
Challenges in using Machine Learning to Support Software Engineering

Olimar Teixeira Borges a, Julia Colleoni Couto b, Duncan Ruiz c

and Rafael Prikladnicki d

PUCRS University, Porto Alegre, RS, Brazil

Keywords: Software Engineering, Machine Learning, Systematic Literature Review.

Abstract: In the past few years, software engineering has increasingly automating several tasks, and machine learning
tools and techniques are among the main used strategies to assist in this process. However, there are still
challenges to be overcome so that software engineering projects can increasingly benefit from machine learn-
ing. In this paper, we seek to understand the main challenges faced by people who use machine learning to
assist in their software engineering tasks. To identify these challenges, we conducted a Systematic Review
in eight online search engines to identify papers that present the challenges they faced when using machine
learning techniques and tools to execute software engineering tasks. Therefore, this research focuses on the
classification and discussion of eight groups of challenges: data labeling, data inconsistency, data costs, data
complexity, lack of data, non-transferable results, parameterization of the models, and quality of the models.
Our results can be used by people who intend to start using machine learning in their software engineering
projects to be aware of the main issues they can face.

1 INTRODUCTION

Software Engineering (SE) projects are becoming in-
creasingly complex, mainly due to the quantity and
diversity of elements and their interactions (Boscar-
ioli et al., 2017a). Designing, building, and testing
complex software is challenging and requires peo-
ple to work together, besides several tools and differ-
ent techniques needed throughout the process (Butler
et al., 2019). Artificial Intelligence (AI) offers various
technologies to help deal with this complexity, includ-
ing reasoning, problem-solving, planning, and learn-
ing, among others. Machine Learning (ML), more
specifically, is a paradigm based on algorithms that
learn from a previous experience (Mitchell, 1997):
learning happens from knowing the data.

The software industry’s development has made it
possible to create increasingly extensive and more
complete databases containing project data. To ana-
lyze this massive amount of data, the use of ML meth-
ods and techniques is beneficial (Boscarioli et al.,
2017b; Borges et al., 2020). For this reason, SE has
shown increasing interest in intensifying the use of AI

a https://orcid.org/0000-0002-2567-2570
b https://orcid.org/0000-0002-4022-0142
c https://orcid.org/0000-0002-4071-3246
d https://orcid.org/0000-0003-3351-4916

and ML (Beal. et al., 2017; Amershi et al., 2019) to
take advantage of this data.

This paper aims to map, describe, and better un-
derstand the most frequent issues faced by teams that
decide to implement ML techniques and tools to sup-
port their SE projects. For that, we developed a Sys-
tematic Literature Review (SLR), based on (Kitchen-
ham and Charters, 2007) process, and we used the
PICO (Murdoch, 2018) to assist in constructing the
research question. We conducted the literature search
in 2019.

As a result of the SLR, we found 27 papers that
report challenges encountered while using ML in the
SE domain. We grouped the challenges by similarity
and then categorized them into eight groups of chal-
lenges: data labeling, data inconsistency, data costs,
data complexity, lack of data, non-transferable results,
parameterization of the models, and quality of the
models.

This paper presents the following structure: Sec-
tion 2 addresses the methodology we used in this
work; Section 3 displays the paper’s results, the clas-
sification we carried out, and its discussions; and, fi-
nally, Section 4 concludes and provides suggestions
for future work.

224
Borges, O., Couto, J., Ruiz, D. and Prikladnicki, R.
Challenges in using Machine Learning to Support Software Engineering.
DOI: 10.5220/0010429402240231
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 224-231
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 METHODOLOGY

We performed a SLR to map the literature on the chal-
lenges in the use of ML in SE tasks. Literature re-
views or mappings are often used to structure a re-
search area, map and classify topics to find patterns
and research gaps. According to (Kitchenham and
Charters, 2007), a SLR has to present the processes
to guide planning, conducting, and reporting the re-
view. We present each phase and its sub-processes
henceforward.

