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Abstract: Refactoring is a maintenance activity intended to restructure code to improve different quality attributes with-
out changing its observable behavior. However, if this activity is not guided by a clear purpose such as reducing
complexity and the coupling between objects, there is a risk that the source code can become worse than the
previous version. Developers often lose sight of the business problems being solved and forget the importance
of managing complexity. As a result, after refactorings many software parts continue to have low readability
levels. Cognitive-Driven Development (CDD) is our recent strategy for reducing cognitive overload during
development when improving the code design. This paper provides an experimental study carried out in an
industrial context to evaluate refactorings through the use of conventional practices guided by a cognitive
constraint for complexity, a principle pointed out by CDD. Eighteen experienced participants took part in
this experiment. Different software metrics were employed through static analysis, such as CBO (Coupling
between objects), WMC (Weight Method Class), RFC (Response for a Class), LCOM (Lack of Cohesion of
Methods) and LOC (Lines of Code). The result suggests that CDD can guide the restructuring process since it
is designed to obtain a coherent and balanced separation of concerns.

1 INTRODUCTION

Refactoring is the process of changing the internal
structure of software to improve its quality with-
out changing its observable behavior (Fowler et al.,
1999). Empirical studies have shown there is a pos-
itive correlation between refactoring operations and
code quality metrics (Abid et al., 2020; AlOmar et al.,
2019; Alshayeb, 2009; Kataoka et al., 2002). Refac-
toring can have a positive impact on the readability
and maintenance of software systems.

However, many studies have pointed out that if the
refactoring is not guided by a clear purpose, the code
can often become worse than the original version,
or the changes might fail to have a significant im-
pact (Baqais and Alshayeb, 2020; Alomar, 2019), i.e.,
the nature of the improvements can be questionable.
This effect becomes even more problematic when the
refactoring is not guided by a quality metric or the
improvements are assessed by developers who have a
restricted outlook. Deciding when and what changes
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are required, as well as understanding the particular
reason for restructuring some code, is still a challeng-
ing task for many of them.

Over the years, the continuous expansion and
growing complexity of software has led to a good deal
of discussions among the software engineering com-
munity (Zuse, 2019; Clarke et al., 2016; Weyuker,
1988; Shepperd, 1988). Most researchers are continu-
ally seeking better and novel methods for handling the
complexity involved in the design and maintenance of
software systems. Approaches have been adopted to
support code design based on architectural styles and
code quality metrics. Nevertheless, there is a lack of
practical and clear strategies for changing the way that
we develop software for reduced testing and mainte-
nance efforts efficiently.

Most research involving human cognition in soft-
ware engineering focuses on evaluating programs and
learning rather than on understanding how software
development could be guided by this perspective (Du-
ran et al., 2018). Cognitive complexity is a depar-
ture from the standard practice of using strictly nu-
meric values to assess software maintainability. It
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starts with the precedents set by cyclomatic complex-
ity (CYC) (McCabe, 1976), but uses human judgment
to assess how the code’s structures should be inter-
preted. Object-oriented cognitive complexity metrics
were proposed by Shao and Wang’s work in (Shao
and Wang, 2003) and extended by Misra et al. (Misra
et al., 2018), where the use of basic control structured
and corresponding weights were suggested. Although
the cognitive complexity measurements can assist in
assessing the understanding of the source code, there
is a lack of studies in the literature that works explor-
ing how this strategy can perspective could be applied
to reducing complexity in the period ranging from the
early stages of development until in the future, where
the process incurs costs related to maintenance and
testing activities.

This paper extends our recent research study
termed Cognitive-Driven Development (CDD)
(Souza and Pinto, 2020) that is based on cognitive
complexity measurements and Cognitive Load
Theory (Sweller, 1988; Sweller, 2010). CDD
is an inspiration from cognitive psychology, or
more specifically, of the recognition of the limited
human capacity for dealing with the the expan-
sion of software complexity. The need for new
empirically-based studies concerning the generation
of high-quality code by means of CDD principles
led to an experiment being conducted involving
refactoring scenarios. Our main premise was that the
definition of cognitive complexity constraints during
refactorings could guide the developer to use more
types of refactorings and generate a more readable
code than conventional refactoring practices without
this kind of constraint.

