
An Endogenous and Self-organizing Approach for the Federation of
Autonomous MQTT Brokers

Marco Aurélio Spohn a

Federal University of Fronteira Sul, Chapecó, SC, Brazil

Keywords: Publish/Subscribe, Broker Federation, MQTT, Internet of Things, Self Organizing Protocols.

Abstract: Many applications for the Internet of Things (IoT) use the publish/subscribe (P/S) communication paradigm.
Among the most representative protocols, there is MQTT. Its basic architecture relies on a single server/broker:
publishers send data topics to the broker, and then it forwards the data to subscribers. Having a single server
may make things easier for configuration and management; however, there is room for a potential bottleneck,
besides being a single point of failure. Clustering servers usually address scalability in MQTT broker deploy-
ment; however, most solutions are proprietary. Meanwhile, autonomous brokers could be federated together to
scale and increase availability. A self-organizing federation proposal already available in the literature implies
substantial changes to brokers’ inner implementation; furthermore, there has not been any implementation
yet. This work explores an endogenous federation approach: design a supporting agent (called federator) that
realizes the brokers’ federation based on the native P/S mechanism. There are no implied modifications to
regular/standard brokers, but it requires changes to the client-side (i.e., publishers and subscribers). This work
presents a primary architecture and an initial case study to grasp some fundamentals and benefits of adopting
the proposed solution.

1 INTRODUCTION

The Publish/Subscribe (P/S) approach is widely
adopted by many Internet of Things (IoT) plat-
forms (Al-Fuqaha et al., 2015), being Message Queu-
ing Telemetry Transport (MQTT) (Standard, 2020)
one of the prominent representatives among the P/S
protocols. In MQTT, there is a server (broker) re-
sponsible for managing the relationship between sub-
scribers (i.e., those willing to receive specific infor-
mation) and publishers (i.e., those eventually making
the information available). It is a consumer/producer
relationship: publishers send information/messages
to the broker; meanwhile, it delivers the data to all
corresponding subscribers.

Developing IoT applications requires efficient
communication capabilities, mainly because most end
nodes have low computing power, storage capacity,
communication, and power source (usually battery
powered). Nodes might not be active all the time,
making asynchronous communication not just a de-
sirable feature but an essential requirement. Com-
munication between IoT entities and the broker is

a https://orcid.org/0000-0002-9265-9421

paramount for P/S based applications; otherwise, it
might impact the supported service’s availability.

Even though one expects data topics resulting in
small and not so frequent data packets, the broker
might be a bottleneck for the overall system perfor-
mance, besides being a single point of failure. It is
possible to resort to more than one broker, allowing
us to have some degree of fault tolerance. However,
one should expect to have some management issues
not present in a single broker configuration: brokers
work together so that publications can reach their in-
tended subscribers regardless of their direct connect-
ing broker.

The main advantages of having a federated group
of MQTT brokers are:

• There is no single point of failure: clients can
choose to associate with any federated brokers.

• Load balancing: whenever there is a possibility to
choose among a set of available brokers, and get-
ting what one needs no matter from which broker,
it allows adopting mechanisms for load balancing.

• Exploring virtualized topologies or networks’ ca-
pabilities: full virtualized deployment is realiz-
able by having brokers instantiated in virtual ma-

834
Spohn, M.
An Endogenous and Self-organizing Approach for the Federation of Autonomous MQTT Brokers.
DOI: 10.5220/0010408808340841
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 834-841
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



chines or containers. Simultaneously, Software
Define Networking (SDN) and Network Func-
tion Virtualization (NFV) create an environment
for endless network topologies. Therefore, the
meshes’ redundancy capabilities are quite man-
ageable.

Spohn (Spohn, 2020) proposed the first self-
organizing solution for the federation of autonomous
P/S brokers, providing the primary mechanisms for
bringing the brokers together and allowing the proper
routing of published topics to their intended targets
regardless of the subscribers’ brokers. Brokers are as-
sumed to be connected through an overlay/virtual net-
work, allowing any possibility in the network topol-
ogy. Brokers ignite the federation process with sub-
scribers by building meshes connecting all the brokers
with subscribers for the same topic. The solution al-
lows setting the mesh degree redundancy, resulting in
a mesh as complex as the underlying network topol-
ogy allows. As a result, mesh member brokers might
be connected through redundant paths, creating the
conditions for an enhanced degree of fault tolerance,
besides the intrinsic load balance possibilities arisen
from having several available brokers.