To start, we develop a research question (RQ)
to guide the process and help us stay aligned
with the scope: RQ1: What are the challenges
when using machine learning in software engi-
neering projects? Based on the RQ, we used
the PICO method (Murdoch, 2018) to elaborate
the search string: Population: Software Engineer-
ing. Intervention: Machine Learning. Comparison: -
Outcome: Challenges in using ML in SE.

Therefore, the search string we applied to online
search engines is composed of the terms (”software
engineering” AND ”machine learning” AND (chal-
lenge OR threat)). We searched for these terms in the
title, abstract, or keywords of the papers.

During the SLR protocol development, we per-
formed a random search on the web to identify a paper
that would be known to answer the research question
to use as a control paper. We use control paper to
test the search string, as it must be among the online
search engines’ results. We choose this paper based
on reading and analyzing some papers to verify adher-
ence to the theme — our control paper is: (Hamouda,
2015).

2.1 Study Screening

We defined inclusion and exclusion criteria to assist in
the papers’ selection process. Each paper is assigned
at least one criterion, and the papers that we accepted
meet all of the following inclusion criteria: (I1) Qual-
itative or quantitative research about software engi-
neering projects that use machine learning tools and
techniques and present related challenges; (I2) Com-
plete study available in electronic format. (I3) Paper
published in conference proceedings or journals.

We identified 301 papers at the beginning of the
review process. For each paper, we performed the
first filter (Selection phase) to identify their RQ adher-
ence, in which we read the title, the abstract, and the
keywords. During the data extraction phase, we ac-
cepted 37 papers, which passed through a second full
reading filter. At the end of the process, we rejected
274 papers due to the exclusion criteria presented in

Table 1: Number of papers rejected due to exclusion crite-
ria.

Exclusion Criteria Amount

(E1) Incomplete or short paper (up to
3 pages)

8

(E2) Paper unavailable for download 1
(E3) Paper does not answer research
questions

158

(E4) Duplicate study 51
(E5) Conference Proceedings Index 38
(E6) Book or book chapter 10
(E7) Literature review or mapping 8

Number of Papers Rejected: 274

Table 1.
We used the StArt (State of the Art through sys-

tematic review) tool (Fabbri et al., 2016) to assist in
the extraction and compilation of data. After finishing
the data extraction, we exported the results to Google
Sheets, to facilitate collaborative online work among
researchers. Finally, we accepted 27 papers in the fi-
nal set, which answer the research question and meet
the inclusion criteria.

3 RESULTS

In this section, we present the classification of the
27 papers that we accepted and the challenges we
extracted from these papers. We applied the search
string in August 2019 in the following search engines:
ACM, IEEE, Springer, arXiv, Science Direct, Web of
Science, Google Scholar, and Scopus. The Table 2
shows the number of papers by search engines. Sco-
pus is the engine where we retrieved most of the re-
sults, being the origin of 1/3 of the accepted papers,
and this is because it indexes several other bases.

Table 2: Papers by search engines.

Source Initial Selection Accepted

Scopus 137 12 9
IEEE Xplore 13 0 0
Web of Science 21 2 2
ACM 31 8 7
Springer 69 9 4
arXiv 8 3 2
Science Direct 5 1 1
Google Scholar 17 2 2

Accepted
Papers:

27

Challenges in using Machine Learning to Support Software Engineering

225



We analyzed the country of origin of the papers
that most often inform the challenges in their papers.
This analysis shows us that the USA (14 researchers),
Canada (12), Germany (10), China (7), India (5), and
Brazil (5) are the origin of the most accepted papers.
Note that several papers have more than one author,
and we took it into account, so the amount added will
be greater than the number of papers.

3.1 Data Extraction

During the information extraction phase, we read the
27 papers to analyze and classify them. Twelve papers
are published in journals, and fifteen are published in
computer science conferences and workshops. Most
papers are from 2019 (8 papers) and 2018 (5 papers),
with 89% published since 2012, suggesting that it is a
rising topic. The oldest paper is from 2004 (Bowring
et al., 2004). The final consultation period is August
31, 2019.