Eighteen software engineers participated in the
experiment. Classes from an open-source applica-
tion called Student Success Portal1 (SSP) were cho-
sen for the refactorings. We analyzed the devel-
opers’ productivity by taking account of their time
spent in the restructuring process using conventional
practices, both with and without a complexity con-
straint. Both the original and refactored classes were
analyzed and these included the following object-
oriented metrics: CBO (Coupling between objects),
WMC (Weight Method Class), RFC (Response for a
Class), LCOM (Lack of Cohesion of Methods) and
LOC (Lines of Code). The results suggested that CDD
is a promising and useful method for restructuring
code since it can achieve better levels of cohesion,
readability and separation of concerns.

The remainder of the paper is structured as fol-
lows: Section 2 discusses the key characteristics of
the CDD; Section 3 outlines the structure of our ex-

1https://github.com/Jasig/SSP

perimental study and results. Section 4 describes re-
lated work. Finally, Section 5 summarizes the conclu-
sions and sets out future perspectives.

2 BACKGROUND

The continuous expansion of the software scale is one
of the main challenges for industry and a current soft-
ware engineering problem (Zuse, 2019; Pawade et al.,
2016). According to the classic statement made by
Robert M. Pirsig: “There’s so much talk about the
system. And so little understanding” (Pirsig, 1999).
As there is a greater degree of complexity in software,
from the standpoint of people, there is a risk that un-
derstanding can be compromised (Kabbur et al., 2020;
Briggs and Nunamaker, 2020), since they are unable
to follow it in a proportional way.

SOLID design principles (Martin, 2000), Clean
Architecture (Martin, 2018), Hexagonal Architecture
(Cockburn, 2005) and other well-known practices
are usually adopted to make the software designs
more flexible and maintainable. Domain-driven de-
sign (DDD) practices (Evans, 2004) suggest that the
source code should be aligned with the business do-
main. Although not all the proposals are related to
code and modeling, the common goal is to provide
strategies for dealing with complexity at different de-
velopmental stages.

However, elements with low cohesion and an inef-
ficient separation of concerns are still being produced
and residing in final releases (Souza and Pinto, 2020).
It is a challenging task to limit the frontiers for con-
cerns and reduce their complexities. The goal of soft-
ware design is to create chunks or slices that fit into
a human mind. However, code tangled and spread
in addition to the lack of a clear strategy to mitigate
them contribute to that the developers can be affected
by cognitive overload.

In the cognitive psychology field, cognitive load
means the amount of information that working mem-
ory resources can hold at once. Cognitive Load The-
ory (CLT) (Sweller, 2010; Chandler and Sweller,
1991; Sweller, 1988) is generally discussed with re-
gard to learning and instructional design. Problems
that require a large number of items to be stored in
our short-term memory may lead to an excessive cog-
nitive load. According to Sweller (Sweller, 2010),
some material has its own complexity and is inher-
ently difficult to understand. This proposition is re-
lated to the number of elements that we are supposed
to be able to process simultaneously in our working
memory. According to the experimental studies con-
ducted by Miller (Miller, 1956), humans are generally
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able to hold only seven plus or minus two units of in-
formation in short-term memory, an important work
known as “Magical Number 7”.

Efficient programmers write code that people can
understand (Fowler et al., 1999). However, there
is often so much information in a single implemen-
tation unit that developers cannot easily process it.
The recognition of this human limitation should guide
software development, since the source code has an
intrinsic load. Cognitive-Driven Development (CDD)
is based on cognitive complexity measurements and
CLT. The main contribution provided by CDD is
that based on a common concept to assist our un-
derstanding; this enables developers to set a limit
on cognitive complexity and implementation units
can be kept within this constraint, even with the
expansion of the system (Souza and Pinto, 2020).

Although the theory behind the CDD is not lim-
ited to specific metrics or numerical values to assess
code readability, cognitive complexity metrics (Shao
and Wang, 2003) were included to introduce the con-
cept of the Intrinsic Complexity Points (ICPs). In
our previous work (Souza and Pinto, 2020), our ob-
jective was to take note of some basic control struc-
tures (BCS) and resources such as ICPs. It should
be stressed that other alternatives may be valid. For
instance, we could define metrics that cover dif-
ferent types of projects (web applications, libraries,
etc.), programming languages and developer experi-
ence levels.

With the aid of our guidelines, the total of ICPs
can be increased for each branch analyzed. For in-
stance, if-else has 2 points and try-catch-finally, 3.
For contextual coupling, if a class was created to deal
with a specific concern inside the project, however it
collaborates with the class under analysis, 1 point is
also increased. Functions that can accept other func-
tions as arguments, so-called higher-order functions,
can also be regarded as ICPs.

