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Abstract: For commercial companies, tuning advertisement delivery to achieve a high conversion rate (CVR) is crucial 
for improving advertising effectiveness. Because advertisers use demand-side platforms (DSP) to deliver a 
certain number of ads within a fixed period, it is challenging for DSP to maximize CVR while satisfying 
delivery constraints such as the number of delivered ads in each category. Although previous research aimed 
to optimize the combinational problem under various constraints, its periodic updates remained an open 
question because of its time complexity. Our work is the first attempt to adopt digital annealers (DAs), which 
are quantum-inspired computers manufactured by Fujitsu Ltd., to achieve real-time periodic ad optimization. 
With periodic optimization in a short time, we have much chance to increase ad recommendation precision. 
First, we exploit each user’s behavior according to his visited web pages and then predict his CVR for each 
ad category. Second, we transform the optimization problem into a quadratic unconstrained binary 
optimization model applying to the DA. The experimental evaluations on real log data show that our proposed 
method improves accuracy score from 0.237 to 0.322 while shortening the periodic advertisement 
recommendation from 526s to 108s (4.9 times speed-up) in comparison with traditional algorithms. 

1 INTRODUCTION 

The market size of online advertising increases every 
year, and real-time bidding (RTB) has become a 
typical delivery mechanism of online advertisements 
(hereafter, ads). In RTB, the advertisers publish their 
ads with the help of a demand-side platform (DSP). 
The DSP enables RTB and tracks the delivery of ads. 
Ad delivery aims to increase the number of 
conversions: the cases when a customer completes a 
specific action with the advertiser’s product, such as 
buying or subscribing. Whether a user converts or not 
reflects the performance of the ad delivery. Thus, a 
DSP needs to choose ads with a high conversion rate 
(CVR) according to each user’s behavior. 

A common task of DSP is to meet the needs of 
advertisers to obtain as much user engagement as 
possible. Previous studies(Abrams et al., 2007; Wu et 
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al., 2018) aimed to optimize ads from advertisers’ 
perspective with budget constraints. Yang et al. 
(2019) focused on maximizing the DSP’s profit while 
helping advertisers obtain valuable impressions under 
a given bidding budget. However, related studies 
neglected another critical requirement of DSP 
delivery constraints. DSP may want to deliver a 
specific number of ads in each category from many 
advertisers during a specific period because some 
categories have higher benefits for DSP than the 
others. Besides, because maximizing the CVR while 
satisfying delivery constraints is a combinatorial 
optimization problem, it is challenging and time-
consuming to train and periodically update the ad 
optimization models under the delivery constraints 
with a general-purpose computer.  

This paper proposes a new method that satisfies 
the delivery constraints using an Ising computer — 
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Fujitsu digital annealer (DA), a quantum-inspired 
annealing machine (Aramon et al., 2019). This article 
is the extended version of our poster paper (Mo et al., 
2020).We aim to improve the CVR by periodic ad 
optimization. Periodic updates of the user model 
improve CVR because we can use the users’ latest 
behaviors to tune the model. 

We model the periodic ad recommendation 
optimization problem as follows: in a short fixed 
period (e.g., 20 min), DSP needs to update the user 
model while satisfying the constraints, such as 
delivering a specific number of ads in each category 
to users (for example, 1,000 ads for category A and 
5,000 ads for category B). Due to the massive number 
of ads and users, it is challenging for the DSP to train 
the model quickly and accurately decide the ad 
category with the highest probability of conversion 
for the target user. We first predict the conversion 
probability of each ad category for each user by 
adopting two prediction models. Then we transform 
the optimization task into a quadratic unconstrained 
binary optimization (QUBO) model (Aramon et al., 
2019) to solve the optimization problem. The 
contributions of our work are as follows. 

 We propose a new real-time periodic 
recommendation model to speed up ad 
recommendations while satisfying the ad 
delivery constraints. With offline experiments 
on a real dataset, we show that the ad 
recommendation accuracy can be improved 
while satisfying the constraints. 

 Our model is the first attempt to combine ad 
recommendation with a quantum-inspired 
computer DA, which can solve the 
combinatorial optimization problem quickly 
and accurately. We propose how to use a DA 
computer to achieve ad recommendations 
under the constraints, including transforming 
the problem to the QUBO model. 

The remainder of this paper is organized as 
follows. Related work is introduced in Section 2. Our 
proposed method is presented in Section 3. Section 4 
presents the experimental evaluation, followed by the 
conclusion in Section 5. 

2 RELATED WORK 

We review the previous studies and techniques on 
computational advertisement in this section, 
including click-through rate (CTR) and conversion 
rate (CVR) prediction, ad recommendation, and 
constrained bidding optimization related to our work. 

2.1 CTR and CVR Prediction 

CTR and CVR predictions (Shan et al., 2018; Su et 
al., 2017), which play an essential role in the online 
advertising industry, are modeled as classification 
problems. Logistic regression (Agarwal et al., 2009; 
Shan et al., 2018) and generalized linear models are 
the most popular ways to model a prediction task for 
achieving a high area under the curve (AUC). Shan et 
al. Shan et al. (2018) proposed a triplet-wise learning 
model, adopting regression to rank the impressions in 
the following order: conversions (most valuable 
impressions), click-only impressions, and non-click 
impressions (least valuable ones). Recently, 
factorization machines (FMs) (Juan et al., 2017; Pan 
et al., 2018) have also been adopted for this purpose. 
FMs can work on large sparse data to resolve cold-
start problems. Pan et al. (2018) presented a field-
weighted FM for improved capturing of feature 
interactions between different fields. To further 
improve the prediction accuracy, several deep 
learning-based models (Wang et al., 2017; Yang et 
al., 2019) have been proposed for learning nonlinear 
features and historical information. Huang et al. 
(2017) proposed a hybrid model using deep neural 
networks as a deep layer to capture nonlinear 
relationships in advertisement data while utilizing 
FM as a shallow layer to finish the prediction task. 
Their model successfully overcame the obstacle 
where a shallow-layer model could not use high-order 
features and reduced computational complexity. 