3.2 Classification Scheme

We created a classification scheme to present the re-
sults according to the mapped challenges. In this sec-
tion, we present the papers’ analysis and the answer to
our RQ (What are the challenges when using machine
learning in software engineering projects?).

We categorize the papers according to the sim-
ilarity between the challenges they present. Five
challenges are related to the data: data labeling, data
inconsistency, data costs, data complexity, and lack
of data. Three other challenges are related to ML
models: non-transferable results, parameterization
of the models, and quality of the models. Table 3
shows the classification of the challenges and the cor-
responding papers. Some papers present more than
one challenge, so the sum of the papers presented
in this table will be higher than the 27 papers ac-
cepted. Next, we present and discuss each challenges.

1. Data Labeling.
Description: Labeled data are data that have classi-
fied and tagged information. This information about
the data helps to understand its patterns and behavior,
which will be used for future analysis.
Example in SE: During the operation of a system,
several records and reports on its operation are gen-
erated. Most of these records are for reporting er-
rors and failures in execution. These reports usu-
ally present the type of error, the class’s identification
that generated the error, the code snippet, the date of
the occurrence, and other related information. These
data, labeled as failures, can continuously improve the

system and predict possible error cases, improving the
software development process.
Analysis of Papers: If we want to have more high-
quality and assertive ML models, it is necessary to
access a large amount of data for its training (Moataz
A. Ahmed and Hamdi A. Al-Jamimi, 2013). How-
ever, in the SE, there is still a considerable shortage
of datasets to be used in research in the area (Moataz
A. Ahmed and Hamdi A. Al-Jamimi, 2013; Petkovic
et al., 2014). For instance, the image recognition field,
a sector in constant growth, is necessary to access a
large amount of data. The lack of this labeled data
ends up leading to the development of simulated sce-
narios to meet its needs (Bowring et al., 2004; Porru
et al., 2016; Runeson, 2019).

In line with the scarcity of data in general,
it is still necessary to deal with the lack of data
labeled/tagged (Qiu et al., 2019). Also, access to
labeled training data is still a limitation for many
applications (Runeson, 2019). People are needed to
carry out manual labeling, classification, and analy-
sis, which is quite problematic and challenging (Amal
et al., 2014; Bangash et al., 2019). One of the factors
of this challenge is the complexity inherent to natural
language, limiting the applicability of automated
approaches (Kurtanović and Maalej, 2018).

2. Data Inconsistency.
Description: Inconsistent data can be considered as
missing, incorrect, incomplete, duplicated, and unbal-
anced data. These data have not been prepared yet and
need to be treated to become consistent and useful.
Example in SE: Historical system data can assist at
the beginning of planning a software project. Histor-
ical data can guide the creation of software require-
ments. They can guide how to design system require-
ments but will likely need to undergo analysis and
pre-process to be useful.
Analysis of Papers: ML models are considered reli-
able when they are trained from consistent data. How-
ever, data collection and validation for SE requires
efficient processing techniques to handle large vol-
umes of data, manage different inconsistencies and
extract adequate resources from programs, to improve
learning performance (Belsis et al., 2014; Phan et al.,
2018). SE data rarely has a normal distribution (Bet-
tenburg et al., 2015). For example, in the process of
software requirements, due to their unique character-
istics, the relevant data sets are highly dimensional,
sparse and often result from ambiguous expressions
and, therefore, end up presenting difficult challenges
for data processing techniques (Belsis et al., 2014).

The vast majority of research in the area uses data
collected from available software repositories. How-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

226



Table 3: Papers versus challenge.