The coupling with objects provided by a certain
framework can be included in the total number of
ICPs, but it should be noted that code designed for
crosscutting requirements is mainly related to in-
frastructure resources, i.e., it is reused or extended
for specific project purposes. Although this kind of
code is not trivial, we suggest not considering them
for the following reasons: (i) these codes are less of-
ten changed than codes related to business logic, and
(ii) it is expected that the practitioners have a wide
knowledge of the language and framework resources.
In previous experiences with real development sce-
narios, we observed that these kinds of definitions
can be used to improve the level of the team. How-
ever, this matter still requires further investigation and

empirically-based experiments.

3 EXPERIMENT

This section describes an empirical study that com-
pares object-oriented metrics for original Java classes
and their corresponding refactored versions. A set
containing 145 Java web projects with more than 500
revisions was collected2 from gitHub using a domain-
specific language and infrastructure for mining soft-
ware repositories called BOA (Dyer et al., 2013).
These projects were analyzed to identify representa-
tive classes and assess the approximate complexity
of those found in real projects from industry. Stu-
dent Success Plan3 (SSP) was the application chosen
on the basis of these criteria. The experiment sought
to determine if the refactoring guided by a cognitive
complexity constraint suggested by CDD, yielded re-
sults in code of a higher quality than that produced
when only conventional refactoring practices were
employed without a limit. This involved carrying out
a static code analysis through object-oriented metrics
that were applicable to all versions.

3.1 Planning

The experiment was planned following the guidelines
of the Goal Question Metric (GQM) (Van Solingen
et al., 2002) model for defining the goals and evalua-
tion methods. The principles formulated by Wohlin et
al. (Wohlin et al., 2012) were adopted for the experi-
mentation process. The characterization of this study
can be formally summarized as follows:

Analyzing resulting pieces of code from refactorings
with conventional methods and CDD’s principles
with the aim of comparing their quality through

object-oriented metrics, regarding the complexity
reduction from the standpoint of software engineers

in the context of industry.

The questions addressed, formulated hypotheses, and
objectives for the experimental study are described in
detail as follows.
RQ1: Is There a Difference in Terms of Quality
Metrics for Refactorings Conducted with a Strat-
egy Based on CDD and Conventional Methods?
To answer this question, all the resulting refactorings
were evaluated with the aid of a tool for static analysis
to collect values for object-oriented metrics.

2http://boa.cs.iastate.edu/boa/?q=boa/job/public/91048
3https://github.com/Jasig/SSP.git
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RQ2: Is Productivity Different When a Strategy is
Adopted based on CDD and Conventional Prac-
tices for Refactorings? When addressing this ques-
tion, we gathered and assessed the time spent to make
the refactorings. The time spent includes all the stages
involved in the refactoring activity from the code
analysis to identify the potential candidate structures
until the compilation process.

It should be noted that the single difference when
using CDD here is determining the ICPs and impos-
ing a feasible limit to guide the refactorings. We sug-
gested a strategy for the subjects to define this limit
and proceed with the refactorings. First, it was de-
cided to calculate the number of ICPs by looking at
the refactoring target. Second, an attempt was made
to face the growing number of challenges, such as re-
ducing the number of ICPs by 10%, 30%, and even
50% in a class under refactoring. Finally, the subjects
were able of obtaining a refactoring cluster keeping
the implementation units at a balanced level of com-
plexity.

The planning phase was divided into six parts
which are described in the next subsections.

3.1.1 Context Selection

The experiment was conducted involving full and se-
nior developers from the same company and it was
performed in a controlled way.

3.1.2 Formulation of the Hypothesis

The RQ1 was formalized into two hypotheses. Null
hypothesis (H0): There is no difference between the
conventional refactoring practices and the use of CDD
based refactoring, given the quality metrics adopted in
this study.
Alternative Hypothesis (H1): There is a difference
between conventional refactoring methods and the
use of a strategy based on CDD, from the perspective
of the quality metrics employed. These hypotheses
can be formalized by Equations 1 and 2:

H0 : (µConventionalmetrics = µCDDmetrics) (1)

H1 : (µConventionalmetrics 6= µCDDmetrics) (2)