Ad recommendation resembles CTR or CVR 
prediction. Kang et al. (2020) proposed a real-time ad 
recommendation system that preprocesses a user’s 
history data with a tree structure to obtain accurate 
recommendation results. 

2.2 Constrained Bidding Optimization 

Although our work is similar to an ad 
recommendation, the difference is that we need to 
satisfy constraints, which makes our problem 
challenging. Maximizing the conversion ratio under 
constraints is a combinatorial optimization problem. 

In computational advertising, most of the 
constraints, such as budgets, are set from the 
advertiser’s perspective. In particular, the advertisers 
want to maximize their benefits under budget 
constraints through a DSP. Abrams et al. (2007) were 
among the first to consider bidder’s budgets to 
optimize ad delivery while predicting bid prices. Wu 
et al. (2018) combined the Markov decision process 
with a model-free reinforcement learning framework 
to address the complexity of optimizing the bidding 

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

432



 

Figure 1: Prediction model. 

strategy under budget constraints. Yang et al. (2019) 
considered two types of constraints: bidder budgets 
and cost-per-click (CPC). They chose CPC as a 
crucial performance indicator constraint. After 
defining two constraints, they proposed an optimal 
bidding strategy to maximize CVR based on a linear 
programming problem. The study most similar to 
ours is that of Grigas et al. (2017). They optimized 
ads from the DSP’s perspective: under the budget 
constraints, DSP aims to maximize its profit while 
helping advertisers to obtain valuable impressions. To 
achieve this goal, they used Lagrangian relaxation to 
develop their model and then transformed the 
problem into an optimization problem.  

The research above aimed to optimize ads under 
various constraints, including budgets and CPC; 
however, periodic updates of the optimization problem 
remained an open question because of its time 
complexity. Even if we optimize the problem once, the 
optimized result cannot be applied to the real system 
for a long time because the preconditions for the 
optimization vary over time, which results in 
decreasing the effectiveness of the optimization result. 

Thus, periodic updates of the optimization 
problem are necessary to improve performance. Once 
we can realize periodic updates, we may increase the 
accuracy of estimating the users’ behavior and 
improve the optimization. 

3 PROPOSED METHOD 

To meet the needs of DSP for the ad delivery 
constraints and to reflect users’ behavior changes, we 
                                                           
2 IAB Tech Lab - Taxonomy, 

https://www.iab.com/guidelines/taxonomy/ 

propose a DA-based method to optimize ads 
periodically. Our goal is to achieve a higher CVR by 
updating the optimization periodically in a short time. 
In each period, we execute a prediction algorithm, 
such as Logistic regression model or XGBoost, to 
capture the probabilities of each user’s candidate ad 
category, after which we solve the optimization 
problem by using DA, a quantum-inspired computer. 

3.1 Problem Formulation 

Our goal is to optimize the delivered categories of ads 
for each user—with a high possibility of user 
conversions—while satisfying the number of ad 
deliveries for each category in a fixed period with 
periodic updates. We analyze each user’s web page 
visit history to predict what ad category will be 
converted. For this, we adopt 26 categories (shown as 
 .of ads defined by the IAB taxonomy2 (ܥ

We formulate our problem as follows. Figure 1 
shows our prediction model consisting of the training 
and testing phases. In the training phase, we create a 
feature vector for each user ݑ ∈ ௧ܷ௥௔௜௡  who 
converted during period ݐ௧௥௔௜௡ using his/her visit 
history during period ݐ௦௘௦௦௜௢௡ . By using the feature 
vector, we train a classification model to predict the 
category of ads converted by each user. In the testing 
phase, we predict and optimize ads to be delivered to 
every user, shown as ௧ܷ௘௦௧ , who visited web pages 
during ݐ௦௘௦௦௜௢௡ just before the prediction starting time 
 ,௣௥௘ௗ,௦௧௔௥௧. After the prediction and the optimizationݐ
the results are adopted during the next period ݐ௪௜௡ௗ௢௪ 
for the users in ௧ܷ௘௦௧. This is different from the usual 
machine learning methods. We precalculate the ad 
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delivery category for each user ௧ܷ௘௦௧  regardless of 
his/her future appearance in ݐ௪௜௡ௗ௢௪ because we do 
not have enough time to decide the ad category to 
deliver after knowing that he/she appears. We ignore 
predicting the ad category for the users not included 
in  ௧ܷ௘௦௧ , that is, a different strategy is adopted to 
deliver ads. Based on the know-how that users will 
appear in the log data continuously in a short period, 
updating both the prediction and the optimization 
frequently is necessary to achieve high accuracy. 
Besides, to satisfy the constraints, frequent updates of 
the optimization problem are indispensable. 