Nevertheless, no real implementation of the pro-
posed solution is available yet, but the author assumes
a protocol realization requires changes to standard
brokers’ inner implementation. Under other condi-
tions, one could investigate the possibility of realiz-
ing the federation at the application layer based on
the P/S mechanism itself, without requiring any bro-
kers’ changes. In this context, the federator would
play more of a supporting role in the whole process.

This work endeavors to provide the first proposal
to implement MQTT brokers’ federation at an appli-
cation level/layer. The remainder of this paper has
the following structure. Section 2 presents some rep-
resentative related work. Section 3 summarizes the
federation of MQTT brokers used as the basis for this
work. Section 4 introduces the proposed endogenous
(i.e., P/S based) federation architecture, while Sec-
tion 5 shows some of its formal properties. In Sec-
tion 6, a case study is presented as a first realization of
the proposed architecture, while Section 7 addresses
an initial evaluation scenario. Conclusions and future
works are in Section 8.

2 RELATED WORK

Clustering servers usually address scalability in
MQTT broker deployment; however, most solutions
are proprietary. HiveMQ™ (HiveMQ, 2020) defines
an MQTT broker cluster as a distributed system act-

ing as a single logical MQTT broker, allowing clients
to interact with the system no matter how many real
brokers are active. SwiftMQ™ (SwiftMQ, 2020)
builds around the concept of Federated Router Net-
work, where each broker is a SwiftMQ router running
a routing engine. Even though the routing process is
dynamic, the solution is not self-organized.

The first self-organizing solution (Spohn, 2020)
for the federation of autonomous brokers inherits its
properties from a multicast protocol designed for Mo-
bile Ad Hoc Networks (MANETs). The basic idea
is to have brokers with local subscribers responsible
for building and maintaining a mesh structure around
themselves. Control overhead is kept to a minimum,
having just two control packets: core announcement
and mesh membership announcement. Mesh redun-
dancy is configurable, paving the way for a degree of
path fault tolerance as long as supported by the un-
derlying topology. Brokers connect through an over-
lay network, while publishers and subscribers behave
as usual (i.e., the brokers’ implementation adheres
to the federation protocol). Therefore, a new vari-
ant/standard for MQTT is required. On the other
hand, this work focus on designing an approach that
does not require any immediate changes to the MQTT
standard. However, the trade-off is on laying the bur-
den on clients (i.e., publishers and subscribers) re-
quired to be aware and adhere to the federation proto-
col by themselves.

Intel proposed Distributed Publish & Subscribe
for the Internet of Things (DPS) (Corp., 2020) as a
distributed implementation of the P/S communication
mechanism. DPS builds a mesh network around sub-
scribers, providing the routing from publishers to sub-
scribers based on subscription topics, with IP multi-
cast support in local subnets. However, DPS does not
provide means for the federation of autonomous bro-
kers (i.e., mesh deployment centers on publishers and
subscribers, without multiple independent brokers).

Park et al. (Park et al., 2018) proposed Direct
Multicast-MQTT (DM-MQTT) as a way to address
MQTT single broker limitations. As the number of
clients connected to the broker increases, there is a
direct impact on the communication delay between
publishers and subscribers. To reduce communication
delays, DM-MQTT employs Software Defined Net-
work (SDN) multicast trees to connect publishers to
subscribers, bypassing the centralized broker. Similar
to DPS, DM-MQTT is not a federation of autonomous
brokers either.

An Endogenous and Self-organizing Approach for the Federation of Autonomous MQTT Brokers

835



3 FEDERATION OF MQTT
BROKERS

This section presents a brief description of the federa-
tion mechanism presented in (Spohn, 2020). The pro-
posed approach assumes that a set of autonomous bro-
kers connect through an overlay network. Depending
on the underlying topology, it is possible to explore
path redundancy in the resulting mesh structures built
from the federation process.

