
Functionalities, Challenges and Enablers for a Generalized FaaS
based Architecture as the Realizer of Cloud/Edge

Continuum Interplay

George Kousiouris1 and Dimosthenis Kyriazis2
1Department of Informatics & Telematics, Harokopio University of Athens, 9, Omirou Str. 177 78, Tavros, Greece

2Department of Digital Systems, University of Piraeus, Karaoli & A. Dimitriou 80, 18534 Piraeus, Greece

Keywords: Function as a Service, Cloud Computing, Cloud Architecture, Service Platforms, Middleware.

Abstract: The availability of decentralized edge computing locations as well as their combination with more centralized
Cloud solutions enables the investigation of various trade-offs for application component placement in order
to optimize application behaviour and resource usage. In this paper, the goal is to investigate key
functionalities and operations needed by a middleware layer so that it can serve as a generalized architectural
and computing framework in the implementation of a Cloud/Edge computing continuum. As a primary
candidate, FaaS frameworks are taken under consideration, given their significant benefits such as flexibility
in execution, maturity of the underlying tools, event driven nature and enablement of incorporation of arbitrary
and legacy application components triggered by diverse actions and rules. Related work, gaps and enablers
for three different layers (application design and implementation, semantically enriched runtime
adaptation/configuration and deployment optimization) are highlighted. These aid in detecting necessary
building blocks of a proposed generalized architecture in order to enclose the needed functionalities, covering
aspects such as diverse service environments and links with the underlying platforms for orchestration,
dynamic configuration, deployment and operation.

1 INTRODUCTION

The current Cloud computing landscape is
characterized by an extreme diversity of offerings and
services, incorporating multiple solutions. These
include centralized Cloud providers (such as typical
VM offerings, dedicated nodes, hardware enhanced
resources such as GPUs and FPGAs etc), edge and
fog environments, HPC facilities, mobile computing
applications etc. implementing the Everything as a
Service approach. On the other hand, applications are
typically consisted of a multitude of components,
others in need of locality and others in need of
significant computational resources. These
applications portray varying abilities to exploit the
underlying services, varying requirements for
operation, control and technologies/programming
structures on which they rely (Ferrer et al, 2017).

For achieving a true smart cloud computing
continuum, i.e. a unified approach on available
resources, one should examine the domain from three
main perspectives:

- Perspective 1: Continuum in terms of application
design and definition, leading to a generalized
adaptive approach for building the software or
service stack. Adaptation to dynamic conditions
(unexpected loads and failures), to different
computing paradigms (microservices and
functions) and functionalities of the new
execution environment is paramount. Enabling
the combination of edge/cloud resources can
significantly enhance aspects such as latency
(Bittencourt et al, 2018).

- Perspective 2: Continuum in terms of
functionalities, deployment and management
approaches. The scale and differentiation in the
new cloud/edge interplay has become quite
complex, thus managing dependencies and
mechanisms across continuum resources has
become a daunting task (Lynn et al, 2020). Once an
application has been defined, can it be seamlessly
managed by an underlying framework and
distributed based on a given set of goals and
constraints? Can the application exploit specific

Kousiouris, G. and Kyriazis, D.
Functionalities, Challenges and Enablers for a Generalized FaaS based Architecture as the Realizer of Cloud/Edge Continuum Interplay.
DOI: 10.5220/0010412101990206
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 199-206
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

199

features of the used service, such as GPU
processing, multiple cores in the node etc.? If yes,
which executable version of it and with which
parameter set should be used during deployment,
without user intervention? In order to achieve that,
a relevant set of semantic descriptions should exist.