We assume that each ad in 26 categories has 
constraints, where ݎ௖ is the delivery ratio of category 
c against the entire category ܥ satisfying ∑ ௖∈஼	௖ݎ ൌ 1. 
The actual constraint is the number of deliveries 
defined for each ad. We calculate ݎ௖  based on the 
given number of ads in each ad category during 
௪௜௡ௗ௢௪ݐ . Subsequently, for each ad category ܿ ∈  ,ܥ
we estimate the conversion probability for each user 
in ௧ܷ௘௦௧ ݑ , shown as ݌௨,௖ , based on the pre-trained 
classification model and his/her access log during 
௣௥௘ௗ,௦௧௔௥௧ݐ െ ௣௥௘ௗ,௦௧௔௥௧ݐ ௦௘௦௦௜௢௡ toݐ . Because the ratio 
of delivered ad categories for test users set ௧ܷ௘௦௧ must 
satisfy the number of delivery constraints ∀ܿ ∈
,ܥ ݀௖ ൌ ௖ݎ ൉ | ௧ܷ௘௦௧| , we optimize to choose the 
category for each user ݑ in ௧ܷ௘௦௧ with as high ݌௨,௖ as 
possible under the delivery constraints. Although 
some users appear in ݐ௪௜௡ௗ௢௪  multiple times, we 
assume that each user appears only once during 
 for simplicity, which is acceptable if we can	௪௜௡ௗ௢௪ݐ
shorten ݐ௪௜௡ௗ௢௪	by adopting our proposed method. 

3.2 Overview 

Our framework consists of two steps: 1) a 
preprocessing step on standard CPUs, 2) an 
optimization step on DA. In the preprocessing step, for 
each user, our method predicts the CVR of each 
candidate category by using a pre-trained prediction 
algorithm. In the optimization step, we combine the 
predicted CVR with the delivery constraints and 
generate the final category for each user using DA. We 
use DA for optimizing the delivery categories under 
the constraints. Note that the prediction algorithm and 
the optimization method are independent, which makes 
our method highly portable. 

3.3 Conversion Probabilities of Ad 
Categories for Each User 

In this subsection, we describe a method to calculate 
the probability of the ad category that a user will 

convert. Training data is collected to extract each 
user’s visited web pages’ categories and his/her 
converted ads’ categories. Each user ݑ ∈ ௧ܷ௥௔௜௡ has a 
feature vector ࢎ௨ ൌ ൫݄௨,ଵ, … , ݄௨,|஼|൯ , where ݄௨,௖ 
represents the ratio of the web page category ܿ ∈  ܥ
user ݑ  visited during ݐ௦௘௦௦௜௢௡  weighted by time, as 
shown in (1). Here, the weighting is linear from 0 to 
1, where the recent history has a larger weight.  

݄௨,௖ ൌ
௛ೠ,೎
ᇲ

∑ ௛ೠ,೎
ᇲ

೎∈಴
 (1)

where ݄௨,௖ᇱ ൌ ∑ ቀ1 െ
௦ି௧

௧ೞ೐ೞೞ೔೚೙
ቁሺ௧,௖ሻ∈௏ೠ 

௨ܸ ൌ ቐ
ሺݐ, ܿሻ|	user	ݑ	visited	a	web	page	

of	ad	category	ܿ ∈ 	ܥ
at	time	ݐ	in	ݐ௦௘௦௦௜௢௡

ቑ,

ݏ ൌ ൜
௨,௖௩ݐ ሺwhen	training	ሻ

௣௥௘ௗ,௦௧௔௥௧ݐ ሺwhen	predictingሻ	
	

(2)

We use a prediction algorithm to calculate the 
conversion probabilities of each ad category. To train 
the prediction algorithm, ࢎ௨  is used as the input 
vector, and the converted category ܿ௨ is used as the 
output label for each user ݑ ∈ ௧ܷ௥௔௜௡ who converted 
during ݐ௧௥௔௜௡ . At ݐ௣௥௘ௗ,௦௧௔௥௧ , we input the feature 
vector of each user ݑ ∈ ௧ܷ௘௦௧  and calculate the 
conversion probability ݌௨,௖  for each candidate ad 
category ܿ ∈   .ܥ

3.4 Optimizing Category Predictions 

3.4.1 DA and QUBO Model 

DA by Fujitsu Ltd. (Aramon et al., 2019) aims to 
solve a combinatorial optimization problem at high 
speed with digital circuits inspired by quantum 
computing. DA can search for the minimum value of 
the energy function of a QUBO model. As a quantum 
computer, DA can only adopt the input of the QUBO 
model, as shown in (3): 

ሻݔሺܧ ൌ െ
1
2
෍෍ ௜ܹ,௝ݔ௜ݔ௝

௝ஷ௜௜

 

െ෍ܾ௜ݔ௜
௜

൅ ,݊݋ܿ
(3)

where ܹ,ܾ,	and con are the inputs of DA, and ݔ ∈
ሼ0,1ሽ is a bit. Weight matrix ࢃ reflects the quadratic 
coefficients of the model, while vectors ܾ  and ܿ݊݋ 
represent linear coefficients and a constant, 
respectively. The value of con, the elements in W, and 
the elements of b must be integers. DA calculates the 

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

434



global minimum value of ܧሺݔሻ and outputs the value 
of all bits x when ܧሺݔሻ reaches a minimum.  

3.4.2 DA-based Category Prediction 

Even after the conversion probabilities ݌௨,௖ for each 
user are calculated in Section 3.3, we cannot simply 
choose the category with the highest probability as 
the prediction result because the number of ads in 
each category must satisfy the number of delivery 
constraints. Maximizing accuracy while satisfying 
the constraints is a combinatorial optimization 
problem, which is time-consuming and challenging to 
solve using a conventional computer. Instead, we use 
DA to accelerate the optimization. 

Our research goal is to maximize the prediction 
accuracy under the constraints of delivery 
distribution. The outputs of the DA must satisfy two 
constraints: 1) each user should be assigned only one 
category (constraint 1); 2) the number of ads to be 
delivered in each category must meet the delivery 
constraint (constraint 2).  

