence leading to better class descrip-
tions in the same time.

• Fuzzy Ontology. Some concepts in our ontology,
such as high entropy, were specified based on a
threshold value. This kind of concepts are how-
ever more suitable for representation in fuzzy log-
ics (supported to some degree by DL-Learner).

Similar fuzzy functions could be also applied to
additional features present in an EMBER dataset,
such as number of exports, amount of strings rec-
ognized as registry values, etc.

In this paper we investigated static malware features,
although presented approach could be in similar man-
ner applied to a dynamic features or even various sys-
tem events (Balogh and Mojžiš, 2019). Lot of re-
search focus on static malware detection, however, it
is still questionable, if various static binary proper-
ties provide enough information for malware/benign
separation, due to the large amount of different ob-
fuscation techniques. An interesting approach was
proposed by Biondi et al. (2019), where they used
static features and machine learning only for detect-
ing packed binaries, as the packers are mainly used
in malicious samples. Various DL concept learning
algorithms could be potentially also applied for this
kind of objective.
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