- Perspective 3: Continuum in terms of the
relativity inserted between space (of deployment)
and time (of execution) (Foster, 2019). Utilizing a
centralized service far away from the observer
may introduce latency or other factors that render
this selection as more time consuming than a
localized deployment. The analysis of this trade-
off should result in a unified space-time
combinatorial approach for service selection
while considering space-time continuum
distorting factors like multitenancy and resulting
performance interference (Kousiouris et al, 2011).
Therefore, dynamic incorporation of this factor’s
weight on the final optimization should be
measured and taken under consideration.
In order to achieve these objectives, suitable

middleware frameworks need to be designed,
deployed and operated across the continuum. The aim
of this paper is to investigate what is the status in
some of the key areas mentioned above, in order to
highlight existing capabilities as well as according
gaps and enablers. Section 2 includes the suitability
of the FaaS model for the specific purpose as well as
investigation of the current status in application
design and adaptation (Perspective 1), Section 3
investigates the usage of middleware and semantic
technologies (Perspective 2), while Section 4 studies
the space-time continuum capabilities (Perspective 3)
Finally the paper proposes a high level architectural
approach that would enhance the ability of FaaS
frameworks to meet this diverse role in Section 5 and
Section 6 concludes the paper.

2 FaaS CHARACTERISTICS AND
APPLICATION DESIGN

2.1 Why FaaS? Key FaaS
Characteristics of Interest

One of the main benefits of the FaaS model is the fact
that it is built around the most sophisticated variation
of the pay-as-you-go concept, the pay-as-you-
execute model, thus only charging when the
application code is actually executed (including
billing factors such as function runtime and memory).
What is more it alleviates from server environment

maintenance. Break down into functions enables
easier scalability and elasticity of the applications,
thus better ability to exploit elastic resources and
services, as well as software modularity and
maintenance. Therefore it strengthens the benefits of
a migration towards a cloud/edge service
environment. This function-based break-down
enables the easier distribution of tasks between
centralized and edge resources available.

This is further strengthened by the fact that
application structure is fed in the underlying FaaS
platform (such as Openwhisk) which handles many of
the deployment, configuration and orchestration
needs. FaaS has been among the highest growth
public cloud service types while the need to optimize
cost savings from cloud services is the top priority for
cloud users in 2020 (Flexera, 2020).

One of the main abilities of FaaS platforms is to
include diverse components and behaviours and adapt
them to event driven sequences and workflows, a
feature known as polyglot ability. Its operators include
notions such as Actions (application code that may
include pure function code enforced on input message
data, legacy non-FaaS components, arbitrary and
diverse executables of any programming language in
docker containers) and Rules (used to associate one
event trigger with one or multiple actions, therefore
enabling the definition of complex workflows). One
key aspect is that the event sources can be anything i.e
messages arriving on Message Queues, changes in
databases, web interactions, service APIs etc. This
enables bridging the FaaS model with other popular
existing approaches such as microservices, REST
services, legacy web applications or any arbitrary
legacy component.

Functions can typically range from small and
lightweight to larger and more computationally
demanding, therefore very suitable for the cloud/edge
interplay scope and offloading trade-offs investigation,
depending on available hardware on the edge, latency
considerations etc. However careful consideration
should be given to aspects such as the distribution of
the load, auto-scaling mechanisms, operational tasks
and function limitations (Kuhlenkamp et al, 2020). A
thorough analysis of numerous open and closed source
FaaS frameworks (Van Eyk et al, 2019) indicates the
fact that in many cases there are misconceptions
around characteristics, while costs may also differ from
the initial considerations.

Other benefits of a FaaS platform middleware
include the abstraction of the underlying resources and
infrastructure services used. Each platform may span
across different providers, resource types etc in a
manner that is agnostic to the end user. Locally in each

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

200

service resource used, the FaaS platform (through its
distributed managers and agents) handles aspects such
as function deployment, enabling seamless federation
and distribution of the components through underlying
container orchestrators.

The need to offload computation exploiting
various trade-offs and capabilities as well as
transform monolithic applications in order to be
decomposed in smaller components, executed
separately and on the most suitable resources, is
proposed by the FuncX framework (Chard et al,
2020). Furthermore, approaches at an architectural
level have started to emerge in order to scale and
distribute FaaS platforms across different providers in
multi-cloud or hybrid cloud scenarios (Vieira et al,
2020) as close as possible to the client.