Similarly, the RQ2 was also formalized into two
hypotheses. Null hypothesis (H0): There is no sig-
nificant difference between the productivity of the de-
velopers when account is taken of the time spent for
refactorings with conventional practices and a strat-
egy based on CDD, since they are equivalent. Al-
ternative hypothesis (H1): There is a difference be-
tween the time spent on refactorings when conven-
tional practices are employed and a strategy based on

CDD. The hypotheses for the RQ2 can be formalized
by Equations 3 and 4:

H0 : (µConventionaltime = µCDDtime) (3)

H1 : (µConventionaltime 6= µCDDtime) (4)

3.1.3 Variable Selection

The dependent variables are: “the values from static
analysis for object-oriented metrics (CBO, WMC,
RFC, LCOM and LOC)” and “time spent refactor-
ing the provided classes”. CBO (Coupling between
objects): this counts the number of dependencies for
a certain class, such as field declaration, method re-
turn types, variable declarations, etc. For this experi-
ment, dependencies to Java itself were ignored. WMC
(Weight Method Class), so-called McCabe’s complex-
ity (McCabe, 1976), this counts the number of branch
instructions in a class. RFC (Response for a Class)
counts the number of unique method invocations in a
class. LCOM (Lack of Cohesion of Methods) calcu-
lates the LCOM metric. Finally, LOC (Lines of code)
counts the lines of code, when ignoring empty lines
and comments. Note that these metrics were selected
because they are considered important for the com-
pany.

The independent variables is the SSP, in partic-
ular the candidate classes to be refactored in the
experiment: The subjects were asked to refactor two
components from the given application. The main dif-
ferences between these features are their complexity
and each subject should only apply one method, i.e.,
either conventional practices or CDD for refactorings.

3.1.4 Selection of Subjects

The subjects were selected according to convenience
sampling (Wohlin et al., 2012). Eighteen software en-
gineers who took part in the experiment were work-
ing on the development of web projects and they had
a degree of knowledge of the Java language.

3.1.5 Experimental Design

The experimental principle of assembling subjects
in homogeneous blocks (Wohlin et al., 2012) was
adopted to increase the accuracy of this experiment.
We looked for ways to mitigate interference from the
experience of the subjects in the treatment outcomes.
Two pilot experiments were carried out with a re-
stricted number of subjects. It should be noted that
they were not included in the real experiment and the
gathered data were useful to select proper classes for
refactorings and enable the groups to be rearranged
for the real experiment.
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When separating the subjects into balanced
groups, we first asked them to fill out a Categorization
Form with questions about their experience in areas
related to the experiment, i.e., it was a self-evaluation.
Based on data that was obtained, we divided them
into two blocks: one with eight subjects and another
with ten subjects. The first group had to apply con-
ventional practices to improve the readability of the
provided classes, while the second group attended a
planned training session designed for employing the
CDD principles for refactorings.

The Categorization Form included questions re-
garding knowledge about: (i) Object-oriented pro-
gramming, Java, the number of books read about
software development (e.g., Java, Clean Code, Clean
Architecture, Domain-Driven Design, etc.), number
of real (corporate) projects with active participation,
number of projects for “training and learning”, i.e.,
personal projects aimed at improving technical skills;
(ii) software metrics known to them and that can even-
tually be used to improve code cohesion and the sepa-
ration of responsibilities; (iii) practices for software
refactorings; (iv) practices usually adopted to min-
imally understand a legacy project and start imple-
menting new features; (v) programming practices and
code design; Finally, (vi) testing activities and tools.

Figure 1 describes the results of the application of
this form in a grouped bar chart, that only takes ac-
count of numeric values (number of books, real and
personal projects) for each subject. The main reason
to use these elements is that the “time experience” is
a relative measurement. For instance, it is likely that
a programmer with little time for development but
who has attended a higher number of projects can per-
form better than a person with more time experience
and attended a low number of projects. The subjects
“S1-S7;S17” belong to the group that are defined as
adopting conventional practices without a complexity
constraint and the subjects “S8-S16;S18”, CDD for
refactorings.

Figure 1: Gathered data with the Categorization Form.

Additional information was obtained to define this
separation which can be described as follows, includ-
ing corresponding percentages of answers.

With regard to software metrics, we asked the
participants which one they use to generate code
thinking about readability, cohesion and separation of
concerns. The choices/answers (not limited) where
as follows: Fan-in/Fan-out (5.5%), Cyclomatic Com-
plexity (50%), KLOC (11%), Number of root classes
(0 %), Coupling between objects (72 %), Lack of co-
hesion in methods (27 %), Class size (67 %), Cou-
pling factor (16 %) or Software Maturity Index (SMI)
value (0%).

