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Abstract: The benefits of layering in software applications are well-known not only to authors and industry experts,
but to software enthusiasts as well because the layering provides a testable and more error-proof framing for
applications. Despite the benefits, however, the increasingly popular area of machine learning is yet to embrace
the advantages of such a design. In the present paper, we aim to investigate if characteristic benefits of layered
architecture can be applied to machine learning by designing and building a system that uses a layered machine
learning approach. Then, the implemented system is compared to other already existing implementations in
the literature targeting the field of facial recognition. Although we chose this field as our example for its
literature being rich in both theoretical foundations and practical implementations, the principles and practices
outlined by the present work are also applicable in a more general sense.

1 INTRODUCTION

Using a layered architecture in software applications
has become a popular element of software design.
Benefits such as a more future-proof design or the
use of the “Law of Demeter”, are not only listed by
acknowledged works on software engineering (Som-
merville, 2011; Fowler, 2012) but industry experts
and enthusiasts alike also organize their work in this
manner to produce more testable, understandable and
robust software. This manner of design, however pro-
found it may be in the industry, does not seem to in-
fluence the architectural design of machine learning
applications. Theoretical works aiming to improve
on already existing techniques (Wu et al., 2017; Ro-
driguez and Marcel, 2006; Wu and Ji, 2015) as well
as practical software solutions of this kind (Aydin and
Othman, 2017; Kumar and Saravanan, 2013; Wein-
stein et al., 2002) adopt a rather monolithic way of
organizing machine solver algorithms into one single
component. In these works, there is either no refer-
ence to the architecture whatsoever (since a new prin-
ciple is at scrutiny not its immediate applications),
or the designed system adopts a well-known archi-
tectural design principle (e.g., client-server) and one
of the components is solely responsible for machine
learning operations. This component is usually de-
ployed to a performant server computer, but building
on the increasing computational power available to

mobile devices, there are applications where a hand-
held device assumes this role (Hazen et al., 2003; We-
instein et al., 2002).

In an attempt to connect this software engineering
principle to machine learning, the present work aims
to apply the concept of layering to a machine learning
solution from an arbitrarily-chosen field: facial recog-
nition. This is achieved by adapting well-established
characteristics of layering to the problem in question,
resulting in a software application in which multiple
components working in tandem are responsible for
the task of identifying persons based on their facial
features. Since this work concentrates on principles
rather than concrete applications, the software in de-
sign is intended to be a prototype only and as such,
the building blocks from which it is composed of are
purposefully made as simple as possible to determine
the lower limits of such systems. For this reason,
the component structure of the prototype is based on
the simple client-server architecture and even its most
complicated part - the server-side neural network so-
lution - is confined to the bare minimum of its poten-
tial.

In the remainder of this article, the problem in
question is briefly presented first accompanied by a
literature review strictly restricted to the topics rele-
vant to the present work. This is followed by estab-
lishing design principles for solving it using a client-
server configuration. The components of the system
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are described afterwards with special attention de-
voted to the purpose they play in solving the machine
learning problem. The system is also evaluated as to
what extent it adheres to the established principles and
comparisons are made between the performance of al-
ready existing applications of similar purposes.

2 LITERATURE REVIEW

One of the most widely-studied element of machine
vision is facial recognition, a field revolving around
searching for visual cues of human faces on images
without any assumption of its portrayed contents.
This problem is solved using a toolbox similar to im-
age clustering and shape identification as facial fea-
tures proven to exhibit a degree of variance within the
individual are at the center of recognition attempts.
Searching for the shape of the eyes, mouth and the
nose is most common (Manjunath et al., 1992), but
studies exist on using the contour lines of the chin and
the brows (Walker et al., 1998) and it is also possible
to exploit the difference in the geometric depth of fa-
cial features (BenAbdelkader and Griffin, 2005). The
literature commonly refers to these features under the
umbrella term facial landmark points (Walker et al.,
1998; Wu et al., 2017; Wu and Ji, 2015).