We combine the probabilities with the constraints 
and apply them to the QUBO model. Based on the 
research goal, we define an objective function with 
three terms in (4): 

ሻࢗᇱሺܧ ൌ െߙ෍෍݌௨,௖ݍ௨,௖

|஼|

௖ୀଵ

|௎|

௨ୀଵ

 

൅ߚ෍ቌ෍ݍ௨,௖

|஼|

௖ୀଵ

െ 1ቍ

ଶ|௎|

௨ୀଵ

 

൅ߛ෍ቌ෍ݍ௨,௖

|௎|

௨ୀଵ

െ ݀௖ቍ

ଶ|஼|

௖ୀଵ

, 



where ݌௨,௖  is the probability from 0 to 100 (in 
percent) that user ݑ will convert to category ܿ, which 
is calculated from the prediction algorithm in Section 
௨,௖ݍ ;3.3 ∈ ሼ0,1ሽ  shows that ads of category ܿ  are 
assigned to user ݑ  when ݍ௨,௖ ൌ 1  and are not 
assigned to user ݑ when ݍ௨,௖ ൌ 0. We adopt one-hot 
encoding to represent each user’s assigned ad 
category with |ܥ| bits. |ܷ| and |ܥ| are the numbers 
of users and categories, respectively. Moreover ݀௖ ൌ
௖ݎ ൉ | ௧ܷ௘௦௧| is the delivery constraint of category ܿ that 
we must satisfy, where ݎ௖  is the delivery ratio of 
category c. Furthermore, ߙ ߚ , , and ߛ  are three 
parameters. We assign category ܿ  as a predicted 
result for user ݑ if and only if ݍ௨,௖ ൌ 1. 

The constraints in (4) are soft, which causes 
several users to violate the constraint. Thus, we apply 
the following post-process. If he/she has multiple 
assigned categories, the category with the highest 
probability is assigned from the multiple assigned 
categories that do not have full assignments, i.e., from 
remaining categories among the multiple assigned 
categories. Besides, if he/she has no categories, the 
category with the highest probability among the 
remained categories is assigned.  

3.5 Transforming Objective Function 
to the QUBO Model 

To utilize DA, we have to transform our defined 
objective function into a QUBO model and to derive 
three necessary inputs: weight matrix ࢃ, vector, ࢈, 
and constant ܿ݊݋ of DA in (3). For convenience, we 
denote each bit ݔ௞ as ݍ௨,௖ሺ݇ ൌ ݑ ∙ |ܥ| ൅ ܿሻ. As in the 
QUBO model, our objective function also has 
quadratic, linear, and constant terms. In our objective 
function, we mix quadratic, linear, and constant terms 
in the function's three terms. However, in a QUBO 
model, the input of the quadratic coefficient is a 
weight matrix ࢃ, the input of the linear coefficient is 
vector ࢈,  and the input constant is ܿ݊݋ . Thus, we 
must expand the objective function to extract 
coefficients of each term and reorganize them into ࢃ, 
 of the QUBO model. Subsequently, we ݊݋ܿ and ,࢈
feed them to DA as inputs. Because the function has 
three parts, for convenience and clarity, we introduce 
those three parts in the order below. 

The first part െߙ∑ ∑ ௨,௖ݍ௨,௖݌
|஼|
௖ୀଵ

|௎|
௨ୀଵ  in (4) is to 

maximize the accuracy because this term can reach a 
lower value linearly when a category with higher 
probability is selected for the user. We extract the 
linear coefficient into ࢈࢕࢘࢖࢈, as in (5). 

௜࢈
௣௥௢௕ ൌ ,௨,௖ඏ݌උߙ ݅	݁ݎ݄݁ݓ ൌ ݑ ∗ |ܥ| ൅ ܿ 

The second part ߚ∑ ൫∑ ௨,௖ݍ
|஼|
௖ୀଵ െ 1൯

ଶ|௎|
௨ୀଵ ensures the 

existence and uniqueness of the assigned category for 
each user. If and only if there exists one assigned 
category recommended to one user, both ∑ ௨,௖ݍ

|஼|
௖ୀଵ െ 1 

term and its square are 0. If there are no or multiple 
solutions, 	൫∑ ௨,௖ݍ

|஼|
௖ୀଵ െ 1൯

ଶ
	 becomes larger than 0, 

producing a penalty value. This part generates 
quadratic terms, linear terms, and constants of the 
QUBO model shown in (3). We sort quadratic 
coefficients, linear coefficients, and constants into 
 .and ܿ௨௦௘௥, as shown in (6)(7)(8) ,࢘ࢋ࢙࢛࢈	,࢘ࢋ࢙࢛ࢃ

௜,௝ࢃ
௨௦௘௥ ൌ ,ߚ2 	݁ݎ݄݁ݓ ඌ

݅
|ܥ|

ඐ ൌ ඌ
݆
|ܥ|

ඐ 
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௜࢈
௨௦௘௥ ൌ െ2ߚ 

ܿ௨௦௘௥ ൌ ߚ|ܷ| 

The third part ߛ ∑ ൫∑ ௨,௖ݍ
|௎|
௨ୀଵ െ ݀௖൯

ଶ|஼|
௖ୀଵ  ensures that the 

number of ads for each category satisfies the delivery 
constraints. For each category, the closer the number 
of the predicted category to the upper bound, the 
smaller ൫∑ ௨,௖ݍ

|௎|
௨ୀଵ െ ݀௖൯

ଶ
 will be obtained. This part also 

generates a quadratic term, a linear term, and a 
constant of the QUBO model. Again, we sort 
quadratic coefficients, linear coefficients, and 
constant into ,ࢋ࢚ࢇࢉࢃ	ࢋ࢚ࢇࢉ࢈ and ܿ௖௔௧௘ in (9), (10), and 
(11). 

