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Abstract: Flexible job shop scheduling problem (FJSP) is one of important issues in the integration of research area and 
real-world applications. The traditional FJSP always assumes that the processing time of each operation is 
fixed value and given in advance. However, the stochastic factors in the real-world applications cannot be 
ignored, especially for the processing times. In this paper, we consider FJSP model with uncertain processing 
time represented by fuzzy numbers, which is named fuzzy flexible job shop scheduling problem (F-FJSP). We 
firstly review variant FJSP models such as multi-objective FJSP (MoFJSP), FJSP with a sequence dependent 
& set time (FJSP-SDST), distributed FJSP (D-FJSP) and a fuzzy FJSP (F-FJSP) models. We secondly survey 
a recent advance in hybrid genetic algorithm with particle swarm optimization and Cauchy distribution 
(HGA+PSO) for F-FJSP and hybrid cooperative co-evolution algorithm with PSO & Cauchy distribution 
(hCEA) for large-scale F-FJSP. We lastly demonstrate the HGA+PSO and hCEA show that the performances 
better than the existing methods from the literature, respectively. 

1 INTRODUCTION 

The scheduling problem is an important research 
topic as it is an interface between typical 
combinatorial optimization problems (COP) in the 
research area and application models in real-world 
production systems (Palacios et al 2015). Shop 
problems receive particular attention because they 
can model many situations and describe the flexibility 
of production systems (Pinedo 2016). Flexible job 
shop scheduling (FJSP), which is an extended version 
of job shop scheduling (JSP), is a typical shop 
problem and is widely studied and applied. FJSP can 
be viewed as a combination of two subproblems: the 
operation sequence (OS) problem, which means 
sequencing all operations of jobs in a reasonable 
order, and machine assignment (MA) problem, which 
means assigning the suitable and available machine 
for each ordered operation. Each operation processed 
on different machines has a different machine has a 
different processing time.  
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Most researchers assumed that the processing 
time of job was a determined value. In fact, this 
assumption is too idealistic as uncertain and 
ambiguous factors cannot be ignored in actual 
production systems (Behnamian 2016). By modeling 
parameters in scheduling problems as fuzzy numbers 
such as a triangle fuzzy number (TFN), fuzzy 
scheduling can help incorporate flexibility into 
scheduling algorithms, and make the scheduling model 
meet the needs of users (Guiffrida & Nagi 1998).  

Recently, Gao, et al (2019) reported a review on 
swarm intelligence and evolutionary algorithms for 
solving flexible job shop scheduling problems 
including fuzzy and uncertain FJSP Models. Gu, et al 
(2019) proposed an improved genetic algorithm with 
adaptive variable neighbourhood search method for 
solving FJSP. Gao, et al (2020) proposed a 
differential evolution (DE) algorithm improved by 
selection mechanism for solving fuzzy job-shop 
scheduling problem in which the processing time and 
due date of operation can be expressed by fuzzy 
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numbers. Shi, et al (2020) proposed immune genetic 
algorithm for solving a MoFJSP with fuzzy 
processing time.  Lin, et al (2019) proposed a hybrid 
multi-verse optimization for solving the fuzzy FJSP 
and Zhu and Zhou (2020) proposed a multi-micro-
swarm leadership hierarchy-based optimization 
algorithm for solving the FJSP with job precedence 
constraints and interval grey processing time. It is 
very important to analyse recent papers published on 
solution methods of Fuzzy FJSP models for creating 
a future research direction and applying them to the 
real-world practical problems in the manufacturing or 
logistics systems based on the hybrid evolutionary 
algorithms (HEA).   

In this paper, we firstly review variant FJSP 
models such as multi-objective FJSP, FJSP with a 
sequence dependent & set time (FJSP-SDST), 
distributed FJSP (D-FJSP) and fuzzy FJSP (F-FJSP) 
models. We secondly survey a recent advance in 
hybrid PSO with GA and Cauchy distribution 
(HGA+PSO) for F-FJSP and hybrid cooperative co-
evolution algorithm with PSO & Cauchy distribution 
(hCEA) for large-scale F-FJSP. Lastly we demonstrate 
the HGA+PSO and hCEA show that the performances 
better than the existing methods from the dataset of 
FJSP and large-scale F-FJSP, respectively. 

2 FLEXIBLE JSP MODELS 

The FJSP consists of two sub-problems: machine 
assignment and operation sequencing (Garey et al 
1976 & Brucker et al 1990). The former is to select a 
machine from a candidate set for each operation while 
the latter is to schedule all operations on all machines 
to obtain satisfactory schedules. The FJSP is very 
complex and has been proven to be an NP-hard 
problem (Jain et al 1998). Here is a reason to use a 
metaheuristic such as a genetic algorithm (GA) for 
treating JSP or FJSP models (Gen et al 1994 & 
Kacem et al 2002). 

Recently hybrid genetic algorithms (HGA) are 
proposed to solve the complex re-entrant scheduling 
problem with time windows constraint in 
manufacturing HDD devices with lot size. This 
problem can be formulated as a deterministic 
Fm|fmls, rcrc, temp|CMAX problem for finding the 
scheduling operations of machines in a flow-shop 
environment processing fmls job family with the 
objective of minimizing the makespan, CMAX. 
(Chamnanlor et al 2013). Sangsawang, et al (2015) 
proposed metaheuristics optimization approaches for 
solving the two-stage reentrant reentrant flexible 
flow-shop scheduling (RFFS) problem with blocking 

constraint (FFS|2-stage,rcrc,block|Cmax) in which 
they applied a hybrid GA and a hybrid particle swarm 
optimization (HPSO) with Cauchy distribution. 