Although using the same tools, the area the
present study choses to explore is not facial recogni-
tion, but the problem of facial authentication, a sub-
category of the previous, in which the images under
scrutiny are guaranteed to portray human faces and
the task is to make distinction between certain indi-
viduals using these images only. The main component
of this practice is to calculate a difference between the
reference image of an individual and the image given
as a task for evaluation. There is a wide range of tech-
niques applied to solve these kinds of problems from
formal methods such as principal component analy-
sis to machine learning approaches including artificial
neural networks, but at the end of the process, all of
these methods commonly produce a probability score
as to how likely it is that the image in question in-
deed portrays the same person as the image used as
a basis of reference. To thoroughly investigate the
problem, the present study implements two kinds of
facial authentication: one in which the system needs
to identify which person is found on the image out
of 3 pre-defined individuals, and another that decides
whether a given image portrays the same person as
the one used as a reference of that person.

A core component of performing facial recogni-
tion analyses is inevitably linked to how comparisons
are made between existing and new information and

thus, how data is stored and accessed during these
processes. Using labelled images was the most com-
mon practice for earlier methods, which was pre-
ceded by the application of abstraction layers gener-
ated from the raw images: these techniques aimed to
extract certain sub-elements of importance (e.g., col-
ors or prominent image segments) this way reducing
the size of the data to store (Liu et al., 2007). The
literature commonly refers to image searches using
these methods under the umbrella term Content Based
Image Retrieval (CBIR). One of the most common
methods of CBIR is applying formal transformations
to image segments (Liu et al., 2007). (Karnila et al.,
2019), for example, uses the mechanism of Discrete
Cosine Transform (DCT), one of the building blocks
of the JPG image format (Miklos et al., 2020), to ex-
tract coefficients from JPG images, which are stored
in a database afterwards, reducing the file size from
14 kB to around 3 kb, which is even preceded by their
own methods called Discrete Wavelet Transform that
achieved a storage size of 0.4 kB. During compar-
isons, histograms can be created which are subjected
to mathematical operations once again (e.g., simple
euclidean distance) to calculate a difference. Ma-
chine learning approaches usually replace these for-
mal processes with prediction procedures, but due to
the statistical nature of machine learning data, stor-
age methods can be largely the same. To put data
retrieval speeds into perspective, (Kumar and Sara-
vanan, 2013) recorded measurements of multiple im-
plementations using 500 images: an implementation
using common methods in the literature achieved an
average retrieval speed of 3 sec. (Weinstein et al.,
2002) reports measurements of approximately 2 sec,
while a special DCT-based implementation by the
previous authors is reported to have a retrieval speed
of 1 sec, on average.

3 DESIGN PRINCIPLES

Although there have been a number of nature-inspired
methodological improvements in the field of Machine
Learning (Chaczko et al., 2020), to establish the core
concepts of a layered machine learning solution, we
rather turned to tried and proven methods applied by
the field of software engineering. We chose to base
our designing principles on how layering is portrayed
by Ian Sommerville as his books are among the most
widely-recognized works on the subject. One of the
core concepts of layering in his works is the complex
idea that, although layered architecture allows for
the creation of individual components (Sommerville,
2011) restricting changes to a minimum number of el-
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ements, these parts also have to maintain a certain de-
gree of dependence on each other. Specifically, each
layer should only transfer data to layers directly be-
low it - a concept commonly referred to as “Law of
Demeter”. These characteristic features, he argues,
not only promote incremental development cycles (an
idea widely adopted by software developer companies
to increase customer satisfaction), but it also allows
for the application of “exchangable” components, in
which the exact implementation of a sub-process is
not part of the system, but rather included as a de-
pendency that can be changed without any effect to
surrounding other components. This decreases “brit-
tleness” in a system by allowing for the use more ro-
bust tools to cope with changing requirements, while
software testing and validation are also enhanced as
“test components” can be substituted with real ones
to eliminate any effects other than those of the com-
ponent under test.

