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Abstract: The data collected and transmitted by the sensors, in the Internet of Things environment, must be stored and 
processed in order to enable Smart Cities and Industry 4.0. However, due to the growth of number of devices, 
it becomes necessary to implement techniques to select most suitable sensors for each task. This approach is 
important to make possible to execute applications, where low latency requirements are present. Thus, several 
works were dedicated to the study on how to search, index, and rank sensors to overcome these challenges. A 
method, called GoAT, is presented in this paper to rank sensors based on the theory of active perception. The 
solution was evaluated using four real datasets. Our results successfully demonstrate that the proposal solution 
can provide an interesting level of reliability of the utilization of sensor data. Furthermore, GoAT requires a 
low computational resource, and at the same time, reduces latency in the sensor selection process. 

1 INTRODUCTION 

The growth of number of objects in the Internet of 
Things (IoT) environment makes the existing 
resources of IT architectures and infrastructures 
insufficient to process all these data, especially when  
real-time requirements are considered. Taking into 
account the scalability and the real-time of big data, 
they must be “extracted” in different levels during 
analysis, modeling, visualization, and prevision to 
reveal their intrinsic property; thus, improving 
decision- making (M. Chen et al., 2014). Therefore, 
IoT middleware solutions have been adopted to allow 
data sharing (Pattar et al., 2018). An IoT middleware 
will allow users to collect data from a large number 
of sensors so that they can be used through different 
applications, acting as an interface between the 
user/application and the IoT network (Kertiou et al., 
2018). The main activities of an IoT middleware are 
acquisition, research or discovery, indexing, ranking, 
and query. 

The activity of indexing, in the middleware,  
involves storing and indexing the collected data in the 
search space in the IoT network to allow a quick and 
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efficient search. Ranking of IoT resources, 
considering that resources include sensors, devices 
and services, focus on prioritization of criteria such as 
data quality, device availability, efficient energy, 
network bandwidth and latency. This task can be done 
based on generated observation (content) and 
measurement data (context). Ranking is a decision-
making process in which different criteria should be 
considered depending on the requirements of the 
domain. Typical applications, for example industry 
and healthcare, require confidence and high-quality 
data associate with low latency data processing and 
delivery (Fathy et al., 2018). 

The sensors incorporated into the IoT objects 
collect data in real-time about the surrounding 
environment. In the real world, they detect events and 
then generate data about these events. The data come 
from devices connected to the IoT network which 
have several characteristics, such as dynamics, huge 
size, dynamic data generation rate and volatility 
(Pattar et al., 2018). All these characteristics favor the 
appearance of noise in the data. Besides, once the 
sensors aim to capture the state of the surrounding 
environment, and considering that, eventually, 

Costa, F., Nassar, S. and Dantas, M.
GoAT: A Sensor Ranking Approach for IoT Environments.
DOI: 10.5220/0010403801690177
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 169-177
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

169



anomalies may occur in that environment, arise the 
challenge of differentiating a real warning 
(abnormality) from a failure (noise). Such failures can 
be caused through problems in data transfer or by 
interference in the sensor readings. 

To overcome these problems, this work focuses 
on the ranking of sensors based on the data generated 
by them. The main contribution of this work is to 
provide a fast (reduction of latency) and safe method 
to indicate which sensors are providing correct 
information. Another contribution consists of 
offering resources to identify possible anomalies in 
environments or failures in IoT devices acting as a 
support in the control of monitored environments. To 
do this, the techniques used are based on content 
(generated data by the sensor) but also, using a 
parameter related to the state of the sensor at the time 
of data capture, it means, a context parameter. This 
paper presents an enhanced and differential level of 
development compared with the previous one 
presented in (Costa et al., 2019).  

The remainder of the paper is organized as 
follows: Section II presents the details of this 
proposal. In Section III, the related works are 
presented. The results obtained are analyzed in 
section IV, and section V brings the conclusions of 
the research work and future perspectives. 

2 PROPOSED MODEL AND 
BACKGROUND 

In this section, we present the proposed method, 
called GoAT (Greatest of Actual Time), and the 
architecture of the experimental environment. This 
scenario was developed to allow the evaluation of the 
method which is carefully discussed. 

2.1 Sensor Ranking 

Figure 1 shows an overview of the proposed method. 
In the pre-processing step of the method, the datasets 
are labeled, and the data of the variables are 
discretized. The training of the algorithms and 
techniques used is also performed. In the processing 
step, the boxes with a blue bottom and vertically 
arranged to identify the layer (Edge, Fog, and Cloud) 
in which each middleware activity (acquisition, 
modeling, reasoning, and distribution) occurs. In the 
following boxes, the most common activities found in 
IoT middleware are presented. Below the 
identification of each activity (blue text), the 
functions performed by the application in the 

experimental environment of this proposal are 
presented (orange text). Boxes with a green bottom 
and black text show activities used in this proposal. 
In these boxes, the orange text represents the action 
performed or the input data sent to the tools used, 
identified by the gray text. 