Other approaches such as A3-E (Baresi et al,
2019) enable applications to execute parts of their
logic on different infrastructures, with the goal of
minimizing latency and battery consumption and
maximizing availability. Cross-site orchestration has
been investigated in the context of the AWS Lambda
service in GlobalFlow (Zheng et al, 2019). Other
frameworks based on e.g. WebAssembly (Hall et al,
2019) have emerged, in an effort to reduce container
performance overheads in environments with need
for low-latency response or hardware platforms with
limited resources, however their tool support is not
near the maturity of platforms such as Openwhisk.
Identified Gap. While FaaS frameworks portray a
number of promising characteristics in terms of
execution on demand, improved cost, ease of
placement and inherent/direct parallelization
achieved, along with a long list of open source tooling
and approaches maturing, they come also with a
number of shortcomings that should be addressed.
Tooling availability related to deployment and
function reuse, remains a major difficulty, in current
FaaS systems (Leitner et al, 2019). Furthermore,
abstractions and programming models for building
non-trivial FaaS applications are limited. Currently
frameworks imply the need for full porting of the
application to the FaaS model, thus the redesign of
their execution model around short-lived functions,
leading to potential need for extensive application
rebuilding. Another challenge is the handling of state
in the FaaS model. The latter primarily targets at
stateless functions that do minimal I/O and
communication. Frameworks such as CloudBurst
(Shreekanti et al, 2020) have tried to extend the scope
to a broader range of applications and algorithms,
while incorporating key-value stores for state sharing
between functions. However new challenges emerge
when functions operate at a distributed and

federated cloud-edge environment, including data
consistency, locality and performance.

2.2 Application Design and Adaptation
to the FaaS Model

Visual environments have emerged in recent years as a
user friendly and abstract mean of development that
can speed up application development. Typically these
environments are based on flow programming and
offer palettes of readymade nodes or operators that
incorporate the major functionalities needed. Function
code is applied on the input message, transforming its
contents based on the function logic and passing it to
the next node in line. Furthermore, they encompass
means of extension for these nodes as well as external
repositories. Environments such as open-source Node-
RED for IoT event driven applications and KNIME
(mixture of open and proprietary models) for data
science flows have emerged, indicating that the need
for easier development is very relevant. Therefore they
can be extended and adapted to eventually deploy the
developed flows in a FaaS environment.

In terms of major open source FaaS platforms,
these typically do not come with a UI for workflow
definition (Van Eyk et al, 2019), with the exception
of Apache Airflow that also includes the
incorporation of operators to include typical cloud
services or processes. One drawback of Airflow is
that these operators are typically provider specific and
thus cannot be reused, while amplifying the vendor
lock-in. Also, they do not include advanced and
abstracted cloud design patterns. Fission workflows
are mainly programmatically defined. Proprietary
solutions also exist with an extensive list of
accompanying services such as the IBM Cloud
(formerly Bluemix) environment (and Blueworks) as
well as Google Composer.

In the cloud design patterns domain, Big Vendors
have promoted Pattern-Based development through
new programming and deployment paradigms in
order to build value added services. This development
methodology has the goal of providing complex
services and resources by interaction of simpler ones
and can be used to define proper orchestration actions
(Amato et al, 2017). Typical cloud design patterns
may include template structures and workflows such
as AI training and optimization (Giampa et al, 2020),
map/reduce types of structures, MPI based, data
ingestion, preprocessing, encryption, privacy and
transformation flows, load balancer structures,
preconfigured messaging structures (e.g.
publish/subscribe), data caching mechanisms, auto-
scaling and throttling functionalities, continuous

Functionalities, Challenges and Enablers for a Generalized FaaS based Architecture as the Realizer of Cloud/Edge Continuum Interplay