Challenge Papers

1 Data Labeling:
9 papers

(Moataz A. Ahmed and Hamdi A. Al-Jamimi, 2013),
(Amal et al., 2014), (Bangash et al., 2019),(Bowring et al., 2004),
(Kurtanović and Maalej, 2018), (Petkovic et al., 2014),
(Porru et al., 2016), (Qiu et al., 2019), (Runeson, 2019)

2 Data Inconsistency:
9 papers

(Allamanis, 2018), (Barros et al., 2008), (Belsis et al., 2014),
(Bettenburg et al., 2015), (Phan et al., 2018),
(Petkovic et al., 2014), (Sharma et al., 2012),
(Twala and Cartwright, 2010), (Ying and Robillard, 2013)

3 Data Costs:
5 papers

(Belsis et al., 2014), (Cui et al., 2019),
(Phan et al., 2018), (Runeson, 2019), (Sharma et al., 2012)

4 Data Complexity:
3 papers

(Douthwaite and Kelly, 2017), (Hamouda, 2015),
(Meyer and Gruhn, 2019)

5 Lack of Data:
3 papers (Hesenius et al., 2019), (Porru et al., 2016), (Zhang et al., 2018)

6 Non-transferable Results:
5 papers

(Amal et al., 2014), (Hosni et al., 2018), (Kaur et al., 2019),
(Porru et al., 2016), (Turhan, 2012)

7 Parameterization of Models:
3 papers

(Belsis et al., 2014), (Porru et al., 2016),
(Zhang et al., 2018)

8 Quality of the Models:
2 papers (Foidl and Felderer, 2019), (Meyer and Gruhn, 2019)

ever, there are many repositories with duplicate code,
which constitutes data inconsistency (Allamanis,
2018). Still, code fragments are analyzed, which can
present technical challenges because code fragments
are not complete programs (Ying and Robillard,
2013). One of the big problems when working with
inconsistent data is that after the data preparation
phase for use in training machine learning models,
the data set ends up becoming smaller (Barros et al.,
2008) due to the need to deleting invalid data. There
is also the issue of using unbalanced, missing, or
incorrect training data (Petkovic et al., 2014; Sharma
et al., 2012; Twala and Cartwright, 2010).

3. Data Costs.
Description: A large amount of data needs to be
stored in suitable locations, requiring computational
power for its processing, and having maintenance
costs. All of these characteristics are related to the
cost of the data. Whether financial or time, these
costs need to be calculated according to each data
set’s needs.
Example in SE: Software systems can generate
larges amounts of data about their operation and
execution. These data need strategies to be stored and
accessed when necessary. Likewise, it is essential to

have computational processing to obtain impor-
tant information about the system data.
Analysis of Papers: Data collection and validation
for SE requires efficient processing techniques to deal
with large volumes of data, which makes it possible
to extract adequate, relevant, and non-redundant
resources from programs to improve learning per-
formance (Belsis et al., 2014; Cui et al., 2019; Phan
et al., 2018). With an extensive data set, processing
can become costly, and therefore it is essential to
perform an appropriate resource selection (Sharma
et al., 2012). However, data is not always available in
an open and public way, and there is no exact model
for sharing or monetizing data for use in ML models.
As a result, there is an increase in the demands and
costs of collecting, storing, and sharing SE data for
ML (Runeson, 2019) applications.

4. Data Complexity.
Description: The data’s complexity can be related to
its diversity, the type of data, the size, among other
factors.
Example in SE: Data from software development
projects is usually textual, considering source code,
description of requirements, data resulting from
automated tests. These data, often not standardized,

Challenges in using Machine Learning to Support Software Engineering

227



present an inherent complexity that impacts ML
models’ creation and validation.
Analysis of Papers: During the requirements phase,
use-case modeling has a characteristic complex-
ity. ML models emerge to assist in this phase
with the development of knowledge-based systems
and ontologies, aiming at the automation of re-
quirements management and modeling of problem
domains (Hamouda, 2015). However, one of the
biggest challenges in training these learning methods
for real-world problems is so precisely how to effec-
tively manage the complexity of the use cases (Meyer
and Gruhn, 2019). ML models are challenging to
use at the beginning of a project’s life cycle when it
aims to develop a set of specific data and knowledge
requirements about the project, only from the use
cases (Douthwaite and Kelly, 2017).