2.1 Flexible Job-shop Scheduling 
Models 

Gen, et al. (1994) proposed a genetic algorithm for 
solving the job-shop scheduling problem (JSP). 
Cheng, et al. (1996 & 1999) reported a tutorial survey 
of JSP using genetic algorithms: representation and 
hybrid genetic search strategies, respectively. 

Flexible job-shop scheduling problem (FJSP) is 
an extension of the traditional job-shop scheduling 
problem, which provides a closer approximation to 
real scheduling problems. The FJSP can be viewed as 
a combination of two subproblems: the operation 
sequence (OS) problem, which means sequencing all 
operations of jobs in a reasonable order, and machine 
assignment (MA) assignment problem, which means 
assigning the suitable and available machine for each 
ordered operation. Each operation processed on 
different machines has a different processing time. 
The maximum completion time of the jobs is defined 
as makespan. The objective is to minimize the 
makespan by optimizing the OS and MA. In the job-
shop scheduling problem (JSP), there are n jobs that 
must be processed on a group of m machines. Each 
job i consists of a sequence of m operations (oi1, oi2, 
…, oim), where oik (the k-th operation of job i) must be 
processed without interruption on a predefined 
machine mik for pik time units. The operations oi1, oi2, 
…, oim must be processed one after another in the 
given order and each machine can process at most one 
operation at a time. In a flexible job-shop, each job i 
consists of a sequence of ni operations (oi1, oi2,…, oini 
). The FJSP extends JSP by allowing an operation oik 
to be executed by one machine out of a set Aik of given 
machines. The processing time of operation oik on 
machine j is pikj > 0. The FJSP problem is to choose 
for each operation oik a machine M(oik) ∈ Aik and a 
starting time sik at which the operation must be 
performed. Wang, et al (2012) reported a hybrid 
genetic algorithm combined a population 
improvement strategy for solving the multi-objective 
FJSP. The flexible job shop scheduling problem is as 
follows: n jobs are to be scheduled on m machines and 
each job i contains   ni ordered operations. 

The multiobjective FJSP (Mo-FJSP) model 
minimizing 1) the makespan, 2) the maximum 
machine workload and 3) the total workload, will be 
formulated as a multiobjective mixed integer 
programming (MoMIP) model as follows (Gen, 
Cheng & Lin 2008). 
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The objective functions accounts Eq. (1) is to 
minimize the makespan, Eq. (2) is to minimize the 
maximal machine workload (i.e., the maximum 
working time spent at any machine), Eq. (3) is to 
minimize the total workload (i.e., the total working 
time over all machines). Inequality (4) states that the 
successive operation has to be started after the 
completion of its precedent operation of the same job, 
which represents the operation precedence 
constraints. Eq. (5) states that one machine must be 
selected for each operation. Inequality (6) is a 
disjunctive constraint, where one or the other 
constraint must be observed. Eqs. (7, 8) are variable 
restrictions. Gao, Gen and Sun (2006) developed a 
new hybrid GA to solve the flexible job-shop 
scheduling problem with non-fixed availability 
constraints. Gao, Gen, Sun and Zhao (2007) proposed 
a hybrid of genetic algorithm combined the bottleneck 
shifting for solving multiobjective flexible job-shop 
scheduling problems, Gao, Sun and Gen (2008) also 
proposed a hybrid genetic algorithm (HGA) 
combined with variable neighbourhood descent 
(VND) method for solving multiobjective FJSP 
model. Gen, Gao and Lin (2009) reported a 
multistage-based genetic algorithm (MSGA) with 
bottleneck shifting developed for treating the 
multiobjective FJSP model. Recently Gong, Deng, 
Gong and Liu (2018) proposed a memetic algorithm 
(MA) for solving multi-objective flexible job-shop 
problem with worker flexibility in which the MA is 
one of evolutionary algorithms. 

2.2 SDST and Distributed FJSP Models 

Most researches of the job-shop scheduling problems 
ignored the setup times or considered them as a part 
of the processing time. However, in many real-life  
situations such as chemical, printing, pharmaceutical 
and automobile manufacturing, the setup times are 
not only often required between jobs but they are also 
strongly dependent on job itself (sequence 
independent) and the previous job that ran on the 
same machine (sequence dependent). Hence, 
reducing setup times is an important task to improve 
shop performance (Azzouz, et al 2016). The FJSP has 
been widely studied by various methods, however, 
few papers have considered this problem with setup 
In this Subsection, we introduced the FJSP with a 
sequence dependent setup times (SDST). The realistic 
application based on the FJSP-SDST model SDST 
constraints will be considered manufacturing 
scheduling systems for the TFT-LCD (thin-film 
transistor-liquid crystal display) in Section: TFT-
LCD Module Assembly Scheduling (Chou et al 
2014). 