201

deployment patterns etc. Some of these patterns may
exist in implementation, even directly in the FaaS
model or enabling transformations to this through
suitable converter frameworks (Carvalho et al, 2019),
however they are in need of parameterization and/or
wrapping around the core design framework for
achieving maximum abstraction.
Identified Gap. While helpful in the sense of each
domain’s usability, current design environments lack
the ability to aid an application in exploiting cloud
benefits through ready-made supporting structures
that enhance functional and non-functional aspects.
Furthermore, they lack a unified and vertical
approach to enable application definition,
enhancement with features and creation of cloud
deployment specification in an integrated manner.
Either deployment specification or workflow
specification are supported but not combined and do
not include design patterns and functionality
automatically incorporated and configured in the
application graph. Many of the proposed
operators/environments are provider/platform
specific and increase vendor lock-in.
Proposed Enablers for FaaS Application Design
Linked to FaaS Frameworks. Cloud design and
programming patterns offered as FaaS reusable
components may significantly aid application
adaptation or extension in order to embed this
functionality alongside its current implementation.
Furthermore, visual environments for workflow
creation can significantly aid developers in their
transition and application adaptation. Thus
incorporation of such patterns in arbitrary flows and
instantiation of them with the specific software
artefacts/functions needed may be performed.
Furthermore, a vertical approach in these tools is
needed in the sense of the ability to produce directly
the application deployment specification to a FaaS
framework from the application design.

3 RESOURCE SEMANTIC
ENRICHMENT AND USAGE IN
RUNTIME DEPLOYMENT

Currently, a significantly high number of available
cloud services exist in the market. This makes the task
of matchmaking between user demands and service
capabilities difficult. Approaches have been
developed in order to cater for differences in
semantics for the service composition process (Di
Martino et al, 2017). However what is needed is a
tighter link between semantics and platform self-

configuration processes in order to fully exploit
semantic descriptions usage during runtime. In some
specialized cases, such transformations are performed
for exploiting special purpose cloud services e.g.
cloud-based FPGA’s (Chen et al, 2019). In terms of
fully integrated runtime usage and management
through semantics, the AffectUs framework
(Kousiouris et al, 2019) has used a combination of
ontologies, semantic inference, REST services and
flow based programming adapters in order to
integrate the use of ontologies in a functional manner
in the life-cycle of a supply chain management
application.

Extensive cloud service description frameworks
have been proposed in recent years (Ghazouani et al,
2020), covering a wide variety of common cloud
service characteristics (type, deployment model,
evaluation, functionality and operations, accessibility
and authorization features, QoS capabilities, legal
issues, pricing, resource control).
Identified Gap. Very interesting works exist in the
field of cloud service descriptions, thus exploitable in
the context of the Linked Data paradigm. What is yet
to be accomplished is a fully integrated use of
ontologies and semantics, not only for a preselection
or interface composition process but also to enable
functionally more automation of configuration.
Proposed Enablers for Usage of Semantics in
Deployment Configuration and Automation. First of
all, relevant ontologies need to be enriched or
integrated in order to capture specific aspects of an
application configuration, linked to the way this
application is configured, deployed and managed.
Afterwards, instantiated tuples (examples in Table 1)
would enable inference on the way the application
should be configured or whether it can exploit
specific resource characteristics. This can also be
extended at the function or cloud template pattern
level and can be easily supported during runtime (e.g.
multiple image versions with different characteristics
for a given software artefact).

However, this needs to be coupled by a
middleware layer that will bridge service/resource
descriptions with software artefact descriptions,
inferring whether capabilities of the former can be
exploited through the needs/characteristics of the
latter. Purposes for such inference can include usage
during deployment and/or application adaptation, in
order to enhance both functionally and non
functionally the automated and seamless application
adaptation to diverse environments. Moreover, a
semantically enriched controlling logic can improve
its agility. One could retrieve the specific resource
type in which currently the application component is

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

202

running and infer whether changing a specific
parameter would be expected to make a difference.
Other aspects such as locality constraints, e.g.
imposed by legal (Barnitzke et al, 2011), ethical or
other requirements, can be expressed. Finally,
through modelled information like endpoints and
their relation to QoS features (monitoring or
controlling parameter endpoints), automated
incorporation of controller logic can be inserted in the
designed workflows and parameterized on the fly.

Table 1: Example Ontology Relations Usable for
Deployment Optimization.