5. Lack of Data.
Description: In the analysis and use of ML tech-
niques on any data, it is essential first to understand
these data, know its meaning, the type of data, the
size, and other characteristics, even to know if the re-
sults of the model make sense.
Example in SE: In this context, it is essential to use
domain experts, such as engineers, analysts, or soft-
ware architects, to understand the data.
Analysis of Papers: In the age of Big Data, large
data sets are created every moment around the world.
However, to extract useful information from these
large data sets, it is necessary to learn how to pro-
cess them. Therefore, knowledge about these data’s
domain is essential, and in SE, this is no different.
For developers and data analysts to create efficient
and useful ML solutions, specific knowledge about
the data is required, either in the data analysis phase
or selecting the most appropriate algorithms for each
type of solution (Hesenius et al., 2019).

ML models must be evaluated and validated to
be considered efficient and useful. Such models are
often used in many real-world applications, assessing
systems’ suitability and validating their implementa-
tions against user requirements and specific project
scenarios. However, the lack of a priori knowledge
of the data ends up becoming a significant challenge
in the area (Porru et al., 2016; Zhang et al., 2018).

6. Non-transferable Results.
Description: It deals with the construction of mod-
els that work very well to solve a specific problem in
one domain. However, it cannot be transferred to deal
with the same problem in another domain, mainly due
to the data’s dissimilarities.
Example in SE: Software development projects have

several peculiarities. For example, a company that de-
velops software for other client companies. Suppose
an ML model was developed based on the user sto-
ries of a project for a specific client, and there is no
standardization between fields between one client and
another. In that case, the same ML model cannot be
applied directly to both clients without changes in the
model.
Analysis of Papers: There is still an absence of
related work that uses machine learning techniques
focused on refactoring software (Amal et al., 2014).
Machine learning models that make use of regression
and classification need historical data to be trained.
However, each project tends to be unique in its
specifications, and ML models tend to generalize
their results and conclusions (Hosni et al., 2018;
Kaur et al., 2019). This generalization can be a
problem because when we use generalized models
in particular projects, it can generate assumptions
of a causal relationship between the data (Porru
et al., 2016). As a result, the challenge of generating
models with non-transferable results in different
projects and studies remains (Turhan, 2012).

7. Parameterization of Models.
Description: The ML algorithms need to be config-
ured with some parameters before their initialization.
In a clustering algorithm, the parameters include the
number of clusters generated based on the data and a
distance function (Euclidean, Manhattan, and others).
Example in SE: Several more suitable clusters may
be necessary to group tickets related to software inci-
dents, classifying them in new functionality, bug, or
duplicate.
Analysis of Papers: One of the fundamental steps
when creating ML models using SE data is the correct
choice of metrics and parameters. During the training
of a classification model, for example, if specific
attributes are used in an arbitrary manner, such as
algorithms and other parameters, an incorrect model
will probably be generated, presenting classification
errors (Porru et al., 2016). Such a challenge requires
experience in creating models, knowledge of the data,
and more efficient techniques/algorithms for each
task. This is the cluster classification case, which
tries to discover hidden patterns in the data without
prior knowledge about them. Any wrong setting
in the parameters will make it difficult to evaluate
the quality of the results and the ideal number of
clusters (Belsis et al., 2014; Zhang et al., 2018).

8. Quality of the Models.
Description: It refers to the accuracy of the model
results to how well these models get it right.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

228



Example in SE: Using the same example of classifi-
cation of incidents related to the software under de-
velopment, it would be the percentage of incidents
classified as new functionalities and that deal with
requirements for implementing new functionalities in
the software.
Analysis of Papers: There is a constant search
for guarantee and quality evaluation of ML models.
Maintaining the quality of these learning models, ap-
plied to SE, is still a very challenging task (Meyer and
Gruhn, 2019). The development of these models at a
mature level and that maintains quality and productiv-
ity goals is not trivial (Foidl and Felderer, 2019). Such
models have a high degree of complexity, becomes
challenging to validate the data used in their training
to assess their quality (Meyer and Gruhn, 2019).