The distributed and flexible jobshop scheduling 
problem (DFJSP) is a multi-factory manufacturing 
environment and a manufacturing system comprising 
several sub-systems (also called manufacturing cells) 
in which each cell is a flexible job-shop. DFJS 
examples can be a multi-factory network in which 
factories are geographically distributed, and can be a 
multi-cell plant where several manufacturing cells are 
located in the same plant. To reduce overall 
completion time, the assignment of jobs to cells is 
very important because it shall affect cell loading 
profiles. In summary, a DFJS problem involves three 
scheduling decisions: 1) job-to-cell assignment, 2) 
operation sequencing, and 3) operation-to-machine 
assignment (Liu et al 2014).  

In the FJSPs, it involves the following problems:  
1) the operation sequence for each machine;  
2) the precedence constraints for the operations 

involved in a job; and  
3) machine selection with due consideration of 

machine capability constraints.  
DFJSPs can be considered as an extension of 

FJSPs, but also the selection of suitable factories or 
flexible manufacturing units since assigning specific 
jobs to different factories results in dissimilar 
production schedules, in which influences the supply 
chain (Liu et al 2014). Recently, Lu et al (2018) 
proposed a new and concise chromosome 
representation which models a 3-dimensional 
scheduling solution for solving distributed and flexible 
job-shop scheduling problem (DFJSP) models.  
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Table 1: List of Fuzzy FJSP or Uncertain FJSP models and methodology. 

Authors (year) Mathematical or 
Problem models Objectives Methodology Journal or 

Proceedings 
Tsujimura, Gen, Kubota 
(1995) 

Fuzzy-JSP 
Triangle Fuzzy Num Fuzzy makespan Genetic Algorithm J. Japan Soc. of Fuzzy 

The. & Sys. 

Kuroda, Wang (1996) Fuzzy-JSP Fuzzy makespan Genetic Algorithm Int. J. Prod. Econ. 

Sakawa, Mori (1999) Fuzzy-JSP 
Fuzzy Due Date Makespan Genetic Algorithm Comput. & Ind. Eng. 

Niu, Jiao, Gu (2008) Fuzzy-JSP Makespan Hybrid Particle Swarm 
Opt. & GA Appl. Math. Comput. 

Lei (2010a) FJSP, Fuzzy processing 
time Fuzzy makespan Genetic Algorithm Int. J. Prod. Res. 

Lei (2010b) FJSP, Fuzzy processing 
time Fuzzy makespan Swarm Intelligence, 

neighborhood search Comput. & Ind. Eng. 

Lei (2010c) F-JSP, Fuzzy 
processing time Fuzzy makespan Random key genetic 

algorithm 
Int. J. Adv. Manuf. 
Technol. 

Wang, Gao, Zhang, Li 
(2012) 

Mo-FJSP, Fuzzy 
processing time Tardiness, makespan Multi-objective Genetic 

Algorithm 
Int. J. Comp. Appl. 
Technol. 

Lei (2012) FJSP, Fuzzy processing 
time Fuzzy makespan Co-evolutionary genetic 

algorithm Appl. Soft Comput. 

Zheng, Li, Lei (2012) Mo-FJSP, Fuzzy 
processing time Makespan, Tardiness Multiobjective swarm, 

neighborhood search 
Int. J. Adv. Manuf. 
Technol. 

Lei, Guo (2012) FJSP, Fuzzy processing 
time Makespan Swarm Intelligence, 

neighborhood search Int. J. Prod. Res. 

Wang, Wang, Xu and 
Liu (2013) 

Mo-FJSP, Fuzzy 
processing time Fuzzy makespan Estimation of 

Distribution Algorithm Int. J. Product. Res. 

Li, Pan (2013) FJSP, Fuzzy processing 
time Fuzzy makespan Hybrid discrete PSO Int. J. Adv. Manuf. 

Technol. 
Hao , Lin, Gen and 
Chien (2014) 

Bi-criteria stochastic 
JSP Makespan, Tardiness Markov Network based 

EDA 
Proc. IEEE Conf. Auto. 
Sci. & Eng. 

Xu, Wang, Wang, Liu 
(2015) 

FJSP, Fuzzy processing 
time Fuzzy makespan Teaching-learning 

based Optimization Neurocomputing 

Xu, Wang, Wang and 
Liu (2015) 

FJSP-Fuzzy processing 
time Fuzzy makespan,  Teaching–Learning 

based Optimization Neurocomputing 

Palacios, Gonzlez,  
Vela, et al (2015a) 

FJSP-Fuzzy processing 
time Fuzzy makespan Coevolutionary EA Fuzzy Sets. Syst. 

Palacios, Gonzlez,  
Vela, et al (2015b) 

FJSP-Fuzzy processing 
time Fuzzy makespan  Genetic tabu search Comput. & Oper. Res. 

Hao, Gen, Lin and Suer 
(2017) 

Bi-criteria stochastic 
JSP Makespan, Tardiness Multiobjective EDA J. Intelligent Manuf. 

Jamrus, Chien, Gen, 
Sethan (2018) Fuzzy FJSP Fuzzy makespan Hybrid PSO + GA + 

Cauchy distribution 
IEEE Trans. Semicon. 
Manuf.  

Sun, Lin, Li, Gen 
(2019) Stochastic FJSP Expected makespan Cooperative Co-EA 

MRF-based decomp. Mathematics 

Lin, Zhu, Wang (2019) Fuzzy FJSP Fuzzy makespan Hybrid multi-verse 
optimization (HMVO) Comput. & Ind. Eng. 