௜,௝ࢃ
௖௔௧௘ ൌ ,ߛ2

where	݅	mod	|ܥ| ൌ ݆	mod	|ܥ|


௜࢈
௖௔௧௘ ൌ െ2݀ߛ௖, where	ܿ ൌ ݆	mod ܿ 

ܿ௖௔௧௘ ൌ ෍݀௖ߛ
ଶ

|஼|

௖ୀଵ

 

We combine quadratic, linear, and constant terms 
in three parts to form the final weight matrix W, 
vector b, and constant con of the QUBO model and 
feed them to DA as inputs, where ࢃ ൌ࢘ࢋ࢙࢛ࢃ ൅
ࢋ࢚ࢇࢉࢃ ࢈ ; ൌ ࢈࢕࢘࢖࢈ ൅ ࢘ࢋ࢙࢛࢈ ൅ ࢋ࢚ࢇࢉ࢈ ݊݋ܿ ; ൌ ܿ௨௦௘௥ ൅
ܿ௖௔௧௘ . The process of transforming into the QUBO 
model is shown in Algorithm 1.  

3.6 Utilization of DA 

After we feed the weight matrix ࢃ, vector ࢈, and 
constant con to DA as input, DA provides two 
annealing modes to be selected: normal mode and 
replica-exchange mode (Aramon et al., 2019). 
Because the normal mode requires us to train 
annealing parameters, for convenience, we choose the 
exchange mode, which performs “parallel tempering” 
and can set the temperature automatically. When the 
energy is stable, the DA returns the status of all bits. 
For each user, we check the status of the 
corresponding bits and judge whether both 
constraints are satisfied. We adopt the result only 
when the following two constraints are satisfied: a 
user is assigned to only one category c (constraint 1), 
and the total number of users to receive ads of 
category c does not violate the maximum number DC 
(constraint 2). Otherwise, the post-process described 
in Section 3.4.2 is adopted. The process of utilizing 
DA is shown in Algorithm 2. 
 

Algorithm 1: Transforming an objective function to the 
QUBO model. 

Input: ࢖: conversion probability of all users 
,ߙ           ,ߚ :ߛ parameters of trade-off  
  delivery constraint of all ad categories : ࢊ          
  number of ad categories :|ܥ|         
         |ܷ|: number of users 
Output: ࢈,ࢃ,  coefficients of the QUBO :݊݋ܿ
model  

|ܥ|←݊ 1 ∙ |ܷ| 
2 Initialize ࢋ࢚ࢇࢉࢃ,࢘ࢋ࢙࢛ࢃ,ࢃ as ݊ ൈ ݊ zero 

matrices 
3 Initialize ࢈, ,࢘ࢋ࢙࢛࢈ ,ࢋ࢚ࢇࢉ࢈ ݊ as ࢈࢕࢘࢖࢈ ൈ 1 

zero vectors 
4 for ݅←1 to n do 
ሾ݅ሿ࢘ࢋ࢙࢛࢈    5 ← െ2
ሾ݅ሿࢋ࢚ࢇࢉ࢈     6 ← െ2 
7 end for 
8 for ݅ ←1 to |ܷ| do 
9     enumerate each pair of categories 

10     for ݇, ݆ in combinations(|ܥ|, 2) do 
௨௦௘௥ሾ݅ࢃ        11 ∙ |ܥ| ൅ ݇ሿሾ݅ ∙ |ܥ| ൅ ݆ሿ 	← 2
௨௦௘௥ሾ݅ࢃ          12 ∙ |ܥ| ൅ ݆ሿሾ݅ ∙ |ܥ| ൅ ݇ሿ ← 2 
13     end for
14 end for
15 ܿ௖௔௧௘ ← 0
16 for ݅ ←1 to |ܥ| do 
17     enumerate each pair of users 
18     for ݇, ݆ in combinations(|ܷ|, 2) do 
௖௔௧௘ሾ݇ࢃ         19 ∙ |ܥ| ൅ ݅ሿሾ݆ ∙ |ܥ| ൅ ݅ሿ ← 2
௖௔௧௘ሾ݆ࢃ          20 ∙ |ܥ| ൅ ݅ሿሾ݇ ∙ |ܥ| ൅ ݅ሿ ← 2 
21     end for
22     ܿ௖௔௧௘ ← ܿ௖௔௧௘ ൅ ݀௜

ଶ 
23 end for
24 ܿ௨௦௘௥ ← |ܷ|
25 for ݅ ←1 to |ܷ| do 
26     for ݆ ←1 to |ܥ| do 
ሾሺ݅࢈࢕࢘࢖࢈         27 െ 1ሻ ∙ |ܷ| ൅ ݆ሿ 	← උ݌௜,௝ඏ 
28     end for 
29 end for 
ࢃ 30 ← ߚ ௨௦௘௥ࢃ∙ ൅ ߛ ∙  	௖௔௧௘ࢃ
࢈ 31 ← ߙ ∙ ࢈࢕࢘࢖࢈ ൅ ߚ ∙ ࢘ࢋ࢙࢛࢈ ൅ ߛ ∙ ࢋ࢚ࢇࢉ࢈

݊݋ܿ 32 ← ߚ ∙ ܿ௨௦௘௥ ൅ ߛ ∙ ܿ௖௔௧௘ 
33 return ࢈,ࢃ,  ݊݋ܿ
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Figure 2: Overview of periodic recommendation. 

Algorithm 2: Utilizing DA. 