The fundamental concept is to have subscribers re-
sponsible for organizing the communication subsys-
tem required for the proper routing of publications
to every broker with local subscribers. Brokers with
local subscribers start by advertising themselves as
the core for a new mesh related to the correspond-
ing topic. Core announcements are broadcast to the
whole network, allowing any broker to learn who they
are and how to get to any existing core. There might
be more than one core for the same mesh for a short
period, but eventually, all brokers converge to choos-
ing the core with the smallest ID. The remaining core
has to announce itself periodically, allowing brokers
to keep always the most current information about the
core.

To complete the mesh building process, brokers
with local subscribers must let their parents know
their status by sending a mesh membership announce-
ment (always related to the freshest core announce-
ment). The number of parents depends on the desired
mesh degree redundancy. A mesh member is any bro-
ker with local subscribers or one connecting children
to the core. This way, a mesh membership announce-
ment can cascade back to the core.

With a minimum control overhead, all brokers
learn about any existing mesh through the corre-
sponding core announcements. However, a broker
only is a mesh member if the broker is required. In
their turn, publishers do not need to take part in any
mesh: their host broker learns how to get to any mesh
(guided by the corresponding core) and send publi-
cations towards the core. Once reaching the mesh,
the publication needs to be spread all along with the
mesh.

The proposed federation protocol assumes
changes to the code of the MQTT broker. Therefore,
a new variant/standard must arise to provide all the
brokers’ proper federation mechanisms. In addition
to that, there are several open issues not addressed
in the initial work. There is not a solution for the
relationship between meshes and sets of topics. The
virtual topology directly impacts the overall perfor-
mance, requiring a flexible and efficient solution for
managing the topology.

Node A

Sub_Fed

Pub_Fed

Sub_Fed

Pub_Fed

BROKER

BROKER

Node B

Figure 1: P/S based federation architecture.

4 P/S BASED ARCHITECTURE

In this work, the proposed architecture builds around
the P/S subsystem without any required changes to
standard MQTT brokers (see Figure 1). The creation
and management of meshes depend on gathering the
information needed to build them. The dissemination
of core and mesh membership announcements pro-
ceed through publications and subscriptions. Routing
of regular data messages/topics happens similarly.

There are basic application-level processes asso-
ciated with every broker to perform the roles needed
to the federation and routing (i.e., control and data
planes):

• Pub Fed: responsible for the publication of con-
trol messages (i.e., core and mesh announce-
ments) and regular routing. There is a direct con-
nection to every neighboring broker for the con-
trol data plane (i.e., control announcements). Data
forwarding will depend on neighboring mesh
membership status.

• Sub Fed: responsible for handling control and
data packets sent from neighboring brokers.
There should be a single instance of such a pro-
cess associated with any federated broker.

The core federation protocol performs through the
proper coordination of the Pub Fed and Sub Fed el-
ements. Core announcements are periodically started
from cores (management and regular cores), spread-
ing through the entire virtual topology; that is, a bro-
ker must handle core announcements no matter the
broker’s mesh status. This way, brokers learn how
to get to any existing core. A broker only takes part

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

836



in the corresponding mesh when the broker has local
subscribers or the broker connects (i.e., is a parent to)
at least one neighbor to the core (learned from a mesh
membership announcement sent from such neighbor).

Cores periodically send new core announcements,
uniquely identified by their core ID and sequence
number. When brokers receive a new core announce-
ment, they must forward it to its neighboring brokers
(other than the sending broker). Any broker learns
which neighboring brokers lead to the corresponding
core, having as many parents as the allowed mesh re-
dundancy. Once a core announcement reaches a bro-
ker, which is also a mesh member, the broker sends a
mesh membership announcement to its parents. Such
an action occurs for every new core announcement
(i.e., mesh membership announcement carries the in-
formation regarding the corresponding core ID and
sequence number). Brokers with local subscribers,
or connecting neighboring brokers towards the core,
must send a mesh membership to their parents to
properly connect all receiving brokers (i.e., brokers
with local subscribers).