Sun, Lin, Gen, Li 
(2019) Fuzzy FJSP Fuzzy makespan Cooperative Co-

Evolution algorithm 
IEEE Trans. Fuzzy 
Systems 

Gao, Wang, Pedrycz, 
(2020) 

Fuzzy Job-shop 
Scheduling Problem 

Fuzzy makespan and 
due date 

DE algorithms with 
selection mechanism 

IEEE Trans. on Fuzzy 
Systems 

Shi, Zhang, Li (2020) Mo-FJSP Fuzzy Makespan and 
Energy consumption 

immune genetic 
algorithm 

Int. J. Simulation 
Modelling 

Zhu, Zhou (2020) FJSP-Interval grey 
processing time 

Fuzzy makespan, Inter. 
grey makespan 

Multi-micro-swarm 
leadership hierarchy Comput. & Ind. Eng. 
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3 FUZZY OR UNCERTAIN FJSP 
MODELS 

The traditional FJSP always assumes that the 
processing time of each operation is fixed value and 
given in advance. However, the stochastic factors in 
the real-world applications cannot be ignored, 
especially for the processing times (Hao et al 2014, 
Sun et al 2019). The fuzzy number can be 
transformed into an interval number on the basis of a 
cut set such as a triangle fuzzy number (TFN). It 
translates interval data into real number data through 
a specific pre-processing procedure, and then carries 
out principle component analysis for a real number 
data set. In practice, processing times can be more  
accurately represented as intervals with the most 
probable completion time somewhere near the middle 
of the interval. A fuzzy number which is essentially a 
generalized interval can represent this processing 
time interval exactly and naturally. The fuzzy number 
typically represents more information than an interval 
number does.  

An overview of the articles on fuzzy or stochastic 
FJSP based on the genetic algorithms or related 
metaheuristics is given in Table 1. For each article it 
separated by Authors, Mathematical or Problem 
models, Objectives, Methodology, and Journal or 
Proceedings without sequence dependent setup times 
(SDST) or distributed FJSP models. 

4 FUZZY FJSP MODEL BY 
HGA+PSO+CAUCHY 

Since the production for semiconductor wafer 
fabrication changes rapidly, a scheduling solution 
must be able to obtain a near-optimal solution within 
a short time that has crucial effects on the overall 
efficiency of semiconductor manufacturing (Wang et 
al 2015). Indeed, most of wafer fabrication machines 
can perform multiple operations, while the processing 
time depends on the selected machines. Furthermore, 
wafer fabrication scheduling is increasingly 
complicated, since multi-chamber machines 
equipped with advanced process control and 
advanced equipment control. Here is a reason to 
combine a fuzzy theory with the manufacturing 
(Jamrus et al 2018).  

4.1 Mathematical Model of Fuzzy FJSP 

In the fuzzy FJSP, each job i consists of a sequence 
of ni operations, an operation oik will be executed by 

one machine out of a set Aik of given machines. The 
fuzzy processing time of operation oik on machine j is 
˜pikj with a positive integer. The FJSP needs choosing 
for each operation oik a machine M(oik) ∈ Aik and a 
starting time sik that the operation must be performed. 
For formulating a F-FJSP model to find the job 
sequence which minimizes the makespan with fuzzy 
processing time, we assume is the following issues: 
1) Each job is processed on one machine at a time.  
2) Every machine processes only one job at a time.  
3) The setup time for the operations is sequence 

independent and are included in the processing 
time.  

4) The operation sequence of a job is specified in 
advance.  

5) There are no precedence constraints among 
operations of different jobs.  

6) The operations are not pre-emptive once an 
operation has started. That is, it cannot be 
stopped until it has finished. 

The typical fuzzy flexible job-shop scheduling 
problem (F-FJSP) model minimizing a fuzzy 
completion time is formulated as a mixed nonlinear 
integer programming (MNIP):  

}~max{~min M incc =                     (9) 
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Eq. (9) is used to minimize the maximum flow time. 
Inequality (10) ensures that operations are indexed in 
the order they are processed. Eq. (11) states that one 
machine could be selected from the set of available 
machines of the operation. Inequality (12) ensures 
that two operations are not overlapping if both of 
them are assigned on the same machine. Eqs. (13) and 
(14) are variable restrictions.  

To solve a fuzzy FJSP in which the max operation 
of two triangular fuzzy numbers (TFNs) are the 
plainness and flexibility of the fuzzy arithmetic 
operations and the ranking method of fuzzy numbers, 
the addition operation is used to calculate the fuzzy 
makespan of an operation. The max operation is used 
to determine the fuzzy beginning time of an 
operation, in which the ranking method is to compare 
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the maximum fuzzy makespans and we can refer it for 
the detailed procedures (Jamrus et al 2018).  