Input: ࢖: conversion probability of all users  
,ߙ           ,ߚ   parameters of trade-off	:ߛ
  delivery constraints of all ad categories : ࢊ          
  number of ad categories :|ܥ|         
         |ܷ|: number of users 
Output: result: predicted ad category for all users  

,࢈,ࢃ 1 ݊݋ܿ ← Transformሺ݌௨,௖, ,ߙ ,ߚ ,ߛ ݀௖ሻ 
ࢗ 2 ← DigitalAnnealingሺࢃ, ,࢈ ܿሻ 
ᇱࢁ 3 ← ∅ 
4 for ݅ ←1 to |ܷ| do 
← ݏ     5 ∑ ௜௝ݍ

|஼|
௝ୀଵ  

6     if 1=ݏ then only 1 result bit with value 1
7         for ݆ ←1 to |ܥ| do 
8             if ݍ௜,௝=1 then 
௜ݐ݈ݑݏ݁ݎ                 9 	← 	݆ 

10                 ௝݀ ← ௝݀ െ 1 
11             end if 
12         end for 
13     else 
ᇱࢁ         14 ← ᇱࢁ ∪ ሼ݅ሽuser ݅ needs a post-process

15     end if 
16 end for 
17 
18 

apply post-process to ∀ݑ in ࢁᇱ  
described in Section 3.4.2 

19 return ࢚࢒࢛࢙ࢋ࢘

4 EXPERIMENT EVALUATION 

4.1 Dataset 

We used real log data for the experimental evaluation. 
The log data consists of an auction log and a 
conversion log accumulated by Geniee DSP3. The 
auction log is generated when a user visits a web page 

                                                           
3 Geniee, Inc. https://en.geniee.co.jp/ 

with an advertisement tag, and RTB is performed. 
The conversion log is generated when a user who 
views an advertisement performs a conversion.  

In this experiment, the identification (id) assigned 
to each unique browser is assumed to be the user’s 
unique id. The visit history of web page categories 
used as input features can be aggregated from the 
auction log using the user’s unique id and time stamp. 
We use the ratio of each advertisement category in the 
auction log in each ݐ௪௜௡ௗ௢௪ as the delivery constraint.  

We used raw data collected from November 6th, 
2019 to November 8th, 2019. The 24-hour data on 
November 7th was used to tune time-parameters, i.e., 
௧௥௔௜௡ݐ ௦௘௦௦௜௢௡ݐ , , and ݐ௪௜௡ௗ௢௪ . As for ݐ௣௥௘ௗ , it must 
satisfy less than  ݐ௪௜௡ௗ௢௪ so that we will confirm it in 
the experiment. The 24-hour data on November 8th 
was used for the experimental evaluation. We split the 
evaluation data by ݐ௪௜௡ௗ௢௪ to simulate the proposed 
method. For example, 24-hour evaluation data are 
split into 72 windows when ݐ௪௜௡ௗ௢௪	= 20 min. 

As shown in Figure 2, ݐ௪௜௡ௗ௢௪	slides over time, 
and we use the data during ݐ௧௥௔௜௡ period as training 
data. Importantly, when tuning time parameters with 
data on November 7th, in several ݐ௪௜௡ௗ௢௪  (such as 
00:00 to 00:20), we need to use data on November 6th 
to generate ݐ௦௘௦௦௜௢௡  and ݐ௧௥௔௜௡ . The number of 
converted users was 9,823 on November 6th, 9,328 
on November 7th, and 9,874 on November 8th. The 
number of users in the training and test datasets, 
௧ܷ௥௔௜௡  and ௧ܷ௘௦௧ , depends on the time parameters. 

Notably, some of the converted users in ݐ௪௜௡ௗ௢௪ did 
not visit the web pages during ݐ௦௘௦௦௜௢௡, so they were 
not included in ௧ܷ௘௦௧. The number of converted users 
included in ௧ܷ௘௦௧  was 4,706 out of 9,823 on 
November 8th. 
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4.2 Evaluation Metrics 

The novelty of our proposed method is solving the 
combinatorial optimization problem periodically 
around a short time, maximizing the CVR while 
satisfying the number of delivery constraints. To 
confirm that our proposed method predicts an ad 
category for each user with high accuracy while 
satisfying the delivery constraints in an appropriate 
duration, we use three metrics: ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪ , 
௔௟௟ݕܿܽݎݑܿܿܣ  and execution time. Here, we assume 
that the ground truth is the category in which each 
user was converted in ݐ௪௜௡ௗ௢௪ . We do not use the 
AUC metric (which is common in CVR prediction) 
because our task is different: to predict the conversion 
category under the delivery constraints. We need to 
verify whether our prediction is correct. Thus, we 
adopted accuracy instead of AUC. 

 ௪௜௡ௗ௢௪ is the average ratio of correctlyݕܿܽݎݑܿܿܣ
predicted users to all converted users in ݐ௪௜௡ௗ௢௪.  

௪௜௡ௗ௢௪ݕܿܽݎݑܿܿܣ

ൌ ௪௜௡ௗ௢௪௦	௔௟௟݃ݒܽ
ห ௖ܷ௢௥௥௘௖௧∩௖௩

௪௜௡ௗ௢௪ ห
| ௖ܷ௩

௪௜௡ௗ௢௪|
,



where ௖ܷ௢௥௥௘௖௧∩௖௩
௪௜௡ௗ௢௪  is the set of converted users with 

the same predicted category as the category in the 
ground truth; ܷܿݒ

 is the set of all converted users ݓ݋݀݊݅ݓ
in ݐ௪௜௡ௗ௢௪. 

௔௟௟ݕܿܽݎݑܿܿܣ  shown in (13) is the ratio of 
correctly predicted users to all converted users in the 
test dataset. We introduce ݕܿܽݎݑܿܿܣ௔௟௟	 as a fair 
comparison between the different time parameters 
because when we change ݐ௪௜௡ௗ௢௪, it affects the set of 
converted users.  