As regards the practices involved in software
refactoring, most subjects underlined the importance
of following principles from: Clean Code, Clean Ar-
chitecture, SOLID, Design patterns, Complexity anal-
ysis, identifying classes or methods overloaded with
various tasks, DDD for defining domains and sepa-
rating concerns more clearly. Another question was
targeted at the practices to minimally understand a
legacy project for including new features or chang-
ing any one available. In most cases, the strategies
were related to searching for data entry points from
the user’s perspective and from there, tracing the exe-
cution flows or conducting debugging and analysis of
automated tests.

With regard to programming practices, the op-
tions/answers (not limited) were as follows: Clean
Architecture (55 %), SOLID (83 %), DDD (55 %),
TDD (33 %), Conventional practices for code cohe-
sion (33%) and other practices (5 %). Finally, for
testing techniques and tools they were as follows:
functional testing techniques (72 %), structural test-
ing techniques (39 %), defect-based testing (mutation
testing) (0 %) and ad hoc testing (non-systematic test-
ing) (56 %). For tools, JUnit (89 %), Mockito (78
%), Cucumber (11 %), Selenium (5.5 %), Jest (15 %),
Mocha (0 %), REST Assured (28 %) and pitest (0 %).

3.1.6 Instrumentation

A document was provided to the subjects that de-
scribed constraints and guidelines to assist them in
both the refactoring and the data submission process,
as follows:

• The package structure had to be kept and they
could not create new packages;

• Automated tests must be kept working completely
without any changes;

• Public, protected or package-private methods
could not be removed from the original classes.

With regard to the guidelines, our suggestion was to
clone the SSP repository from gitHub and import it
into IDEs. The classes chosen for refactorings were
JournalEntryServiceImpl and EarlyAlertServiceImpl
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taking into account our cognitive complexity criteria,
i.e., a considerable amount of ICPs compared with
classes in real-world projects. After the refactorings,
the subjects were requested to submit the URLs of
their remote repositories, together with the time spent
and their perceptions about the experiment, using a
web form.

3.2 Operation

Once the experiment had been defined and planned, it
was undertaken through the following stages: prepa-
ration, operation and validation of the collected data.

3.2.1 Preparation

At this stage, the subjects were committed to carry-
ing out the experiment and they were made aware its
purpose. They accepted the confidentiality terms re-
garding the provided data, which would be only used
for research purposes, and were granted their freedom
to withdraw, by signing a Consent Form. In addition,
other objects were provided:

• Characterization Form: A questionnaire in which
the subjects assessed their knowledge of the tech-
nologies and concepts used in the experiment;

• Instructions: A document describing all the
stages, including the instructions about the SSP
and classes chosen for refactoring;

• Data Collection Form: Document to be filled in
by the participants to record the start and finishing
time of each activity during the experiment.

The platform adopted had Java as its implementation
language and Eclipse or IntelliJ IDEA as development
environments. The group that would use CDD re-
ceived 1 hour training in a web meeting format. A
class from a real-world project was selected to illus-
trate the identification process of ICPs. The CDD fun-
damentals were explained by highlighting the impor-
tance of defining a cognitive complexity constraint to
guide the refactorings (Souza and Pinto, 2020). Com-
plementary materials were provided and a web chat
was created for settling doubts before the experiment,
which lasted one week.

3.3 Data Analysis

This section examines our findings. The analysis is
divided into two areas: (i) descriptive statistics and
(ii) hypotheses testing.

3.3.1 Descriptive Statistics

The quality of the input data (Wohlin et al., 2012)
was verified before the statistical methods were ap-
plied. There is a risk that incorrect data sets can be
obtained as the result of some error or the presence of
outliers, which are data values much higher or much
lower than the remaining data.

The metrics adopted in this study have different
scales and when taking note of the “refactoring clus-
ters” we decided to be conservative and analyze all
the gathered data, in an individual way per metric.
Refactoring clusters can be understood as a) the set
of changes produced during refactoring; b) as new
classes or c) interfaces, including the implementation
units provided by the SSP project that were modified.