Subject
(example
instance)

Predicate Object Class
(example instance)

cliOption (-
threads) setsParameter Parameter

(numberOfThreads)
Resource
(aws.medium) isA ResourceType (VM)

ResourceType
(VM) hasParameter Parameter

(numberOfCores)
Parameter
(numberOfCores) isUsedBy Parameter

(numberOfThreads)
Endpoint
(/setThreads)

managesPara
meter

Parameter (e.g.
numberOfThreads)

Endpoint
(/setThreads) isA HTTPEndpoint

Parameter
(numberOfThread
s)

Affects QoSMetric (e.g.
ResponseTime)

applicationCompo
nent

hasSpecificLo
calityConstrai
nts

ProviderDC (if
specific location and
provider is needed)

applicationVersio
n (myImage) isA ContainerImage

ContainerImage(
myImage)

isOptimizedF
or

ResourceType
(GPUEnabledVM)

CloudPattern
(MessageMQTT)

isOptimizedF
or

ResourceType
(EdgeResource)

ResourceType
(EdgeResourceA)

hasMeasured
Performance

QoSMetric (Bench
results)

One aspect that needs to be stressed is that this

mechanism needs to be linked with respective
annotation capabilities of typical orchestrator systems
(e.g. Docker Compose, Kubernetes). Annotating the
abilities of nodes (feasible in current orchestrators
through e.g. node naming) will bridge the gap
between selection and enforcement of a given
deployment scheme.

4 SPACE-TIME CONTINUUM
EVALUATION/ OPTIMIZATION

Even though the FaaS model promises reductions of
cost compared to IaaS and PaaS offerings, its billing

mechanisms typically include function invocation
numbers as well as execution time. However, in this
context costs are less predictable, especially because
they are tied to function performance (as well as the
provider’s environment). Reports (Bortolini et al,
2019) have observed significant differences (up to
8.5× in performance and 67 × in cost between
providers, 16.8× in performance and 67.2× in cost
between programming languages). The problem of
the assessment of black box Cloud services
performance is especially intense in FaaS
environments (Pellegrini et al, 2019). Cloud Service
Providers usually restrict the maximum size of code,
memory and runtime of Cloud Functions. The
aforementioned work introduces a baseline FaaS
benchmarking tool, which allows users to evaluate
the performance of Cloud Functions. Challenges as
well as requirements for a future FaaS measurement
framework include taking into account notions of
cost, realistic workloads, more (open-source)
platforms, and cloud integration.

Baseline approaches such as FunctionBench (Kim
et al, 2019), including workloads such as ML,
network and micro-level benchmarks are a step
forward. Comparisons have been performed to better
understand the cost vs performance trade‐off between
FaaS and IaaS such that cloud users can decide which
approach is suitable for them. Reports (Malla et al,
2020) on comparisons between Google cloud's FaaS
(Cloud Functions) and its IaaS (Compute Engine) in
terms of cost and performance have indicated that
FaaS can be 14% to 40% less expensive than IaaS for
the same level of performance. However,
performance of FaaS exhibits higher variation.

In terms of deployment optimization and
placement, numerous approaches are available (Cao
et al, 2019), even from the initial Cloud era, focusing
on multi-cloud service placement (Ferrer et al, 2012)
or more recently for cloud-to-edge specific issues
(Meixner et al, 2019). In many cases the size of the
problem due to its NP hard nature is impossible to
calculate optimally without breaking another
constraint (e.g. time to reach the deployment
decision), given the range of possibilities to take
under consideration.
Identified Gap. There needs to be a closer link and
tight collaboration between multiple functionalities
and primarily resource capacity
measurement/evaluation (through e.g. benchmarks
that take under consideration other parameters such
as function based execution, time to completion,
memory used etc.) and deployment optimization.
Proposed Enablers for Enhanced Deployment
Optimization Across the Continuum. Through the

Functionalities, Challenges and Enablers for a Generalized FaaS based Architecture as the Realizer of Cloud/Edge Continuum Interplay

203

inclusion of periodic benchmarking/ evaluation
details for each resource type (integrated also with the
semantic descriptions of Section III), as well as
relevant factors included in the optimization model,
the space-time continuum approach (Foster, 2019)
may be implemented. Furthermore, the integration of
the semantic querying as an initial filter of resources
(and based on the discussion in Section 3), can
significantly reduce the search space of an
optimization algorithm and therefore potentially
enable the application of globally optimal algorithms
such as branch-and-bound. The overall process of the
previous sections can be summarized in the sequence
presented in Figure 1.