4.2 Hybrid GA with PSO & Cauchy 
Distribution 

Particle Swarm Optimization (PSO) as one of 
evolutionary algorithms (EA) is a randomized 
population-based optimization method based on the 
simulation of social iterations by the flocking 
behavior of birds and human social interactions 
(Kennedy 1997 and Yu & Gen 2010). It is initialized 
with a population of random candidate solutions as 
particles (Kennedy & Eberhart 1995). It combines a 
local search according to self-experience and a global 
search according to neighboring experience, thus 
demonstrating high search efficiency. The position of 
each particle such as the kth particle xk(t) is a potential 
solution of the problem. Each particle remembers the 
best position thus far during the search process 
(hbestk), and knows the global best position of the 
swarm (gbest). The particle’s fitness can be calculated 
by entering its position in a designated objective 
function as shown in the following equations: 

))()(())()(()()1( 2211 txtgrctxthrctvtv kkkkk −+−+=+   (15) 

)1()()1( ++=+ tvtxtx kkk                (16) 

where hk(t): the historically local best position of the 
kth particle, g(t): the global best position of the 
swarm, c1 and c2: positive constants, called the 
acceleration constants, r1, r2 ∈ [0,1]: uniform random 
numbers. The PSO is to find optimal regions of 
complex search spaces through the interaction of 
individuals in a population of particles.  

However, PSO cannot yield good solutions for 
large scale problems including high-dimensional 
variables. For solving this problem, a basic idea 
proposes new mutation operation by using the effective 
particles moving by the Cauchy distribution. The 
Cauchy distribution has a Gaussian-like peak wing that 
imply occasional long jumps among local sampling. 
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where uk(t) and sk(t) are variables from updating each 
position k in generation t according to the Cauchy 
distribution for evaluating each particle and updating 
the hbestk and gbest values of the current particle. 

Pseudocode of the hybridized PSO with GA and 
Cauchy distribution designed as follows (Figure 1): 

 
Algorithm: HGA+PSO for Fuzzy FJSP (minimize 

makespan) 
Input: problem data and PSO (f(x), vk(0), [hbestk], gbest, b1, 

b2) and GA parameters (popSize, maxGen, pM, pC) 
Output: the best solution: gbest  
Process: 
1: t <- 0; 
2: initialize xk(t) by operation & machine-based encoding;  

P(t) ={xk(t)} 
3: evaluate xk(t) by decoding and keep the best solution; 
4: while (not terminating condition) do end; 
5:     for each particle xk(t) in swarm do 
6:        update velocity vk(t+1) using (15); 
7:        calculate uk(t+1) and sk(t+1) using (17) and (18); 
8:     update position xk(t+1) using (19) & adjust xk(t+1)  

by rounding routine; 
9:        evaluate xk(t+1) by decoding routine; 
10:      if f(xk(t+1)) < f(hbestk) then 
11:          update hbeslk = xk(t+1); update the local best; 
12:   end 
13:   if f(xk(t+1)) < f(gbest) then  
14:      update gbest = xk(t+1); update the global best  
15:   P(t) = xk(t+1) & create offspring C(t) from P(t) by WMX; 
16:   create offspring C(t) from P(t) by insertion mutation; 
17:   check-and-repair C(t) for feasible solution; 
18:  evaluate C(t) by decoding routine and update best 

solution gbest; 
19:    reproduce P(t+1) from P(t) and C(t) by selection;  
19:    t <- t+1; 
20: end; 

 
Figure 1: Pseudocode of the hybrid PSO with GA and 
Cauchy distribution. 

4.3 Numerical Experiment by 
HGA+PSO 

Six problems were generated and all problems 
represented different numbers of jobs, operators, and 
machines. Each problem was characterized by the 
following parameters: number of jobs (n), number of 
machines (m), and each operation oik of job i. One 
problem instances were a 3×3 problem consisting of 
three jobs and three machines as shown in Table 2. 
 

Table 2: 3×3 problem consisting of 3 jobs & 3 machines. 

Processing time M1 M2 M3 
J1 O11 (4,6,7) (1,2,3) (1,2,4) 

O12 (3,5,6) (1,2,4) (1,3,4) 
O13 (5,8,9) (2,3,4) (1.2.3) 

J2 O21 (1,2,3) (2,4,5) (5,6,7) 
O22 (2,5,6) (2,3,4) (1,2,3) 
O23 (4,6,7) (1,2,4) (1,3,5) 

J3 O31 (4,8,9) (2,4,6) (1,2,3) 
O32 (5,7,9) (3,4,7) (1,2,3) 
O33 (2,3,5) (1,2,3) (1,2,4) 
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In addition, the benchmarks of instances 1 and 2 (Jia 
et al 2014)  were selected for fuzzy processing time, 
for which the author used a decomposition integration 
genetic algorithm (DIGA).   

To demonstrate the efficiency and effectiveness of 
the HGA+PSO in solving a fuzzy FJSP with uncertain 
processing time, each numerical experiment was 
performed 10 time with maxIter = 500. Moreover, the 
PSO parameters for the numerical experiments 
included number of particles = 50. For the GA, the 
probability of crossover was 0.8 and the probability 
of mutation was 0.2. The proposed algorithms were 
run using Matlab on a 2.10 GHz PC.  

The performance of PSO and HGA+PSO was 
evaluated using test problems of different sizes. The 
computational results from comparing the best and 
average makespans of each solution were derived. 
The best scheduling of the 3×3 problem was achieved 
by using the HGA+PSO and is shown in Figure 2. 
However, the combined approach obtained average 
computational time for the best solution.  