Building on Sommerville’s ideas, the core con-
cepts of our design principles are also going to revolve
around component individualism and exchangeabil-
ity. In this manner, we can conclude that any ma-
chine learning implementation using a layered archi-
tecture has to apply components that can function on
their own allowing for the use of exchangeable im-
plementations in them. This, in turn, also guaran-
tees that changes regarding the exact problem-solving
in that component cannot affect other components in
any way. This is only possible if certain layers near
the “extremities” of these components have a com-
mon way of passing information from one layer to
another functioning as interfaces. We can achieve this
by carefully choosing compatible input/output layers
on conjoined poles of components, in other words, the
output of the n. component should be the input of the
n+1. component. In this case, the process of solving
the problem as a whole can be described as consecu-
tive acts of data transformation and at each stage (or
component) the initial data is changed just enough to
be acceptable by the next stage in line. This can also
accommodate the idea of “Law of Demeter” implied
by Sommerville: unless these processes are equiva-
lent transformations, i.e., the output of a layer could
also be its input, there can be only one direction of
information exchange originating at the “uppermost”
layer closest to the original input and a backward-
oriented flow of information is not possible. In brief,
therefore, we can conclude that a machine learning
solution using a layered architecture:

• has to operate with individually usable compo-
nents

• these components has to have compatible layers
in their adjoined edges

Figure 1: The image of one of the authors and the landmark
points on his face as captured by the client application.

• the machine learning solution as a whole is real-
ized as a series of acts of data transformation

• these consecutive transformations are operated on
a flow of data that is expected to have a prede-
fined, non-changeable direction

4 IMPLEMENTATION DETAILS

Conforming to both the principles outlined above and
those of client-server architecture, we divided the
problem into two separate sub-problems and assigned
each of them to one of the components. In this man-
ner, the client side of the software is responsible for
extracting information regarding facial features in the
form of landmark point coordinates that are trans-
ferred to the server for analysis in JSON format.

4.1 The Client

To be able to better compare our solution to existing
methods, we implemented an Android mobile appli-
cation in which the Google Firebase API is respon-
sible for feature extraction. The workflow is inten-
tionally kept very rudimentary and it only consists of
capturing an image within the application that is fol-
lowed by an automatic analysis right away. At this
point, the user is given visual feedback on the result
of the analysis and s/he can decide to send the image
to the server or capture another image. An example
can be seen in Figure 1.
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4.2 The Server

The server component is implemented using a
Javascript-based server-side framework because it al-
lows for an easy cooperation with any machine learn-
ing library provided that the machine learning (ML)
architecture is convertible to the format used by one
of the most popular machine learning libraries Ten-
sorflow by way of using one of its derivative projects,
TensorflowJS. Since executing predictions with the
designed machine learning models is delegated to
TensorflowJS, this component is only responsible for
handling web requests and controlling which authen-
tication method out of the two are taken into consid-
eration during predictions.

Although technically not part of the server layer, a
brief mention must be made of the database layer here
as well. The system is completely database-agnostic,
thus we decided to use Microsoft SQL to store data
as this is one of the most frequent database configura-
tions at the time of writing. The application has one
database table with a number of columns represent-
ing data collected during the user registration process.
From the perspective of the problem, the only relevant
piece of information is that the list of landmark points
extracted from the user is also stored here as a basis
of comparison for predictions. This data is stored as a
comma-delimited consecutive line of string in which
coordinates are placed next to each other.

4.3 The Machine Learning Units

The ML units were implemented using the Tensor-
flow ML library and the Keras API in Python. Two
kinds of neural network configurations were imple-
mented for the prototype: one for choosing a person
from a pre-established pool of 3 persons (I) and an-
other one that compares facial data of a person to data
stored in the database (II). Dispite that I uses only
1 person as input, while II also needs the reference
given, the two networks are using the same informa-
tion from the client to produce a prediction. In this
fashion, the input layer of I consists of 262 neurons (1
for each coordinate in the 131 point landmark map),
while II expects an input size of 524. The output of I
is a probability score for the occurrence of each per-
son in the pool, the prediction in II results in a binary
answer of whether the two data stream given as pa-
rameters represent the same person or not.