When clarifying descriptive statistics and mak-
ing comparisons, it is important to keep certain val-
ues in mind. The following values were obtained for
the original version of the Class JournalEntryServi-
ceImpl: CBO=23; WMC=20; RFC=27; LCOM=15
and LOC=82. Similarly, EarlyAlertServiceImpl,
CBO=70; WMC=136; RFC=161; LCOM=136 and
LOC=560, respectively.

Averages were calculated for each refactoring
cluster per subject. Figures 2 and 3 include
these kinds of data for JournalEntryServiceImpl and
EarlyAlertServiceImpl refactoring clusters, respec-
tively. The reason why there is a difference between
the number of subjects that attended both refactorings
is that not all the subjects finished the activities dur-
ing the time of four hours and thirty minutes. With
regard to the averages, the clusters that were gen-
erated following the cognitive complexity constraint
(just called CDD) tend to keep more balanced and
lower levels for the metrics than refactorings without
this restriction.

Although it is not possible to have a conclusive re-
sult when analyzing these values, we believe that the
adoption of a quality criterion based on understand-
ing can generate code with better modularity levels.
For instance, in Figure 2 the gathered data when CDD
was followed the RFC was kept between 10 and 20,
in most cases; LCOM 5 and 10; and LOC, 20 and 40
on average. As regards the same metrics when con-
ventional practices were applied without a complex-
ity constraint, it should be noted that the limits had
higher values in the intervals than was the case with
the aforementioned data.

Figure 4 displays box plots for each metric per
samples. The box plots are “A-E” for JournalEntry-
ServiceImpl and “F-J” EarlyAlertServiceImpl, CBO,
WMC RFC, LCOM and LOC, respectively. Note that
each interior of a box plot refers to a specific sample,
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Figure 2: JournalEntryServiceImpl refactoring clusters.

“Conventional”, where the subjects strictly used the
conventional practices for refactoring or “CDD”, us-
ing the same practices but guided by a cognitive com-
plexity constraint.

In addition, Table 1 shows the types of refactor-
ing detected using Refactoring Miner (Tsantalis et al.,
2018), an API that can detect types of refactorings
applied in the history of a Java project. As a result,
24 different types of refactorings were identified that
took account of all the changes brought about in this
study. This graph is useful to observe that the sub-
jects (S8-S16;S18) that followed a complexity con-
straint were implicitly guided to explore more types
of refactorings than the remaining developers.

Figure 5 shows two box plots based on the time
spent by all the subjects (grouped by Time (min)).
The boxes inside each graph refer to specific samples,
Conventional and CDD. In case of JournalEntrySer-
viceImpl: (A) the average time spent using CDD was
higher in the sample where the subjects were worried
about the cognitive complexity constraint, which is
likely to be the main reason for this difference. As
regards the EarlyAlertServiceImpl (B), some subjects
were guided by a constraint for separating the respon-

Conventional CDD
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FC
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C

Figure 3: EarlyAlertServiceImpl refactoring clusters.

sibilities into more implementation units, but the re-
maining subjects that also adopted this constraint only
kept their focus on the target class, indicated in the
experiment, which meant, they spent less time com-
pleting their activities. As a result, the interquartile
range represented by box plot (B) was higher than the
first box plot (A).

3.3.2 Hypotheses Testing

Hypothesis Testing - Metrics: Since some statistical
tests only apply if the population follows a normal
distribution, before choosing a statistical test we ex-
amined whether our gathered data departed from lin-
earity. This involved conducting the Shapiro-Wilk
normality test to check if the samples had a normal
(ND) or non-normal distribution (NND).

Table 2 shows the results of testing for normality
for all the samples, i.e., for JournalEntryServiceImpl
and EarlyAlertServiceImpl refactorings clusters, re-
spectively. The results refer to the analysis for each
metric, including the corresponding samples. For in-
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Figure 4: Box plots for JournalEntryServiceImpl (A-E) and EarlyAlertServiceImpl (F-J) refactoring clusters.

Table 1: Types of refactorings detected by Refactoring Miner considering all changes.
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Figure 5: Box plots for the time spent by the subjects when
refactoring JournalEntryServiceImpl (A) and EarlyAlert-
ServiceImpl (B).

stance, taking into account the CBO metric from the
“CDD” sample, we do not reject the hypothesis that
the data are from a normally distributed population,
although the “Conventional” sample follows a non-

normal distribution. Variance testing was performed
for WMC and LOC and took note of the JournalEntry-
ServiceImpl refactoring clusters and CBO for the sam-
ples related to the EarlyAlertServiceImpl. In the case
of these metrics, the p-values were 0.1841, 0.4392
and 0.6918 (based on α = 0.05, respectively).