Table 3 presents ANOVA results, which show a 
36.78% improvement from the fuzzy flexible job-
shop scheduling. The percentage improvement 
differed significantly from actual practices at the 95% 
reliability level and yielded a P value less than 0.05. 
The parameter describing this difference was the 
fluctuation of demand at 60% of an average of which 
yielded the highest average improvement. 

 
Figure 2: The best solution of problem 3x3 by HGA+PSO. 

Table 3: Results of ANOVA Analysis. 

No. Factor Average value of fuzzy 
makespan [unit time] 

% of 
imp.

Pro. %  PSO HPSO+GA 
1-5 1 20 55.50 32.00 42.34
6-10 1 40 55.84 32.53 41.75

11-15 1 60 58.04 28.75 50.47
16-20 2 20 65.89 45.89 30.36
21-25 2 40 66.64 45.48 31.75
26-30 2 60 66.10 46.06 30.33
31-35 3 20 78.21 51.42 34.25
36-40 3 40 78.23 50.20 35.84
41-45 3 60 80.84 53.45 33.89

Average 67.26 42.86 36.78

The HGA+PSO were a combination of PSO and 
GA. The advantages of PSO are intelligent and easy 
derivation of the solution and that it can be combined 
with the Cauchy distribution for effective particle 
movement. The advantage of HGA+PSO is that it 
finds the solution quickly and the better solution is 
acceptable. Thus, the HGA+PSO outperform the 
conventional approaches for solving an FJSP under 
uncertain processing time. 

5 LARGE-SCALE FUZZY FJSP 

Most researchers assumed that the processing time of 
job was a determined value. In fact, this assumption 
is too idealistic as uncertain and ambiguous factors 
cannot be ignored in actual production systems 
(Behnamian 2016). Fuzzy sets can provide a bridge 
between classical problem models and the needs of 
users in real-world applications. Moreover, fuzzy sets 
have contributed to enhancing the robustness and 
applicability of scheduling (Palacios et al 2015). By 
modelling parameters in scheduling problems as 
fuzzy numbers, fuzzy scheduling can help incorporate 
flexibility into scheduling algorithms, and make the 
scheduling model meet the needs of users (Ouelhadj 
et al 2009).  

The increasing scale of FJSP models results in an 
exponential increase in the size of the solution space. 
Therefore, the performance of traditional EAs always 
decrease with the increasing problem size, as shown 
in Figure 3 (Sun et al 2019). To overcome high 
dimensional issues, a divide-and-conquer (D&C) 
strategy is a natural approach. Recently, the 
cooperative coevolution (CC) framework has become 
popular in the research area of high dimensional 
optimization, especially for large- scale mathematical 
function optimization (Wang et al 2018). 

5.1 Mathematical Model of Fuzzy FJSP 

In the FJSP, a number of jobs must be scheduled 
according to a given sequence of all operations and 
assigned the corresponding machines involving the 
various constraints. As mentioned early section, the 
FJSP consists of two subproblems: OS and MA. The 
objective is to find a schedule with minimum 
makespan Cmax. The assumptions are as follows:  
1) Each job is only processed once and the 

processing time involves the transfer and setup 
times.  

2) Each operation can be processed on any available 
machine.  
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3) Each machine can only process one operation at 
a time without interruption.  

4) There exist predetermined precedence 
constraints among operations within a job.  

5) Machine breakdowns are not considered. The 
processing time in Fuzzy FJSP is represented as 
a triangular fuzzy number (TFN).  

The objective of F-FJSP is to find a schedule with 
the minimum fuzzy makespan. For the detailed 
operation on the triangular fuzzy number, we can 
refer several references such as Gen and Cheng 
(2000) and Sun, Lin, Gen and Li (2019). 

 
 

 

 

 

 

 

Figure 3: Trend chart of algorithm performance. 

A nonlinear mixed integer programming model is 
used to formulate F-FJSP and the detail is shown as 
follows: 

]}}~[max{max{max]~[min max
T

ikjjki
tECE =    (20) 

ikj
S

ikj
T

ikj ptt ~~~where +=  

     
=

∀≤
m

j
ikj kix

1
,1.t.s             (21) 

  )1(,,~~~
)1( −∀≥− − kkjiptt ikj

T
jki

S
ikj           (22) 

    
jtxtx

txtx

ii

ii

n

k

S
jikjik

n

i

n

k

T
ikjikj

n

i

n

k

S
jikjik

n

i

n

k

S
ikjikj

n

i

∀⋅≤⋅

∧⋅≤⋅





====

====

),~~

)~~

1'
''

111

1'
''

111

（

（

  (23) 

     kjixikj ,,}1,0{ ∀∈                     (24) 

   jkitt T
ikj

S
ikj ,,,0~,~ ∀≥       (25) 

where the purpose of objective function (20) is to 
minimize the fuzzy makespan, (21) ensures that each 
machine can only process one operation at a time 
without interruption; (22) and (23) denote the 
operation precedence constraints, and state that the 

successive operation must start after the completion 
of its previous operation of the same job; and (24) and 
(25) define the domain of variables.  

To solve a large scale F-FJSP in which the max 
operation of two triangular fuzzy numbers (TFNs) are 
the plainness and flexibility of the fuzzy arithmetic 
operations and the ranking method of fuzzy numbers, 
the addition operation is used to calculate the fuzzy 
makespan of an operation. The max operation is used 
to determine the fuzzy beginning time of an 
operation, in which the ranking method is to compare 
the maximum fuzzy makespans and we can refer it for 
the detailed procedures (Sun et al 2019). 