5 GENERALIZED
ARCHITECTURAL BLOCKS

The functionalities presented in the previous sections
are included in the form of generalized architectural
building blocks in Figure 2, responsible for
implementing the sequence of Figure 1. This
architecture does not assume that there is any special
connection or federation between the entities (e.g.
Cloud or Edge providers), only a middle managing
entity like a broker/platform manager that creates and
operates resources on the cloud/edge.

Figure 1: From application design to deployable FaaS.

The entry point is the Application Design Layer,
that includes aspects such as management of the
application code basis, visual flow programming
environments enriched with ready-made software
pattern flows, FaaS operators, followed by suitable
parameterization and code insertion where needed. A
necessary step in this case is also the semantic
description of the application parts, whether these are
existing legacy components and executables or newly
created functions. This step aids in the creation of

semantic triples in an according knowledge base,
following the respective Ontological definitions. The
same step of semantic description population needs to
be undertaken also at the resource side, so that the
inference engine can exploit and combine the two
sources of semantics.

Next, the main management layer (Continuum
Deployment Layer) is responsible for receiving the
application graphs extracted from the design
environments and convert them to the action
sequence specification needed by the main FaaS
platform (e.g. Openwhisk). The optimization process
is only performed after a relevant query towards the
Inference Engine, that can apply functional or non
functional constraints and return the subset of
resources that address the requirements. These should
then be mapped on the application graph and
evaluated in terms of performance, cost or other goal
for which information is available (e.g. energy
efficiency). Benchmarking or historical monitoring
information for resources can be acquired from the
Performance Measurement block, that aims to capture
this either through monitoring of executions or from
periodic performance evaluation tests.

From this optimization process (applied in the
Global Continuum Placement Optimizer), the final
resulting deployment graph may be acquired and
forwarded for deployment to the mainstream FaaS
platform, properly annotated via the mechanisms
described in Section 3 in order to dictate the
deployment scheme. However this mainstream FaaS
platform needs to be managed by the Global FaaS
layer, in the sense that the latter will have the
responsibility to create according resource instances
(e.g. Openwhisk nodes) in each of the Cloud/Edge
federation resources. It is necessary to stress that this
resource creation does not assume any special
agreement or link between the different entities.
The Continuum Deployment layer can act like any
typical customer of the latter. A final step is the
incorporation of supporting structures to functionally
link these distributed resources (virtual networking
layers and/or in-memory data services for data
locality and state preservation for functions).

At the provider-local level, once the application is
deployed, the elasticity controllers (embedded in the
application graph) can check the detailed function
execution logs or application endpoints (obtained
from the semantic descriptions) for performance
information and upon detection of an under or over
performing application part they can toggle local
resources given by the local CSP (e.g. through API
calls). If despite these efforts this application part
does not suitably adapt to the desired QoS levels,

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

204

Figure 2: Generalized Architectural Building Blocks.

then the problem can be redirected to the global
optimization plane for a new deployment
optimization.

6 CONCLUSIONS

As a conclusion, FaaS presents a set of characteristics
(e.g. granular execution, flexible deployment
structures, supporting platform tools) that enable its
usage across diverse devices as well as distributed
environments. However in order for this upcoming
computing model to reach its full potential in the
Cloud/Edge interplay scenario, a number of additions
need to be performed to enable easier application
creation, adaptation, and seamless management
across diverse locations.

The work in this paper proposed additions from
application design to deployment and operation.
Initially the application design and implementation
process, supported by implementation templates that
cover typical cloud oriented functionalities directly in
the FaaS model, as well as visual flow programming
environments, will aid in abstracting FaaS migration
processes or application functionality extensions. To
this end, the polyglot ability of FaaS frameworks is a
major strength.