Once the core starts a new mesh, it takes some
time to connect all brokers depending on how far
apart receiving brokers are from each other. Once a
mesh membership announcement reaches a non-mesh
member parent for the first time, the parent’s status
transitions to mesh member (i.e., it is an interconnect-
ing broker). The receiving broker must then itself
send a mesh membership announcement to its par-
ents. The process might go on until it reaches the
core or a mesh member broker that has already sent
out the corresponding mesh membership announce-
ment once it received the core announcement previ-
ously. A mesh membership announcement also acts
as a beacon to track the mesh children’s current status.
This approach guarantees that every mesh member
receives one mesh membership announcement from
each child for every new core announcement.

Mesh membership publications happen asyn-
chronously; that is, when a neighbor gets recognized
as a parent for a given mesh, a new mesh membership
can get published to the corresponding neighbor. The
federator must keep control of any recently published
mesh membership, each associated with a unique core
announcement (i.e., code ID and sequence number).

Regular data packets (i.e., topics’ publications)
progress toward the mesh by directing the packet to
the core. If the source broker is not in the mesh, the
packet can reach any particular mesh member other
than the core during the routing process. Regard-
less, once a mesh broker receives the packet, it just
needs to be spread over the remaining mesh members:
the packet advances to the remaining mesh neighbors

(i.e., parents and children) other than the sending bro-
ker. To avoid looping (e.g., when the mesh is a graph
with cycles), a data log must be employed to keep
records of the most recently forwarded data packets.
The size of the log and the minimum time for keeping
the entries should be left as a configuration parameter,
assuming that it depends on the characteristics (e.g.,
topology) of the network and the meshes themselves.

4.1 Applications

The proposed architecture’s main advantage is that it
does not require any changes to standard MQTT bro-
kers. While the burden lies on the application side,
it provides a certain degree of freedom for deploying
and managing in many ways the whole federation in-
frastructure.

With the potential virtualization of any computing
and communication resources (e.g., virtual machines,
containers, software-defined networks, network func-
tion virtualization), the federation itself could re-
sult as a service. Brokers could run in independent
VMs/containers deployed anywhere in a cloud infras-
tructure. The virtual topology could perform as re-
quired by the application, creating the environment
fitted to allow the degree of availability and fault tol-
erance urged by the provided service.

Having the federation protocol incorporated into
the broker itself would likely render better overall
performance, but employing dedicated containerized
brokers associated with every single federator would
be a strategy one could leverage to get improved per-
formance results.

5 FORMAL PROPERTIES

This section presents some formal properties related
to the safety and liveness of the protocol.

Theorem 1. For a virtual network topology with n
brokers and l links, core announcement overhead is
bounded to O(l) publications.

Proof. Core announcements appear as publications to
neighboring brokers in the virtual network. The an-
nouncements have unique identifiers (i.e., core ID and
sequence number), avoiding looping. An announce-
ment traverses the same virtual link at most twice,
happening when links connect pairs of brokers at the
same distance to the originating core. Therefore, the
total number of publications resulting from every new
core announcement is at most 2× l, which is of order
O(l).

An Endogenous and Self-organizing Approach for the Federation of Autonomous MQTT Brokers

837



Theorem 2. For a virtual network topology with n
brokers and l links, the mesh structure converges after
a finite period.

Proof. The protocol converges with no possibility
of deadlocks. Theorem 1 proves that the core an-
nouncement overhead is bounded by O(l) publica-
tions, each one bounded by a well-defined publication
delay. From that, we can assume that all brokers, in-
cluding those with subscribers, get to know the short-
est distance to the core and the corresponding neigh-
bors leading to the core (i.e., parent nodes). Brokers
with local subscribers must send a mesh membership
publication to all parents (bounded to the mesh redun-
dancy), which are known to be closer to the core. In-
terconnecting brokers become mesh members, allow-
ing all the required mesh membership publications
to be published towards the core, accomplishing the
mesh construction process. By definition, mesh mem-
bership publications are strictly related to unique core
announcements. Given that mesh membership is pub-
lished only once to the broker’s parents, there is no
possibility of deadlock.