5.2 Hybridizing Cooperative EA+PSO 

5.2.1 Representation and Genetic Operation 

The design of evolutionary representation is a 
significant issue in EAs as it represents the possible 
potential solutions of problems. The fuzzy FJSP can 
be viewed as a combination of two subproblems: how 
to perform the operations by an OS, and how to 
allocate a machine to each operation.  

In the hCEA, the job-based and integer-based 
encodings are adopted for the OS string and MA 
string, respectively (Gen et al 2009). An illustration 
of multistage representation for GA is shown in 
Figure 4, in which the length of these two strings are 
both equal to ni, which denotes the number of total 
operations. The OS string consists of the integers 
ranging from 1 to the maximum job number n. By 
scanning the OS string, the kth appearance of integer 
i denotes Oik. The MA string consists of the integers 
ranging from 1 to the maximum machine number m. 
Each integer requires a modular |Mik| arithmetic to 
ensure feasibility, where |Mik| represents the size of 
the available machine set for Oik.  

As one of the main genetic operators, crossover 
plays an important role because suitable genetic 
operations can pass the parents’ good features to the 
offspring. In this paper, we applied two crossover 
operators: precedence operation crossover (POX) 
and job-based order crossover (JOX) to the OS 
string. The selection operator simulating the rule of 
“survival of the fittest” in nature makes efficient 
search possible by reserving superior individuals and 
eliminating inferior individuals. We adopt both 
ranking selection and tournament selection. 

5.2.2 Cooperative Coevolution Algorithm 

Recently, Sun et al (2019) is designed a CE 
framework for scheduling problems with suitable 
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representation and evolutionary operators. The hybrid 
EA is embedded into the CE framework and is called 
hybrid cooperative coevolution algorithm (hCEA).  

The D&C technique decomposes one solution 
space to be addressed into several sub solutions, 
which is regarded as an effective strategy for solving 
large-scale problems. Yao et al proposed a CE 
framework that was used to solve large-scale 
mathematical function problems with 
nonindependent variables (Li & Yao 2012). Yao et al. 
first provided the theoretical proof from the 
probabilistic view as well. The theoretical proof 
provides the reasonableness of importing CE 
framework into our algorithm. The pseudocode is 
given in algorithm hCEA in Figure 4. 

1) Dynamic Grouping: The individual is 
twice the number of total operations, N variables are 
grouped into r groups, each subindividual contains 
only part of the variables among N variables. The 
popSize subindividuals with the same grouping status 
form subpopulations (sub p). CEA adopts a similar 
but simpler scheme. CEA adjusts group size r 
randomly during the process of optimization among a 
given set R = {2, 5, 10, 50, 100} when (gbest(h) is not 
continuously improved. All variables are regrouped 
according to new r’ (line:4–6).  

2) Cooperative Coevolution: In CEA (Sun, 
et al 2019), each   individual is evaluated according 
to the other individuals with the optimal performance 
in the same population. This function can be 
implemented by b(q, tar, ref), which reflects the 
performance between the individual composed by ref  
with the qth component replaced by the corresponding 
component of tar and the performance of ref.b (q, 
sub_ind(h), p_best(h)) returning true means that the 
qth component of sub ind(h) has better performance. 
The CEA updates p_best(h) with its qth component 
replaced by the qth component of sub ind(h) (line:6–
10). The gbest is updated in the same way (line:11–
12). Then, the local best individual (lbest) is updated 
through the calculated fitness. lbest is defined as the 
best individual among the (u−1)th, uth, and the (u+1)th 
individuals (line:18–20). 

3) Self-Adaptive Mechanism: The update 
equation of PSO adopted in CEA is expressed as 

xi
C (h+1) = pbest(h) + C(1) · |pbest(h)− gbest(h)|   (26) 

where C(1) represents a Cauchy distribution with 1 as 
the parameter. pbest(h) and gbest(h) represent the 
personal best individual and the global best individual 
in the hth generation, respectively. The new update 
strategy is written for searching wider solution space 
as follows: 

xi
N (h+1) = pbest(h) + N(0,1) · |pbest(h)− lbest(h)|  (27) 

where lbest(h) represents the neighborhood best 
individual in the hth generation. N(0,1) represents 
standard normal distribution. To strike a balance 
between local search and global search, two update 
strategies are combined, which can be rewritten as 
follows: 
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where fp  is a selection probability. The hCEA adjusts 
the selection probability p according to (29). In this 
paper, the number of generations for adjusting p is set 
to 15. 

 
Algorithm: Hybrid CEA+PSO 
Input: Data sets; maxGen; isAdjust 
Output: Best solution gbest(h); 
Process: 
1: get sub p(h) by random grouping, s = N/r; 
2: gen(h) ← 0 
3: while (gen(h) < maxGen) do 
4:     if (isAdjust) then 
5:        adjust the grouping status, s_ = N/r_; 
6:     for each group q do 
7:         for each individual sub ind(h) in group q do 
8:             if b(q, sub ind(h), pbest(h)) then 
9:               replace (q, pbest, sub ind(h)); 
10:        end 
11:        if b(q, pbest(h), gbest(h)) then 
12:            replace (q, gbest, pbest(h)); 
13:        for each individual do 
14:            updateLBest (lbest(h)); 
15:        end 
16:     end  
17:    for each sub p(h) do 
18:         for each individual do 
19:             updateLBest (lbest(h)); 
20:         end  
21:     end  
22:     Adjust parameters by self-adaptive strategy; 
23:     gen(h) ← gen(h +1); 
24: end 

 
Figure 4: Pseudo code of Hybrid CEA algorithm. 