Unpaired Two-Samples T-test (or unpaired t-test)
can be used to compare the means of two unrelated
groups of samples. This kind of statistical testing was
conducted for WMC and LOC by taking note of the
JournalEntryServiceImpl refactoring clusters and the
p-values were 0.02109 and 0.02993. Therefore, with
degrees of freedom being d f = 16, it is possible to
reject the null hypothesis for these metrics. However,
there is no considerable difference between the mean
averages for CBO of the EarlyAlertServiceImpl refac-
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Table 2: Shapiro-Wilk normality tests for JournalEntrySer-
viceImpl and EarlyAlertServiceImpl refactoring clusters.

JournalEntryServiceImpl

Metric Samples Results

CBO
Conventional p-value = 0.03153 NND
CDD p-value = 0.1042

WMC
Conventional p-value = 0.256 ND
CDD p-value = 0.09061

RFC
Conventional p-value = 0.2886
CDD p-value = 0.02513 NND

LCOM
Conventional p-value = 0.04899
CDD p-value = 0.02381 NND

LOC
Conventional p-value = 0.1484 ND
CDD p-value = 0.1191

EarlyAlertServiceImpl

CBO
Conventional p-value = 0.4334 ND
CDD p-value = 0.07191

WMC
Conventional p-value = 0.4435
CDD p-value = 0.0196 NND

RFC
Conventional p-value = 0.6283
CDD p-value = 0.02769 NND

LCOM
Conventional p-value = 0.9084
CDD p-value = 0.001319 NND

LOC
Conventional p-value = 0.3581
CDD p-value = 0.01908 NND

toring clusters.
The Mann-Whitney U Test is a nonparametric test

that can be used when one of the samples does not
follow a normal distribution. We applied this kind
of testing for CBO, RFC and LCOM taking account
the JournalEntryServiceImpl refactoring clusters. As
a result, the p-values were 0.4763, 0.007561 and
0.009632, respectively. Therefore, it is impossible to
reject the null hypothesis for CBO, even though in
the case of RFC and LCOM the null hypothesis can
be rejected. As regards the WMC, RFC, LCOM and
LOC for EarlyAlertServiceImpl, the p-values were as
follows: 0.2615, 0.6304, 0.1488 and 0.3358, which
means, it is not possible to reject the null hypothesis
for these samples.

Summarizing the results, when comparing the
samples for the JournalEntryServiceImpl refactoring
clusters, we can conclude that there was no statisti-
cal difference for CBO, although there was for the re-
maining metrics WMC, LCOM, LOC and RFC, i.e.,
the use of a cognitive complexity constraint was use-
ful for the reduction of the code complexity. How-
ever, for EarlyAlertServiceImpl refactoring clusters,
we concluded that there was no statistically signifi-
cant difference between the observed samples. This
can still be a highly significant result if there is a

reduction of intrinsic complexity points for the code
generated following a complexity constraint.
Hypothesis Testing - Time: Similarly, we applied sta-
tistical tests to evaluate the time spent on refactor-
ing activities. According to the normality tests, we
cannot reject the hypothesis that all the time sam-
ples have a normal distribution, p-value = 0.2384
and 0.4711 for JournalEntryServiceImpl; 0.3306 and
0.1099 for EarlyAlertServiceImpl refactoring clusters
with and without the suggested complexity constraint,
respectively. With regard to the variance testing,
we obtained p-value = 0.3601 for JournalEntrySer-
viceImpl and 0.1451 for EarlyAlertServiceImpl. Fi-
nally, Two sample t testing returned p-value = 0.7761
and 0.4338. Therefore, it is not possible to reject the
null hypothesis for the time spent between the sam-
ples, i.e., the productivity in terms of time was not
affected by employing a complexity constraint.

3.4 Threats to Validity

Internal Validity. Level of Experience of Subjects:
One can argue that the heterogeneous knowledge of
the subjects could have affected the collected data.
To overcome this threat, the participants were divided
into two-balanced blocks that took account of their
level of experience.