௔௟௟ݕܿܽݎݑܿܿܣ ൌ
∑ ห ௖ܷ௢௥௥௘௖௧∩௖௩

௪௜௡ௗ௢௪ ห௔௟௟	௪௜௡ௗ௢௪௦

| ௖ܷ௩|
, 

where ௖ܷ௩ is the set of total converted users in the test 
dataset. 

Finally, the execution time measures the time (in 
seconds) spent to generate the recommendation. 

All the experiments were executed on a server 
with the following configuration: two Intel Xeon 
Gold 6148 CPUs, 2.40 GHz (20 cores, 40 threads), 
with 192 GB of memory, running on CentOS 7.6. The 
optimization process (finding the minimum value and 
bits of the QUBO function) was run on DA (Aramon 
et al., 2019). 

4.3 Prediction Algorithm 

In order to generate the conversion probabilities of ad 
categories for each user described in section 3.3, we 

need to adopt a base algorithm to receive the input 
feature vector ࢎ௨  and output the conversion 
probability ݌௨,௖ for each candidate ad category ܿ ∈  .ܥ
In our experiment, we chose Logistic regression and 
XGBoost (Chen et al., 2016) as prediction algorithms 
for their effectiveness and high speed. 

4.4 Baseline Methods 

We compared our proposed DA method with two 
baselines: “Random” and the genetic algorithm 
(shown as GA). 

The “Random” method omits the optimization 
step and adopts a random selection of ad categories 
but adopts the post-process shown in Section 3.4.2 to 
satisfy the delivery constraints. By comparing our 
method with Random, we can confirm the 
effectiveness of solving delivery constraints.  

The genetic algorithm (GA) (Goldberg, 1989) 
was also chosen to solve the combinational problem 
as a popular and efficient method to confirm the 
effectiveness of DA in solving delivery constraints 
more strictly. GA runs on common CPUs and does 
not require binary bits. Instead of one-hot encoding, 
we can use one variable to represent all the candidate 
results of each user so that the objective function is 
simplified as in (14). 

ሻࢗᇱᇱሺܧ ൌ െߜ෍݌௨,௤ೠ

|௎|

௨ୀଵ

 

൅ߝ෍ቌ෍ ௨݂,௖ െ ݀௖

|௎|

௨ୀଵ

ቍ

ଶ|஼|

௖ୀଵ

, 



where ݌௨,௤ೠ is the probability that user ݑ will convert 
to category ݍ௨; ݀௖ is the delivery number of category 
ܿ  that we must satisfy; ݂ݑ,ܿ ∈ ሼ0,1ሽ  is a binary 

variable where ݂ݑ,ܿ  equals 1 when the converted 

category ݍ௨  equals category ܿ , as shown in 
(15); 	∑ ௨݂,௖

|௎|
௨ୀଵ  is used as a count for each category, 

that is, how many ads are delivered; ߜ and ߝ are two 
parameters.  

௨݂,௖ ൌ ൜
1, ௨ݍ	݄݊݁ݓ ൌ ܿ	
0, 					݁ݏ݅ݓݎ݄݁ݐ݋

 

Compared with (4), (14) omits the constraint that 
ensures that each user has only one prediction result. 
As in DA, GA does not guarantee satisfying the given 
constraint. Therefore, we also adopt the post-process 
described in Section 3.4.2. 
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Figure 3: Result of ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪	without constraints when changing the time parameters: (a) Fixed at ݐ௧௥௔௜௡  = 4 h, 
 = ௪௜௡ௗ௢௪ݐ ௧௥௔௜௡; (c) Fixed atݐ ௦௘௦௦௜௢௡= 6 h, and varyingݐ ,௪௜௡ௗ௢௪ = 20 minݐ ௪௜௡ௗ௢௪; (b) Fixed atݐ ௦௘௦௦௜௢௡= 6 h, and varyingݐ
20 min, ݐ௧௥௔௜௡ = 4 h, and varying ݐ௦௘௦௦௜௢௡. 

Table 1: Experiment Results (ttrain = 4 h and tsession = 6 h). 

Method 
Prediction 
algorithm 

Optimization Technique ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪  ௔௟௟ݕܿܽݎݑܿܿܣ
Violation 

rate 
Execution time 

(s) (ݐ௣௥௘ௗ) 

Baseline  
Logistic 

regression 

Random(ݐ௪௜௡ௗ௢௪=20 min) 0.180 0.219 0.595
GA(ݐ௪௜௡ௗ௢௪=20 min) 0.202 0.239 0.030 525

Proposed 
DA(ݐ௪௜௡ௗ௢௪=20 min) 0.229* 0.278* 0.020 108
DA((ݐ௪௜௡ௗ௢௪=5 min) 0.324* 0.020 108

Baseline 
 

XGBoost 

Random(ݐ௪௜௡ௗ௢௪=20 min) 0.180 0.216 0.595
GA(ݐ௪௜௡ௗ௢௪=20 min) 0.198 0.237 0.029 526

Proposed 
DA(ݐ௪௜௡ௗ௢௪=20 min) 0.229* 0.277* 0.013 109
DA(ݐ௪௜௡ௗ௢௪=5 min) 0.322* 0.013 108

* Statistically significant at p < 0.01 when comparing with our proposed method, DA, with Random and GA
 

4.5 Time Parameters Tuning 

In this section, we tune the parameters twindow, ttrain, 
and tsession to achieve the best average 
௪௜௡ௗ௢௪ݕܿܽݎݑܿܿܣ  by evaluating the classification 
using the prediction algorithm without considering 
the delivery constraints. We used the 24-hour data on 
November 7th to tune the parameters. 