 
Figure 1: Proposed method: layers of processing, activities, 
and tools for each layer. 

In this research work, the normal, anomaly, and 
failure tags are used to identify the sensor status. Data 
marked as normal represent that the sensor and the 
environment in which the measurement is being made 
are stable (without anomalies) and the reading 
process was not affected by interference during data 
capture and transmission. The data marked as an 
anomaly are those that indicate the occurrence of 
abnormalities in the environment. Finally, the data 
considered as a failure are marked as a result of 
failures in devices or data transmission. 

This paper proposes a method based on the theory 
of active perception (Biel & Wide, 2000; Schiffman, 
2001) as a way to identify correctly each of the three 
types of data mentioned above. Considering that 
perception is always dependent on context, other 
senses and time, the active perception approach is 
divided into four levels: sensation, perception, time 
perception and active perception. Sensation is the 
process in which captured data enter in the system. 
After the sensation, the perception interprets data and 
gives its meaning. When time is added to the process, 
a dynamic perception process is obtained where 
several "fingerprints" (sequence of captured data 
chronologically) provide meaning and, therefore, 
knowledge. This process is called time perception 
(Biel & Wide, 2000; Schiffman, 2001). 

Figure 2 shows the flow of information according 
to the concepts presented. The image shows the flow 
(left side) of the data collection information 
(sensation) in the environment, followed by the 
improvement of perception through the addition of 
meaning (sense). The next level uses the time 
property, considering the dynamic aspect of the 
environment. The process ends with active perception 
in which from the information generated by the 
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previous steps, decisions are made, and actions can be 
performed (alerts and feedback). Thereby, the flow in 
Figure 2 returns to the environment indicating 
possible actions to be taken. 

 
Figure 2: The flow of information in active perception. 

The first stage of the data flow is carried out by 
the sensors. Consequently, out of the scope of this 
paper. Thus, the first-three stage is related to 
perception. This step was implemented using an 
algorithm belonging to the Gradient Tree Boosting 
class, as shown in Figure 3. 

 
Figure 3: Classification of a single sensor data. 

The algorithms from Gradient Tree Boosting class 
are algorithms that start by creating only one decision 
tree. After training, the values forecasted incorrectly 
by the tree are recorded. Then, a new tree is created 
to see the other one's mistakes. So, the cycle is 
repeated up to a certain limit, always trying to reduce 
the error rate (T. Chen & Guestrin, 2016).  

The XGBoost implementation improves the 
performance of the conventional gradient 
augmentation tree by introducing two techniques: 
weighted quantile sketching (a data structure that 
supports merging and removing operations) and 
dispersion recognition split location (default direction 
at each node in the tree). XGBoost has been applied 
to several machine learning problems and has 
obtained better results than the other algorithms (Shi 

et al., 2019). The training of the algorithm was carried 
out with a sample of 15,000 cases from each dataset. 

This step is the first contact of the method with the 
information provided by the sensor. The algorithm 
tries to assign a meaning to the data using only the 
current information and the previous knowledge of 
the algorithm acquired from training phase. This 
algorithm has linear time complexity. 

 
Figure 4: Use of a set of sensor data in the evaluation of 
sensor status. 

Following the flow, the next step uses the time 
aspect to evaluate the data provided by the sensor. 
The adoption of this approach (time) occurs because 
the sensor's failures can be persistent or transient. 
Then, if there is an interference in a specific moment 
of data capture for a given sensor, leading to the 
generation of an incorrect value, and considering that 
the concept of time is not used, the probability of a 
wrong interpretation of the sensor data increases. 
When the time window is used it can identify whether 
the fault is temporary or permanent. The flow of 
information passes through the second level just if the 
output of the first level indicates an abnormality in the 
data. Otherwise, the second level is skipped. To 
implement this concept, the outputs (labels) of the 
first level are saved in a vector.  

In the implementation of the second level, tests 
were performed with different sizes of time windows 
(5, 10, 15 and 20). These sizes represent the number 
of observations, in other words, sensor readings to be 
considered when calculating the probability of 
evidence is correct. At the end of these tests, a time 
window of size 10 showed promising results in the 
datasets used, considering an intermediate value 
between performance and computational cost. In the 
case of the time window with five cases, there is an 
increase of approximately 30% in the error rate 
compared to the error rate of the time window with 
ten cases. On the other hand, in tests with the time 
windows of 15 and 20 cases, the error rate remains 
practically stable, but there is an increase of 
approximately 20% in latency. These values are 
similar between data sets.  