During the training, the subjects that had to apply
the cognitive complexity constraint attended a train-
ing session on how to use this limit to guide the refac-
toring process. Thus, they adopted conventional prac-
tices to restructure the code like the other group but
following such limit;
Productivity under Evaluation: the results may have
been affected because the subjects often tend to think
they are being evaluated during an experiment. We
attempted to overcome this problem by explaining to
the subjects that no one was being evaluated and their
participation would be treated as anonymous;
Validity by Construction. Hypothesis Expectations:
the subjects already knew the researchers, a point
which is reflected in one of our hypotheses. This issue
could have affected the collected data and caused the
experiment to be less impartial. Impartiality was kept
by insisting that the participants had to keep a steady
pace during the whole of the study.
External Validity. Interaction between Configura-
tion and Treatment: it is possible that the exercises
carried out in the experiment are not accurate for ev-
ery Java web application. To mitigate this threat, an
open-source application was selected based on the
real-world criterion, i.e., the complexity of the appli-
cations and the fact that the researchers have contact
with real-world projects of the company.
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Conclusion Validity. Measure Reliability: this refers
to the metrics used to measure the refactoring effort.
To mitigate this threat we only made use of the time
spent, which was captured in forms filled in by the
subjects;
Low Statistical Power: the ability of a statistical test is
to reveal reliable data. Unpaired Two-Samples T-test
and Mann-Whitney U Test were adopted to statisti-
cally analyze the metrics for all the refactoring clus-
ters and the time spent during the restructuring pro-
cess.

4 RELATED WORK

Duran et al. (Duran et al., 2018) established a frame-
work for the Cognitive Complexity of Computer Pro-
grams (CCCP) that describes programs in terms of the
demands they place on human cognition. CCCP is
based on a model that recognizes factors when we are
mentally manipulating a program. The contribution
made by this work is to concentrate on the cognitive
complexity present in program designs rather than on
how the source code could be developed or restruc-
tured from this perspective, as suggested by CDD.

Gonçales et al. (Gonçales et al., 2019) provided
a classification of cognitive loads in software engi-
neering. Recent advances have been made in the ar-
eas of the programming tasks, machine learning tech-
niques to identify a programmer’s level of difficulty
and their code-level comprehensibility. CDD can be
regarded as a complementary design scheme for tack-
ling the increase in cognitive complexity regardless of
the software size.

Cognitive Complexity is a significant metric to as-
sess code understandability. According to the system-
atic literature review conducted by Muñoz Barón et
al. (Muñoz Barón et al., 2020) the Cognitive Com-
plexity positively correlates with comprehension time
and the subjective ratings of understandability. This
underlines the importance of an intrinsic complexity
constraint for the implementation units.

5 CONCLUSION

The human factor imposes several challenges in soft-
ware development. For instance, the developers’
varying level of experience or involvement in team
restructuring during the software process, can affect
software estimates and quality. As writing and main-
taining code are human processes, the priority is not
only to solve business problems, but also to write code
that other people can understand.

However, complex objects without a clear defi-
nition of class roles are still being produced and re-
side in final releases, even when developers widely
familiar with certain programming language and de-
velopment stacks. Cognitive Load Theory is a frame-
work for investigating the effects of human cogni-
tion on task performance and learning (Sweller, 1988;
Sweller, 2010). Cognition is constrained by a bottle-
neck created by working memory, in which we hu-
mans can only hold a handful of elements at a time for
active processing; to the best of our knowledge, the
cognitive complexity constraint has not been applied
previously to guide software development. Thus, we
proposed a method called Cognitive-driven develop-
ment (CDD) in which a pre-defined cognitive com-
plexity for application code can be used to limit the
number of intrinsic complexity points and tackling the
growing problem of software complexity, by reducing
the cognitive overload.

The main focus of this work was to assess the ef-
fects of adopting a complexity constraint on refactor-
ings and on the productivity of developers. Although
we do not have conclusive results, refactorings using
conventional practices guided by a complexity limit
were better evaluated when they were compared with
the refactoring clusters generated without this kind
of constraint. The main findings of our experiment
showed that, in terms of productivity, there was no
statistically significant difference between samples of
time spent on refactorings, with or without complex-
ity constraint. A package containing the tools, mate-
rials and more details about the experimental stages is
available at http://bit.ly/3mElnp5.

As future investigations, we intend to explore the
following factors: (i) defining an automated refactor-
ing strategy by means of search-based refactoring and
cognitive complexity constraints and (ii) carrying out
new empirical-based studies in an industrial context
to evaluate restructured projects with CDD principles,
by exploring the number of faults and understanding
development in the medium and long term.
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