3.3 Discussion

Eight of the papers contemplate more than one chal-
lenge at the same time (Amal et al., 2014; Belsis et al.,
2014; Meyer and Gruhn, 2019; Petkovic et al., 2014;
Porru et al., 2016; Runeson, 2019; Sharma et al.,
2012; Zhang et al., 2018). Among them, the most
reported challenges are data labeling, data inconsis-
tency, and parameterization of models. As labeling
was one of the most reported challenges, it can be an
exciting point for exploration. For machine learning
models to become efficient, the data must be correct.
Also, adequately labeled data makes initial data pre-
processing work faster.

The data’s inconsistency was also one of the most
mentioned challenges, and it covers the part of miss-
ing, inconsistent, and duplicate data. This inconsis-
tency causes researchers, developers, and data ana-
lysts to waste time processing the data before using
it as input to their ML models. The challenge related
to the parameterization of models deals directly with
the configuration of ML models. The correct parame-
ters and algorithms for elaborating the model require
knowledge and experience about ML data and tech-
niques. Each domain is specific and needs to be ana-
lyzed in depth so that the appropriate parameters are
selected to generate an appropriate model.

In Table 4, we list the eight challenges, along-
side some examples of tasks that are affected by the
challenge and examples of the ML techniques and al-
gorithms addressed in the papers we accepted. For
each challenge, the papers present the environment
configurations where the challenges were identified or
present configurations explored through experiments.
These configurations are formed by ML technique(s)
or algorithm(s) applied to some SE task(s).

Many of the reported ML algorithms are part of
traditional ML; however, five of the challenges dis-
cussed at least one artificial neural network (ANN)
technique, which reveals that this technique is being
increasingly used to solve SE problems. However, at
the same time, ANN is more linked to the generation
of challenges when applied to some of the SE’s tasks,
mainly about the data-related challenges. We also no-
ticed that the tasks presented are mostly related to
software source codes, in the analysis, searching for
defects or code smells, and refactoring. That is, there
is an implicit need to solve tasks related to the source
code using ML.

The discussion of these eight challenges aims to
benefit software development teams who want to start
using ML techniques and tools. The intention is
that they can become aware of the main challenges
and create prevention strategies before starting their
projects. Also, SE teams that already use ML in their
processes can use the challenges to identify possible
problems in the planning and executing of their sys-
tems. In this way, we seek to minimize recurring
problems and reduce the time spent with the impedi-
ments resulting from these challenges.

4 CONCLUSION

In this paper, we presented a systematic literature re-
view developed to map the main challenges reported
in scientific papers that deal with ML tools and tech-
niques as support to software engineering. To do so,
we queried eight of the leading online search engines
for Computer Science papers. At the end of the SLR,
we accepted 27 papers.

We identified eight main challenges during the
papers’ analysis, five related to the data itself, and
three related to ML models. The identified challenges
demonstrate the importance of consistency, labeling,
and understanding of the data used as input to ML
techniques so that the results can be useful. The chal-
lenge related to the costs of acquiring, storing, and
processing this data is also highlighted. Also, param-
eterization and model quality are topics of attention
when using ML. Another point of attention is the dif-
ficulties in replicating some models, which is justified
by each software project’s specifics.

Like all qualitative research, this paper has some
limitations. In the selection phase, we did not define
an initial year for the search for the papers. This could
lead to identifying old challenges, which currently no
longer qualify as challenges, as they could have al-
ready been resolved. As it is essential to understand
the challenges from the beginning, this is an accept-

Challenges in using Machine Learning to Support Software Engineering

229



Table 4: List of SE Tasks and ML Techniques/Algorithms per challenge.