Following, extensions in terms of semantic
descriptions and their incorporation during the
runtime selection and configuration is another key
enabler that aids in automatically adapting to the
diverse environments and optimizing application
setup. Optimization of deployment selection can

significantly benefit from applying such semantic
descriptions as well as runtime evaluation of
Cloud/Edge resources. The overall analysis has led to
a generalized architectural approach that can aid in
addressing functional and non-functional
requirements of complex applications deployed over
dynamic and volatile environments in an abstract
manner. The proposed architecture does not imply
any specific relation or exposure between providers
and is regulated by a brokering entity that has the goal
of managing the middleware layer.

ACKNOWLEDGEMENTS

The research leading to the results presented in this
paper has received funding from the European
Union's Project H2020 PHYSICS (GA 101017047).

REFERENCES

Amato, F. and Moscato, F., 2017. Exploiting cloud and
workflow patterns for the analysis of composite cloud
services. Elsevier FGCS, 67, pp.255-265

Baresi, L., Mendonça, D.F., Garriga, M., Guinea, S. and
Quattrocchi, G., 2019. A unified model for the mobile-
edge-cloud continuum. ACM Transactions on Internet
Technology (TOIT), 19(2), pp.1-21

Barnitzke, B., Ziegler, W., Vafiadis, G., Nair, S.,
Kousiouris, G., Corrales, M., Wäldrich, O., Forgó, N.
and Varvarigou, T., 2011. Legal restraints and security
requirements on personal data and their technical

Functionalities, Challenges and Enablers for a Generalized FaaS based Architecture as the Realizer of Cloud/Edge Continuum Interplay

205

implementation in clouds. In Workshop for E-
contracting for Clouds, eChallenges (pp. 51-55).

Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N.,
Madeira, E., Curado, M., Villas, L., DaSilva, L., Lee,
C. and Rana, O., 2018. The internet of things, fog and
cloud continuum: Integration and challenges. Internet
of Things, 3, pp.134-155.

Bortolini, D. and Obelheiro, R.R., 2019, November.
Investigating Performance and Cost in Function-as-a-
Service Platforms. In International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (pp. 174-
185). Springer, Cham.

Cao, B., Zhang, L., Li, Y., Feng, D. and Cao, W., 2019.
Intelligent offloading in multi-access edge computing:
A state-of-the-art review and framework. IEEE
Communications Magazine, 57(3), pp.56-62.

Carvalho, L. and de Araújo, A.P.F., 2019. Framework
Node2FaaS: Automatic NodeJS Application Converter
for Function as a Service. In Proceedings of the 9th
International Conference on Cloud Computing and
Services Science (Vol. 1, pp. 271-278).

Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A.,
Blaiszik, B., Foster, I. and Chard, K., 2020. funcX: A
Federated Function Serving Fabric for Science. arXiv
preprint arXiv:2005.04215.

Chen, Y., He, J., Zhang, X., Hao, C. and Chen, D., 2019,
February. Cloud-DNN: An open framework for
mapping DNN models to cloud FPGAs. In Proceedings
of the 2019 ACM/SIGDA International Symposium on
FPGA (pp. 73-82).

Di Martino, B., Cretella, G. and Esposito, A., 2017. Cloud
services composition through cloud patterns: a
semantic-based approach. Soft Computing, 21(16),
pp.4557-4570

Ferrer A.J., Woitsch R., Kritikos K., Kousiouris G.,
Aisopos F., Garcia D., Plebani P., and Masip X. 2017.
Future Cloud Research Roadmap, FP9 Cluster Inputs.
Technical Report. Retrieved from
https://drive.google.com/file/d/0B4hHTKjZDMXGSG
xoYnh4eXhURzA/view.

Ferrer, A.J., HernáNdez, F., Tordsson, J., Elmroth, E., Ali-
Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia,
R.M., Djemame, K. et al., 2012. OPTIMIS: A holistic
approach to cloud service provisioning. Future
Generation Computer Systems, 28(1), pp.66-77.

Flexera State of the Cloud Report, 2020, available at:
https://info.flexera.com/SLO-CM-REPORT-State-of-
the-Cloud-2020

Foster I., "Coding the Continuum," 2019 IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), Rio de Janeiro, Brazil, 2019, pp.
1-1, doi: 10.1109/IPDPS.2019.00011.