Figure 4 shows an example of this type of subset. 
In the image, a subset of data cases generated by the 
sensor is presented. The qt_n, qt_a, and qt_f 
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indicators represent the quantities of each type of data 
(normal, anomaly, and failure, respectively). The 
values of qtl_n, qtl_a, and qtl_f represent the count of 
the last data type that appears in the subset. In the case 
of Figure 4, the latter type is normal and has only one 
contiguous occurrence of this type, since the 
immediately preceding item is of type failure, that is, 
a different type. With this approach, only one of these 
indicators will be greater than zero.  

The vector is then submitted to a Fuzzy Inference 
System (FIS). Fuzzy logic (Zadeh, 1965), is inspired 
by real-world phenomena in which events can hardly 
be considered entirely false or completely true. Fuzzy 
logic offers a method based on rules and 
mathematical sets for the treatment of inaccuracy.  
Fuzzy logic can deal with imprecise or qualitative 
terms, such as "Low", "Medium" and "High" which 
can not be expressed using binary logic. Similarly, 
Fuzzy logic, the data history of each sensor will be 
analyzed using the qualitative values "Low", 
"Medium" and "High". Applying Fuzzy rules, the 
system output to the time perception level will be 
defined to identify the probable state of the sensor. 

 
Figure 5: Use of fuzzy rules for decision making. 

In Figure 5, it is possible to view the pertinence 
functions of six indicators used in the assessment, as 
well as three of the fuzzy rules used in the IntelLab 
dataset. These indicators represent the number of 
states for each category (qt_a, qt_n, qt_f) and the 
identification of how long the sensor is already in that 
state (qtl_a, qtl_n, and qtl_f). These indicators are 
also represented in the Figure 4. 

In the final stage of active perception, the outputs 
of two previous stages are evaluated together. If the 
produced output at the first level is normal, no further 
treatment will be necessary. If the second level is 
triggered, the system's response will use that output 
as the final response. After that, the sensor index is 
updated with this new information.  

To update the index, the data are classified using 
the concepts Quality of Context theory (QoC). The 
trustworthiness parameter (Equation 1) is used to 
check the quality of each sensor, where 0 (zero) 
means that this context source is not reliable, and 1 
(one) represents total confidence in the context source 
(Bringel Filho & Agoulmine, 2011). 
T(ctxi) = NumberOfReliableSamples(ctxi) / W, W > 0  (1) 

in which 
T is trustworthiness 
cxti is the set of trusted context elements for a 

sensor  
W is the total number of context elements and 

must be greater than zero. 
The value of the trustworthiness context 

parameter is then evaluated using a FIS. The modeled 
FIS has an input variable (trustworthiness) and an 
output variable (sensor state). The input variable is 
modeled using the categories very low, low, medium, 
high and very high. The output variable can assume 
the values normal, anomaly and failure. As a final 
step the sensor ranking is updated with the new values 
of the trustworthiness parameter. 

2.2 IoT Platform 

The proposal of this work use an architecture adapted 
from the FASTEN project (Costa et al., 2020). 
Flexible and Autonomous Manufacturing Systems 
for Custom-Designed Products (FASTEN) is a 
project funded by the EU Horizon 2020 program. 
FASTEN's Industrial IoT Platform aims to 
manipulate data from devices (robots, sensors and 
actuators) in industrial environments and work as an 
intelligent data repository for the optimization and 
forecasting layer, allowing to improve the quality of 
the services offered and at the same time it is within 
the Industry 4.0 requirements. 

The bottom box in Figure 6 represents the sensors 
(devices). The datasets were sent to the platform 
through simulators (scripts). These scripts sent the 
data to the platform through the Message Queuing 
Telemetry Transport (MQTT) protocol using the 
VerneMQ tool. A connector continuously monitors 
topics (such as a message queue) in MQTT, and, as 
soon as a message arrives, it is automatically 
transferred to the Apache Kafka streaming platform. 
Following the flow, the next box, GoAT, represents 
the proposal of this research work for ranking sensors. 

After processing by the GoAT broker, the 
indexing activity is represented by storing the 
messages as context entities in the Orion Context 
Broker tool, one of the components of the FIWARE 
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framework used in this architecture. Context entities 
reflect the current state of each sensor and can be 
persisted in a database for IoT, as is the case with the 
CrateDB database. The connection between the Orion 
Context Manager and the database is made by the 
QuantumLeap application, also belongs to the 
FIWARE framework. These data, when persisted, can 
be used for monitoring the system. This activity is 
performed here by the Grafana monitoring tool. In 
this way, this architecture allows parallel processing, 
also reinforcing the scalability of the proposal. 