Challenge SE Tasks Techniques/ML Algorithms

1. Data Labelling
Code Analysis;
Software Defects;
Software maintenance;

Artificial Neural Networks;
Bayesian Networks; Decision Tree;
Gaussian Process Classifier;
Latent Dirichlet Allocation;
Logistic Regression;
Multivariate Adaptive Regression Splines;
Naı̈ve Bayes; Random Forest;
Support Vector Machine;

2. Data Inconsistency

Code Analysis;
Data analysis;
Estimated Software Effort;
Estimation of Software
Metrics;
Code Summary;

Artificial Neural Networks;
Multivariate Adaptive Regression Splines;
Naı̈ve Bayes; Random Forest;
Support Vector Machine;

3. Data Costs

Program Classification;
Code Smells in Design
Templates;
Software Failure;
Requirements Validation;

Bayesian Networks; Decision Tree;
Naı̈ve Bayes; Random Forest;
Support Vector Machine;

4. Data Complexity Requirements Analysis;
System Security Analysis;

Artificial Neural Networks;
Bayesian Network; Classification Trees;
Genetic Algorithms; Logistic Regression;

5. Lack of Data
Detection of Code
Anomalies;
Estimated Software Effort;

Artificial Neural Network;
Naı̈ve Bayes; Support Vector Machine;

6. Non-transferable Results Code Smell detection;
Code Refactoring;

k-means; Naı̈ve Bayes;
Support Vector Machine;

7. Parameterization of Models Systems Validation
and Evaluation;

Artificial Neural Network; Naı̈ve Bayes;
Support Vector Machine;

8. Quality of the Models
Component-based
Software Development;
Software Quality;

Hierarchical Reinforcement Learning;

able limitation. To minimize the risk of not having a
broad and diverse number of documents, we searched
on eight well-known search engines on the web. To
reduce the researchers’ bias, two researchers worked
in parallel, and two other researchers helped in case
of disagreement.

For future work, we want to map possible solu-
tions for each challenge. We also aim to search for
reports and experiments that address and explain how
each challenge is addressed and within which SE area
they most persist. This search will help the commu-
nity to find possible solutions and strategies to mini-
mize their problems and solve them within each phase
of a project’s development. Furthermore, this study
did not aim to validate whether the ML techniques,

algorithms, and tools presented in the discussion of
the results, are useful for using linked SE tasks, as
shown in Table 4. We reported and structured this in-
formation in this study. However, it is up to future
work to carry out experiments that could validate our
presented approaches and configurations.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nivel Superior
– Brasil (CAPES) – Finance Code 001, FAPERGS
(17/2551-0001/205-4), and CNPq.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

230



REFERENCES

Allamanis, M. (2018). The adverse effects of code dupli-
cation in machine learning models of code. CoRR,
abs/1812.06469.

Amal, B. et al. (2014). On the use of machine learning
and search-based software engineering for ill-defined
fitness function: A case study on software refactoring.
In SSBSE, pages 31–45. Springer.

Amershi, S. et al. (2019). Software engineering for machine
learning: a case study. In ICSE, pages 291–300. IEEE.

Bangash, A. A. et al. (2019). What do developers know
about machine learning: A study of ml discussions on
stackoverflow. In MSR, pages 260–264. IEEE Press.

Barros, R. C. et al. (2008). Issues on estimating software
metrics in a large software operation. In SEW, pages
152–160.

Beal., F., de Bassi., P. R., and Paraiso., E. C. (2017). De-
veloper modelling using software quality metrics and
machine learning. In ICEIS, pages 424–432.

Belsis, P., Koutoumanos, A., and Sgouropoulou, C. (2014).
Pburc: a patterns-based, unsupervised requirements
clustering framework for distributed agile software
development. RE, 19(2):213–225.

Bettenburg, N., Nagappan, M., and Hassan, A. E. (2015).
Towards improving statistical modeling of software
engineering data: think locally, act globally! ESE,
20(2):294–335.

Borges, O. T., Couto, J. C., Ruiz, D., and Prikladnicki, R.
(2020). How machine learning has been applied in
software engineering? In ICEIS, pages 306–313.

Boscarioli, C., Araújo, R., and Maciel, R. (2017a). I
grandsi-br–grand research challenges in information
systems in brazil 2016-2026. CE-SI - SBC.