5.3 Numerical Experiments by HCEA 

To verify the superiority of the proposed hybrid 
cooperational coevolution algorithm (hCEA) in 
minimizing the maximum fuzzy makespan, an 
existing set of instances and a generated set of 
instances are adopted in this paper as numerical 
experiments (Sun, et al 2019). The scale varies from 
small scale with 40 operations to large scale with 293  
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Table 4: Performance of our HCEA Comparing with the State-of-the-Arts for the Standard FJSP. 

Instance Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
JobNum 10 10 15 15 15 10 20 20 20 20 
MacNum 6 6 8 8 4 15 5 10 10 10
(LB,UB) (36,42) (24,32) (204,311) (48,81) (168,186) (33,86) (133,157) 523 (209,369) (165,296) 

GA 42 32 212 73 185 74 154 523 321 254
GA+LS 40 27 204 66 176 65 144 523 307 208

PSO 42 32 213 74 184 73 155 523 314 245
PSO+LS 40 27 204 64 174 64 143 523 307 207

DE 42 32 210 73 184 76 153 523 316 251
DE+LS 40 27 204 64 175 65 143 523 307 206

HA 40 27 204 60 173 60 140 523 307 203
HHS/LNS 40 27 204 60 172 59 139 523 307 202

HPSO 40 27 204 60 173 59 139 523 307 202
HGA 40 26 204 61 173 59 139 523 307 202

MOGA 40 27 204 60 173 59 139 523 307 201
MAPSO 40 27 207 65 172 61 156 523 307 212
CCGP 40 26 204 61 172 60 140 523 307 202
hCEA 40 26 204 60 173 59 140 523 307 200

 
operations. All experiments are carried out with 30 
independent repetitions. Three typical and classical 
EAs, i.e., the GA, DE, and PSO, and seven state-of-
the-art algorithms, i.e., a hybrid GA (HA), hybrid 
PSO (HPSO), hybrid harmony search and large-
neighborhood search (HHS/LNS), cooperative 
coevolution genetic programming based 
hyperheuristics (CCGP), a multiobjective GA 
(MOGA), a hybrid GA with various crossovers and 
mutations (HGA), and multiagent PSO (MAPSO), 
are tested and compared. The instances of FJSP 
dataset contain two categories, i.e., benchmarks from 
Lei’s study (2010, 2012) and generated large-scale 
instances based on Ghrayeb (2003). 

Figure 5 is optimal solution of Case 5 found by 
hCEA. It is the fuzzy Gantt chart of the optimal 
solution obtained by hCEA of Case 5 shown. To show 
its superiority clearly and directly, we tested our 
proposed algorithm and seven state-of-the-art 
algorithms on 5 regular fuzzy FJSP instances (Cases 
1–5) and large-scale fuzzy instances (F-Mk10 to F-
Mk15) 30 times, and we use ANOVA with a mean 
difference level of 0.05. Figure 6 is a boxplot of all 
algorithms with defuzzied processing time for Case 5. 
We can see our proposed hCEA has better satiability 
from Figure 6. the performance of the proposed 
hCEA is remarkably better than that of the other state-
of-the-art algorithms for all large-scale instances. 
Figure 7 is a convergence of fuzzy makespan of all 
algorithms. Table 4 is a performance of hCEA 
comparing with otherer methods for F-FJSP in Case 
5.  

 
Figure 5: Optimal solution of Case 5 got by hCEA: Case 2, 
which exhibits average fuzzy makespan and the worst fuzzy 
makespan. 
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Figure 6: Boxplot of all algorithms with defuzzied 
processing time: The boxplot for Case 5. 

 
Figure 7: Convergence of fuzzy makespan of all algorithms. 

6 CONCLUSIONS 

Flexible job shop scheduling problem (FJSP), is one 
of important issues in the integration of real-world 
applications. The traditional FJSP always assumes 
that the processing time of each operation is fixed 
value and given in advance. However, the stochastic 
factors in the real-world applications cannot be 
ignored, especially for the processing times. In this 
paper, we briefly reviewed variant FJSP models such 
as multi-objective FJSP, FJSP-SDST, distributed and 
FJSP and a fuzzy FJSP models. In particular, we 
surveyed a  recent advance in hybrid GA with PSO 
and Cauchy distribution (HGA+PSO) for F-FJSP and 
hybrid cooperative co-evolution algorithm with PSO 
& Cauchy distribution  (hCEA) for large-scale FJSP. 

We lastly demonstrated the performances by the 
HGA+PSO and hCEA show that better than the 
existing methods from the literature, respectively. As 
a future research direction, it should be applied hybrid 
cooperative co-evolution algorithms to various real-
world practical problems in manufacturing and 
logistics with the stochastic factors or interval data. 
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