6 CASE STUDY

A case study for the proposed solution was designed
based on the asynchronous P/S libraries provided by
the Eclipse Paho project (Foundation, 2020b). An in-
stance of the federation application handles the in-
teraction with each federated broker, henceforward
named the federator (see Figure 2). We take some
assumptions to provide a first working environment
with essential tweaks for usability and performance
analysis:

• The virtual topology is static and known in ad-
vance. There are many solutions for building vir-
tual peer-to-peer (P2P) topologies adaptable to a
real implementation. For the sake of simplicity,
we use a grid topology for exploring path redun-
dancy among brokers.

• There is a set of control topics in use for the proper
federation of brokers. Sub Fed is responsible for
subscribing to the following topics:

– CORE ANN: For receiving core announce-
ments from neighbors, the payload includes
information regarding the core ID, sequence
number, distance to the core, and the sender’s
ID (i.e., the neighbor’s ID sending the core an-
nouncement).

– MESH MEMB ANN: Carries a mesh mem-
bership announcement; payload includes the

Sub_Fed

Regular Topics

BROKER FEDERATOR

Neighbor

Pub_Fed

NEW_REGULAR_TOPIC

MESH_MEMB_ANN

CORE_ANN

DATA

Figure 2: Interactions between federation elements.

corresponding core ID, sequence number (i.e.,
linked to the corresponding core announce-
ment), and the sender’s ID.

– NEW REGULAR TOPIC: Any new regular
topic subscription, or first publication, must
be followed by a corresponding publication of
topic details so that the proper mesh build-
ing process occurs, including the routing of
topic/data packets over the mesh structure.

– DATA: Encapsulates any other regular topic.
Once reaching a broker with local subscribers,
the payload contains a full regular topic packet,
which can then be published to reach the proper
local subscribers.

There are no modifications required to MQTT bro-
kers; however, as expected, there is some price
to pay for that: in order to learn about the re-
lated topics which are required to be handled by the
federators, any regular subscription, or first publi-
cation, have to be informed to the federator (i.e.,
by publishing the required information through the
NEW REGULAR TOPIC). Applications must com-
ply with this requirement; otherwise, there is no
way to guarantee that publications will reach sub-
scribers associated with different brokers. There-
fore, all federators are required to subscribe to regu-
lar federated topics (learned about from CORE ANN
and NEW REGULAR TOPIC publications) to prop-
erly handle the routing of regular topics to the re-
quired neighboring brokers, which must receive/relay
the publication.

Given that there are some changes needed for reg-
ular applications to work in a federated environment,

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

838



one could say that clients could have all their regular
topic messages encapsulated into DATA topics. Nev-
ertheless, we handle publications the way they happen
regularly. Besides that, the number of expected mes-
sages for an average application usually outgrows the
initial control overhead (i.e., a single publication to
the NEW REGULAR TOPIC is required). This way,
publications are carried by DATA topic messages only
when transferred between federators.

A publisher may be associated with any broker
wherever there is a supporting instance of the feder-
ator. Once a federator receives a regular topic publi-
cation, the federator encapsulates the publication into
a DATA topic publication, processing it the following
way:

• If the federator is not a mesh member for the cor-
responding topic, the federator relays the packet
to one of its parents towards the core.

• If the federator is in the mesh, the federator sends
a publication to every mesh neighboring broker
(i.e., parents and children) other than the sending
broker. That is, the publication spreads only along
with the mesh.

7 EVALUATION SCENARIO

One expects performance enhancements when resort-
ing to multiple brokers. However, there is always
additional control overhead when such brokers per-
form together. In this context, the proposed solution’s
first evaluation scenario targets some of the potential
performance benefits. An analysis of fault tolerance
and path redundancy capabilities would require ex-
tensions to the protocol, leaving for future work.

For the evaluation, we have designed the follow-
ing scenario:

• A virtual grid topology with nine nodes: a 3× 3
grid (see Figure 3).