As previously stated, the system was intention-
ally confined to a minimum level of complexity and
this is reflected in the shallow nature of the imple-
mented network architectures. Although the solu-
tions were tested with a great variability in config-

Table 1: Hyper-parameters for the implemented neural net-
works.

Hyper parameter Hyper parameter Value

Name I II

Input layer size 262 524

Output layer size 3 2

Batch size 500 32

Maximum epochs 1500 1000

Weight initiliazer LeCun uniform LeCun uniform

Activation function SELU ReLU

Loss function SCC SCC

Optimizer Adamax Adam

urable hyper-parameters such as the activation and
loss functions, optimizers or weight initializers, their
core architectures are simple. Apart from the input
and output layers, I has two, while II has three fully-
connected hidden layers only. It does not come as
a surprise, therefore, that performance-wise the im-
plemented networks are falling behind the established
standards of an accuracy score well above 90%: on
an average, I achieved an accuracy score of 75-80%,
while II reached as high as 85-90%. Given that the
key factor was that both of these networks are oper-
ating on the same inputs, this was deemed sufficient
for the purpose of the prototype system. The details
of the implemented architectures are given in Table 1.

5 EVALUATION

In this section, we present our preliminary findings
and measurements in support of our claims that using
a distributed approach for machine learning problems
combines the advantages of layered software systems
with the benefits inherent to components of the orig-
inal design. Therefore, first we list two aspects of
practical facial recognition, in which using landmark
points - of any architectural design - can produce su-
perior results to other common forms used in the lit-
erature, then we present measurements to support that
the implemented system indeed possesses the charac-
teristics for these aspects and finally, we show that
from a software design point of view, implementing a
layered facial recognition system is even more bene-
ficial to a “monolithic” approach.
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5.1 Data Storage

The present system uses the landmark extraction fea-
ture of the Android client to reduce the size of the
data that needs to be stored for an analysis. Given
how little information has to reside in the database,
our first assumption was that this method of storage
outperforms other methods in economical terms. To
test this hypothesis, we conducted measurements us-
ing MSSQL for a comparison to common database-
related methods and we also made estimations as to
how much storage space would be required using
some formal methods based on (Karnila et al., 2019).

Table 2: Preliminary measurements on storage space.

Implementation Storage (in B)

Original JPG 5120

MSSQL image 4537

Base64 Encoded 12104

131 point landmark 5120

dlib 68 pont landmark 960

DCT (estimated) 2778

DWT (estimated) 487

The original .jpg image used a storage space of
5120 B on disk and we loaded it to the database us-
ing two formats: MSSQL image format intended for
image storage and Base64 format - a possible, but
not recommended method. We also loaded one in-
stance of a 131 point landmark data of the original
image made with our software as well as a 68 point
one made with the popular image processing library
dlib. Using a simple mathematical analogy, we also
calculated what result the formal methods referenced
above would achieve using our image. The results are
summarized in Table 2.

Our own Firebase API 131 point approach did not
achieve a data extraction rate as efficient as most of
the more common methods due to the small size of
the original image, but the dlib implementation man-
aged to outperform the most common DCT approach.
This could even be improved taking into considera-
tion that dlib is experimenting with a 5 landmark point
approach that would largely excel in this area. The us-
ability of this method in facial recognition, however,
is unclear at this point. It is also worth mentioning
that all the landmark approaches produce an output of
constant size, irrespective of the size of the original

Figure 2: Storage space for 1 record in the database.

image, whereas other solutions grow in size with the
original file. Therefore, we can conclude that despite
that the prototype underperformed multiple methods,
landmark extraction is a powerful alternative to com-
mon methods in the literature. Mention must also be
made of how storage size is also a relevant factor in in-
ternet communication as lower bandwidths also con-
sume a lower amount of resources.

5.2 Data Retrieval

Using the referenced speed data as a basis of refer-
ence, we also conducted measurements both on infer-
ence speed and database storage. Since end-to-end
testing results are not available at this point, we mea-
sured the corresponding components one by one sum-
ming the results afterwards. Inference speeds were
measured using the Tensorflow library test framework
that loads the testing chunks of the data and performs
predicitons on each of them, simulating the worse
possible scenario when the data in question is only
found at the end. For both I and II, the whole pro-
cess took approximately 1 s to run to completion with
I conducting predictions on a sample size of 1215,
while in the case of II, 8221 chunks were used.