Figure 3 shows the results of ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪ 
when parameters ݐ௪௜௡ௗ௢௪ ௧௥௔௜௡ݐ , , and ݐ௦௘௦௦௜௢௡  are 
varied. As shown in Figure 3(a), the accuracy 
increases with a decrease in the model update interval 
 ௪௜௡ௗ௢௪ because the latest action of the user can beݐ
reflected by a decrease ݐ௪௜௡ௗ௢௪. In Figure 3(b), the 
accuracy peaks when the training data period ݐ௧௥௔௜௡ is 
four hours because if ݐ௧௥௔௜௡ is small, the number of 
data points in ݐ௧௥௔௜௡ becomes small, resulting in poor 
learning outcomes. However, if ݐ௧௥௔௜௡  is extremely 
large, the accuracy decreases due to training on old 
data. In Figure 3(c), a larger ݐ௦௘௦௦௜௢௡  increases the 
accuracy because more visit history of the user is 
reflected by increasing ݐ௦௘௦௦௜௢௡.  

Finally, we set the parameters as ݐ௪௜௡ௗ௢௪  = 20 
min, ݐ௧௥௔௜௡ = 4 h, and ݐ௦௘௦௦௜௢௡ = 6 h for the rest of the 
experiments. Further tuning such as decreasing 
௪௜௡ௗ௢௪ݐ  and increasing ݐ௦௘௦௦௜௢௡  will be available as 
long as ݐ௣௥௘ௗ 	൑  .௪௜௡ௗ௢௪ holdsݐ

4.6 Experimental Results under the 
Delivery Constraints 

We used the 24-hour data on November 8th for the 
evaluation which was split into 72 time slots because 
of ݐ௪௜௡ௗ௢௪  = 20. Parameters ߙ, ,ߚ and	ߛ  in our 
objective function in (4) and parameters ߜ  and ߝ in 
the GA’s objective function in (14) were tuned on the 
first 10 time slots of the data. In contrast, the 
remaining 62 time slots data were used for evaluation. 
By adopting a grid search, we chose ߙ ൌ 1, ߚ ൌ
5, ߛ ൌ ߜ ,10 ൌ 1, and ߝ ൌ 10. 

Table 1 shows the results. Because the constraints 
in (4) and (14) are soft, we show the percentage of 
users who violated the constraints, shown as violation 
rate in Table 1. During the post-process for violated 
users described in Section 3.4.2, we chose each user’s 
ad category from among his/her top six ad categories.   

Recall that ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪ shows the averaged 
accuracy per window. Thus, we can compare with 
	௪௜௡ௗ௢௪ݕܿܽݎݑܿܿܣ only when the same parameters 
௦௘௦௦௜௢௡ݐ) ௪௜௡ௗ௢௪ݐ , , and ݐ௧௥௔௜௡ ) are used among the 
methods. On the contrary, if the different parameters 
are used, we cannot use ݕܿܽݎݑܿܿܣ௪௜௡ௗ௢௪  for fair 
comparison because the converted users in each 
window will be different. In such a case, we must use 
௔௟௟ݕܿܽݎݑܿܿܣ  which shows the correctly predicted 
users against all converted users in the whole test 
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dataset. Compare with the result in Mo et al., 2020, 
the ݕܿܽݎݑܿܿܣ௔௟௟  of GA-based method improves 
because of fine-tuned batch size. 

We conducted a paired t-test for accuracies 
between each baseline and our proposed method. As 
a result, we confirmed that our proposed method 
outperforms the baselines, which is statistically 
significant at p < 0.01. In addition, we confirmed that 
our proposed method achieved the shortest execution 
time. Notably, we do not compare the execution time 
with the Random method because the method is not a 
combinational optimization algorithm and has the 
lowest recommendation accuracy. 

We also experimented with different ݐ௪௜௡ௗ௢௪  to 
confirm the effectiveness of shorting window size. 
Because the DA completed the execution within 5 
min, we set ݐ௪௜௡ௗ௢௪  to 5 min with the other time 
parameters as in the previous setting (ݐ௦௘௦௦௜௢௡= 6 h 
and ݐ௧௥௔௜௡ = 4 h). As shown in Table 1, we confirmed 
௔௟௟ݕܿܽݎݑܿܿܣ  increased drastically as ݐ௪௜௡ௗ௢௪  was 
shortened, which means that if the optimization 
algorithm runs faster, the number of users that we 
correctly predict their ad categories increase. Hence, 
shortening the periodic optimization on DA is 
important.  

To summarize the experimental results, with 
Logistic regression, we successfully shortened the 
periodic advertisement recommendation from 525s to 
108s and increased the accuracy from 0.239 to 0.324 
compared to GA. With XGBoost, we also shortened 
the execution time from 526s to 108s while 
improving accuracy from 0.237 to 0.322. 

5 CONCLUSION 

In this paper, we proposed a new method, namely the 
DA method, to optimize ads periodically in a short 
period by using DA to solve the optimization 
problem: maximizing CVR while satisfying the 
delivery constraints, that is, the number of ads 
delivered for each category. Our method consists of 
two steps: 1) prediction to generate ad candidates for 
each user, and 2) optimization of candidates to meet 
the number of ad delivery constraints, which is 
difficult to solve within an acceptable period on a 
general-purpose computer. Experiments on a real 
dataset showed that our proposed method 
successfully improved the accuracy by shortening the 
periodic advertisement recommendation: 0.239 to 
0.324 with prediction algorithm Logistic regression 
while shortening the execution time from 525s to 
108s; and 0.237 to 0.322 with XGBoost while 
shortening the execution time from 526s to 108s. 

Our future plan includes conducting online tests 
to verify the performance of our proposed model. 
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