Boscarioli, C., Araújo, R., and Maciel, R. (2017b). I
grandsi-br–grand research challenges in information
systems in brazil 2016-2026. CE-SI - SBC).

Bowring, J. F., Rehg, J. M., and Harrold, M. J. (2004). Ac-
tive learning for automatic classification of software
behavior. SIGSOFT SEN, 29(4):195–205.

Butler, C. W., Vijayasarathy, L. R., and Roberts, N. (2019).
Managing software development projects for suc-
cess: Aligning plan- and agility-based approaches to
project complexity and project dynamism. PM jour-
nal, 0(0):8756972819848251.

Cui, C., Liu, B., and Li, G. (2019). A novel feature selection
method for software fault prediction model. In RAMS,
pages 1–6.

Douthwaite, M. and Kelly, T. (2017). Establishing ver-
ification and validation objectives for safety-critical
bayesian networks. In ISSREW, pages 302–309.

Fabbri, S. et al. (2016). Improvements in the start tool to
better support the systematic review process. In EASE,
pages 1–5.

Foidl, H. and Felderer, M. (2019). Risk-based data valida-
tion in machine learning-based software systems. In
MaLTeSQuE, pages 13–18. ACM.

Hamouda, A. (2015). New trends in learning for software
engineering. In IC-RACE. Atlantis Press.

Hesenius, M. et al. (2019). Towards a software engineer-
ing process for developing data-driven applications. In
RAISE, pages 35–41. IEEE Press.

Hosni, M. et al. (2018). On the value of parameter tuning in
heterogeneous ensembles effort estimation. Soft Com-
puting, 22(18):5977–6010.

Kaur, A., Jain, S., and Goel, S. (2019). Sp-j48: a novel op-
timization and machine-learning-based approach for
solving complex problems: special application in soft-
ware engineering for detecting code smells. NCA.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering. Technical Report EBSE-2007-01, Depart-
ment of Computer Science, University of Durham.

Kurtanović, Z. and Maalej, W. (2018). On user rationale in
software engineering. RE, 23(3):357–379.

Meyer, O. and Gruhn, V. (2019). Towards concept based
software engineering for intelligent agents. In RAISE,
pages 42–48. IEEE Press.

Mitchell, T. M. (1997). Machine learning. McGraw hill.
Moataz A. Ahmed and Hamdi A. Al-Jamimi (2013). Ma-

chine learning approaches for predicting software
maintainability: a fuzzy-based transparent model. IET
Software, 7(6):317–326.

Murdoch, U. (2018). Systematic reviews: Using pico or
pico. https://goo.gl/fqPoCY. Accessed: 2018-12-20.

Petkovic, D. et al. (2014). Setap: Software engineering
teamwork assessment and prediction using machine
learning. In FIE, pages 1–8.

Phan, A. V. et al. (2018). Automatically classifying source
code using tree-based approaches. DKE, 114:12–25.

Porru, S. et al. (2016). Estimating story points from issue
reports. In PROMISE, pages 2:1–2:10. ACM.

Qiu, S. et al. (2019). Cross-project defect prediction via
transferable deep learning-generated and handcrafted
features. In ICSE, pages 431–436.

Runeson, P. (2019). Open collaborative data - using oss
principles to share data in sw engineering. In ICSE,
pages 25–28.

Sharma, M. et al. (2012). Predicting the priority of a re-
ported bug using machine learning techniques and
cross project validation. In ISDA, pages 539–545.

Turhan, B. (2012). On the dataset shift problem in software
engineering prediction models. ESE, 17(1):62–74.

Twala, B. and Cartwright, M. (2010). Ensemble missing
data techniques for software effort prediction. Intell.
Data Anal., 14(3):299–331.

Ying, A. T. and Robillard, M. P. (2013). Code fragment
summarization. In FSE, pages 655–658. ACM.

Zhang, Z. et al. (2018). A validation and quality assessment
method with metamorphic relations for unsupervised
machine learning software. CoRR, abs/1807.10453.

Challenges in using Machine Learning to Support Software Engineering

231