Ghazouani S., H. Mezni, and Y. Slimani, “Bringing
semantics to multicloud service compositions,” Softw:
Pract Exper, vol. 50, no. 4, pp. 447–469, Apr. 2020.

Giampa, P. and Dibitonto, M., 2020. MIP An AI
Distributed Architectural Model to Introduce Cognitive
computing capabilities in Cyber Physical Systems
(CPS). arXiv preprint arXiv:2003.13174

Hall, A. and Ramachandran, U., 2019, April. An execution
model for serverless functions at the edge. In
Proceedings of the International Conference on Internet
of Things Design and Implementation (pp. 225-236).

Lynn, T., Mooney, J.G., Domaschka, J. and Ellis, K.A.,
2020. Managing distributed cloud applications and
infrastructure: A self-optimising approach.

Kim, J. and Lee, K., 2019, July. Functionbench: A suite of
workloads for serverless cloud function service. In
2019 IEEE 12th International Conference on Cloud
Computing (CLOUD) (pp. 502-504). IEEE.

Kousiouris, G., Cucinotta, T. and Varvarigou, T., 2011. The
effects of scheduling, workload type and consolidation
scenarios on virtual machine performance and their
prediction through optimized artificial neural networks.
Journal of Systems and Software, 84(8), pp.1270-1291

Kousiouris, G., Tsarsitalidis, S., Psomakelis, E., Koloniaris,
S., Bardaki, C., Tserpes, K., Nikolaidou, M. and
Anagnostopoulos, D., 2019. A microservice-based
framework for integrating IoT management platforms,
semantic and AI services for supply chain management.
ICT Express, 5(2), pp.141-145.

Kuhlenkamp, J., Werner, S. and Tai, S., 2020, April. The
Ifs and Buts of Less is More: A Serverless Computing
Reality Check. In 2020 IEEE International Conference
on Cloud Engineering (IC2E) (pp. 154-161). IEEE.

Leitner P., Wittern E., Spillner J., and Hummer W ,2019. A
mixed-method empirical study of Function-as-a-
Service software development in industrial practice.
Journal of Systems and Software, 146:340–359

Malla, S. and Christensen, K., 2020. HPC in the cloud:
Performance comparison of function as a service (FaaS)
vs infrastructure as a service (IaaS). Internet
Technology Letters, 3(1), p.e137

Meixner S., D. Schall, F. Li, V. Karagiannis, S. Schulte and
K. Plakidas, "Automatic Application Placement and
Adaptation in Cloud-Edge Environments," 2019/ 24th
IEEE ETFA, Spain, 2019, pp. 1001-1008.

Pellegrini, R., Ivkic, I. and Tauber, M., 2019. Function-as-
a-Service Benchmarking Framework. arXiv preprint
arXiv:1905.11707.

Sreekanti, V., Lin, C.W.X.C., Faleiro, J.M., Gonzalez, J.E.,
Hellerstein, J.M. and Tumanov, A., 2020. Cloudburst:
Stateful Functions-as-a-Service. arXiv preprint
arXiv:2001.04592.

Van Eyk, E., Grohmann, J., Eismann, S., Bauer, A.,
Versluis, L., Toader, L., Schmitt, N., Herbst, N., Abad,
C. and Iosup, A., 2019. The SPEC-RG Reference
Architecture for FaaS: From Microservices and
Containers to Serverless Platforms. IEEE Internet
Computing.

Vieira S., L., Vasconcelos, A., Batista, Í., Silva, R.A. and
Brasileiro, F., 2019, September. DisOpenFaaS: A
Distributed Function-as-a-Service Platform. In Anais
Estendidos do XXXVII Simpósio Brasileiro de Redes
de Computadores e Sistemas Distribuídos (pp. 33-40).

Zheng, G. and Peng, Y., 2019, July. GlobalFlow: A Cross-
Region Orchestration Service for Serverless Computing
Services. In 2019 12th IEEE CLOUD (pp. 508-510).
IEEE

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

206