• Each virtual node is an instance of a Docker con-
tainer (Docker, 2020) running a Mosquitto MQTT
broker (Foundation, 2020a).

• Mesh redundancy has value two, and subscribers
execute at node two and node seven. This way, a
mesh with path redundancy is established having
node two as the core: even though there might
be more than one core for a while, eventually, the
node with the smallest id (i.e., node two) exerts
the core role.

The communication among mesh members’ internal
elements is depicted in Figure 4, while Figure 5 shows

8

1 2

3

6

0

4 5

87

Figure 3: Virtual topology for the evaluation scenario (each
node is a Docker container running a Mosquitto broker).

Broker

Federator
Broker

Federator

Broker

Federator

Broker

Federator

Broker

Federator

Broker

Federator

1 2

5

7 8

4

Figure 4: Resulting mesh: communication among mesh
members’ internal elements.

the parent and children designation. The resulting
mesh includes connecting nodes 1, 4, 5, and 8.

A publisher was instantiated at node six (i.e., one
hop to node seven and four hops to node two) to
explore the shortest and farthest distance to a mesh
member with a subscriber. Publications have 64 bytes
each, and the publishers send them with an inter-
arrival time between 50 and 100 ms (i.e., an average
between 10 and 20 publications/s). We use two pub-
lication settings: one with 500 publications and the
other with 1000 publications. As the primary perfor-
mance metric, we evaluate the average delay for actu-
ally getting the message delivered to each subscriber

An Endogenous and Self-organizing Approach for the Federation of Autonomous MQTT Brokers

839



2

4

5

7

8

1

Parent

Children

CORE

Figure 5: Resulting mesh: parent and children designation.

Table 1: Major parameters for the evaluation scenario.

Parameter Description Value/Range
Link delay virtual link delay 5 ms

Publications’
periodicity

inter arrival time
for publications [50..100] ms

Topic payload number of bytes
as topic’s payload 64

Mesh redundancy number of parents
for mesh members 2

(Table 1 summarizes the main configuration parame-
ters).

As expected, results for the federated setting (see
Table 2) show that the delay experienced by the sub-
scriber at node 7 (i.e., the one closer to the pub-
lisher) is almost half the amount registered at node
2. Figure 6 depicts the routing process, showing
that redundant transmissions can happen depending
on race/timing conditions (e.g., it could take place be-
tween brokers 4 and 5 and between brokers 1 and 2).
As mentioned previously, a data log for most recently
received data packets must be employed to avoid any
looping.

To evaluate a single broker scenario, we execute
both subscribers (named A and B) associated with the
same broker. First, we evaluate when the broker is
running at node two, and in the second case, the bro-
ker runs in node seven. It is used the same publication
pattern applied to the federated scenario.

The routing process is relatively straightforward
by choosing the shortest path between node six and
the broker. The results (see Table 3) once again show
that the delay is more considerable for the situation
when the broker is farther away from the publisher.
In addition to that, the aggregate delay for both sub-

8
P

S: Subscriber

P: Publisher

6

3

0 1

4

7 8

5

2

S

S

Core

Figure 6: Data packets’ routing.

scribers is more extensive when compared to the fed-
erated scenario, mainly because the broker has to han-
dle twice the load on average.

7.1 Discussions

The Docker-based Mosquitto instances were shown
easy to set up and configure. Given that our solu-
tion does not require any changes to the broker, the
application based approach was able to act right on
the targeted resources. The federation itself is trans-
parent to the brokers, while the virtual infrastructure
built around them allows publications to reach their
intended subscribers.

Even though the initial proposal assumes an indi-
vidual mesh for every single topic, we can once again
resort to PUMA and lean on its multicast group ag-
gregation approach. Therefore, we should foster so-
lutions that bring topic aggregation to the inner mesh
construction and maintenance process. Nevertheless,
it would require improvements to the core and mesh
announcements so that the largest number of targeted
topics can share the same mesh structure.

We might handle federators’ scalability issues
through proper multi-threading management. One
could also pursue a configuration with multiple fed-
erator instances associated with a single broker.