Database retrieval speeds are no doubt uniquely
specific to each implementation, so at this stage, we
only measured the speed of our own MSSQL infras-
tructure to provide a basis of comparison for other
methods. A Microsoft benchmarking software pub-
lically available on Github1 was used to conduct
the measurements. This utility software can gener-
ate a data chunk of any size after which data re-
trival processes are launched and measured for a pre-
configured time. Using the storage space required to
store 1 record of our data (Figure 2), we estimated
1000 records to be approximately of 24 MB in size.
The measurements were running for 120 s, and as
a result, an average retrieval speed of 453 ms was
recorded. The preliminary results of retrieval speeds
are summarized in Figure 3.

5.3 Benefits of Layering in the
Prototype

At this point, the prototype is outperformed in cer-
tain areas, but it successfully implements one of

1https://github.com/microsoft/diskspd
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Figure 3: Priliminary measurements on retrieval speeds.

the main ideas related to a layered architecture: it
uses exchangeable components and the implementa-
tion of these components are completely invisible to
the other component due to network communication.
This is also supported by how the two implementa-
tions of facial authentication are able to use the very
same data sent by the Android client despite their
completely different approach to the problem. With
having similar architectures for different approaches,
these solutions resemble two separate implementa-
tions of the same interface rather than different ML
problem solvers.

This also means that unlike conventional ap-
proaches, in which the whole of the system has to
be reconfigured for functional changes, functional-
ity in either side of the system is arbitrarily modifi-
able. Although this is shadowed by how uncommon
the 131 landmark point implementation is making in-
put size changes necessary for other implementations,
both ends of the system can be changed with little
effort needed on the other half. Adding additional
functionality to the server side, facial landmark-based
lie detection (Upadhyay and Roy, ) or emotion anal-
ysis (Day, 2016) for instance, does not require any
changes on client side. In fact, the client is completely
oblivious to any kind of changes on server side as long
as the common way of communication is upheld, con-
trary to current approaches in the literature that re-
quire retraining in the entirety of the process. In this
manner, improvements can also be made on both sides
of the system, an implementation using 64 or even 5
landmark points can be used on the client, while more
complex ML architectures can be integrated into the
server. In the general sense, this not only means that
a complete retraining of the architecture is unneces-
sary, but certain sub-elements can also be added in-
crementally to it, a great advantage over “ordinary”
approaches in terms of productivity.

6 CONCLUSIONS

We investigated the idea of extending layering to ma-
chine learning solutions by first establishing the fun-
damental principles of such a design and then, using
a prototype system, we compared it to techniques and
implementations focusing on facial recognition.

Even though our system was intentionally de-
signed to target the lower end of its potential, we suc-
cessfully demonstrated that facial recognition prob-
lems can be solved using a layered approach. We
also demonstrated that even our simplistic system is
capable of connecting the benefits of layering to the
already existing benefits of current approaches. We
achieved this by building two interchangeable Neural
Nets on the server that both use the same landmark
point approach to facial recognition as an input. We
can conclude that even though the current prototype
implementation has much to improve at this stage,
preliminary findings suggest that the benefits inherent
to the original systems can be integrated into a lay-
ered approach with the addition of time-proven suc-
cess factors, which contemporary solutions are unable
to provide.

Although producing promising preliminary re-
sults, the concept of layered approach to machine
learning problems requires a great deal of further re-
search before real-world applications can come in fo-
cus. For example, one of the most challenging as-
pects of software design is how the level of com-
plexity rises with each piece of software component
added to a system. Comprised of already intricate in-
ner mechanisms, stacking machine learning solutions
might prove too complex to economically scale. An-
other question coming to mind is how reusable can
machine learning subcomponents really be when the
system that uses them requires a certain “common
denominator”, an interface, such as the use of facial
landmark points, to work. Such questions need to
be answered before attempts at large-scale application
can start.
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