Even though we have not employed any SDN or
NFV resources, it is left for future work to explore
such capabilities. A node entity requires to know its
immediate one-hop neighbors in the virtual topology
to get things started up. It does not matter where
nodes are physically present since they get to com-
municate to their neighboring nodes. Therefore, there
is plenty of space to explore virtual network resources
spanning multiple domains/providers.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

840



Table 2: Federated solution: publication delay (publisher at node 6).

Publ. Subscriber at Node 2 Subscriber at node 7
500 34.64±3.21 ms 18.65±3.2 ms
1000 34.77±3.17 ms 18.61±3.17 ms

Table 3: Centralized solution: publication delay (publisher at node 6).

Publ. Broker at Node 2 Broker at Node 7
Delay (ms) Delay (ms)

Sub. A Sub. B Sub. A Sub. B
500 34.59±3.13 42.47±4.37 18.63±3.2 26.69±4.77

1000 34.58±3.23 42.58±4.48 18.47±3.22 26.42±4.56

8 CONCLUSION

The P/S communication paradigm has paved the way
for the development of many IoT applications and
platforms. Communication between clients (i.e., pub-
lishers and subscribers) can occur asynchronously, al-
lowing many devices connected to the server/broker.
Among the available P/S protocols, MQTT plays a vi-
tal role in the development of IoT applications.

Nevertheless, in the centralized MQTT architec-
ture, the broker configures itself as a single point of
failure, besides being a potential bottleneck. To better
deal with such limitations, one could resort to archi-
tecture with redundant broker deployment. Anyhow,
the emerging environment would require more atten-
tion to the configuration and management of the in-
frastructure.

A protocol for the federation of autonomous bro-
kers is available in the literature. The solution cen-
ters on subscribers’ meshes, and it lets us build and
maintain a routing infrastructure with minimum con-
trol overhead. However, the proposal does not include
any real implementation. In addition to that, the solu-
tion is supposed to require modifications to the inner
implementation of brokers.

This work explored an endogenous approach for
the federation of MQTT brokers: it proposed the fed-
eration of brokers through an application, named fed-
erator, playing a supporting role together with stan-
dard brokers. The P/S mechanism is itself the primary
communication mechanism employed for achieving
the federation of brokers.

While standard brokers require no modifications,
applications must adhere to the federation protocol.
Be that as it may, it could be a little price to pay for
the extra degree of freedom when it comes to build-
ing a federation infrastructure. With all the currently
available virtualized computing and communication
resources, one can pick the desired virtual network

topology as needed, all at the application layer. One
could conceive the federation process as a new cloud
service.

Given that there is no available implementation
for the original federation protocol, it is impossible to
compare their solution to ours in terms of overall per-
formance. However, the other benefits (e.g., load bal-
ancing, increased degree of fault tolerance) outweigh
eventual manageable performance issues.

REFERENCES

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,
M., and Ayyash, M. (2015). Internet of things: A
survey on enabling technologies, protocols, and ap-
plications. IEEE Communications Surveys Tutorials,
17(4):2347–2376.

Corp., I. (2020). Distributed publish & subscribe for
the internet of things (dps). https://intel.github.io/
dps-for-iot.

Docker (2020). Docker container. ”https://docs.docker.
com/engine/reference/commandline/container/”.

Foundation, E. (2020a). Eclipse mosquitto: An open source
mqtt broker. ”https://mosquitto.org”.

Foundation, E. (2020b). The paho project. ”https://www.
eclipse.org/paho/”.

HiveMQ (2020). Hivemq’s mqtt broker. https://www.
hivemq.com/.

Park, J.-H., Kim, H.-S., and Kim, W.-T. (2018). Dm-mqtt:
An efficient mqtt based on sdn multicast for massive
iot communications. Sensors, 18(9).

Spohn, M. A. (2020). Publish, subscribe and federate! Jour-
nal of Computer Science, 16(7):863–870.

Standard, O. (2020). Mqtt version 5.0. http://docs.
oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

SwiftMQ (2020). Swiftmq platform. https://www.swiftmq.
com/.

An Endogenous and Self-organizing Approach for the Federation of Autonomous MQTT Brokers

841