 
Figure 6: Proposed experimental environment - IoT 
Platform. 

2.3 Datasets Used for Evaluation 

To use the same datasets of the related works, thus 
facilitating the comparison between the methods, four 
real datasets were selected to evaluate the proposed 
method.  

The IntelLab dataset (Intel Lab Data, [s.d.]) 
contains information about data collected from 54 
sensors with weather boards that collected 
timestamped topology information, along with 
humidity, temperature, light, and voltage values once 
every 31 seconds. The sensors, deployed in the Intel 
Berkeley Research lab, were arranged in the lab 
according to the diagram shown in Figure 7.  

 
Figure 7: IntelLab Dataset (Intel Lab Data, [s.d.]). 

The other datasets refer to environmental data and 
were collected from stations of the Phenonet project 
(Phenonet, [s.d.]) from stations of the Bureau of 
Meteorology (BOM) (Bureau of Meteorology, [s.d.]) 
and from stations of the National Oceanic and 

Atmospheric Administration (NOAA) (NOAA, [s.d.]) 
as presented in Table 1. 

Table 1: Datasets (Costa et al., 2019). 

Dataset Cases (millions) Stations 
BOM 4.1 111 
IntelLab 2.3 54 
NOAA 127 14181 
PhenoNet 1.9 7790 

 
The combination of these datasets, in which the 

data were generated under different conditions, 
contributed to the evaluation of our proposal. A 
computer with an Intel Core i7 processor with 32GB of 
RAM and a 250GB SSD was used to perform the tests. 

3 RELATED WORK 

Applications such as industry, agriculture, and 
healthcare require reliability associated with 
computing in services that require low latency 
requirements (Fathy et al., 2018). In this section, the 
most relevant works related to the ranking of sensors 
are presented. 

In Costa et al. (Costa et al., 2019) sensor data is 
evaluated at three levels. In the first level, the 
XGBoost (XGB) algorithm is used. In the second 
step, the method uses the Viterbi algorithm to 
evaluate a subset of the data (time slice). In the final 
step, the algorithm assigns weights to each answer 
obtained at the previous levels to make the final 
decision. Despite presenting an interesting proposal, 
the performance of the method fails with regard to 
reducing latency since all levels of data evaluation are 
always performed. In addition, the use of the Viterbi 
algorithm also contributes to increased latency. Also, 
the use of weights at the last level is configured as a 
mechanism subject to failure and generate the 
premise of creating a lot of rules for the correct 
assignment of these weights. 

In the work of Ruta et al. (Ruta et al., 2019), the 
ranking of the devices is based on a metric that 
calculates the semantic distance between the user's 
requirements and the semantic description of each 
device. In Kertiou et al. (Kertiou et al., 2018), the 
authors use context information from sensors with a 
dynamic skyline operator to reduce the search space 
and select the best sensors according to user 
requirements. In Dilli et al. (Dilli et al., 2018), the 
ranking is calculated by the Simple Additive 
Weighting (SAW) algorithm. Nunes et al. (Nunes et 
al., 2018) propose a Selection-Elimination (ES) 
algorithm to filter and classify the response data. 
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Neha and Saxena (Neha & Saxena, 2016) work 
with weights for the importance of context properties 
and calculate the ranking of each sensor using a metric 
called Weighted Index Based on Preference (PBWI). 
In Wang et al. (W. Wang et al., 2015), a sensor ranking 
mechanism based on the cost of accessing the service 
(device) is proposed. The cost is calculated using 
sensor properties and context information. 

In the work of Perera et al. (Perera et al., 2014), 
the ranking of sensors is done using a weighted 
Euclidean distance metric, called Comparative 
Priority Based Weighted Index (CPWI). In the 
Snoogle (H. Wang et al., 2010) framework, the sensor 
ranking is based on the relevance of the object 
description, informed in the parameters query. 
Ostermaier et al. (Ostermaier et al., 2010) were the 
first to use the term ranking of sensors. The work 
focuses on the use of data produced by sensors 
centered on people, considering that habits can 
indicate future behavior, and thus use the data 
generated by these sensors to create forecasting 
models. This process calculates an estimate of the 
probability, in decreasing order, that each sensor 
corresponds to the query parameters. 

According to the bibliographic research performed, 
only one of the articles (Skarmeta et al., 2018) 
considers aspects related to the identification of 
failures or anomalies. Despite this, the work does not 
describe how this is done and does not show any 
results. None of the related works considers the fact 
that sensor failures can be transient or persistent, given 
the dynamic nature of the IoT environment, more 
specifically the generation of data by sensors. Thus, 
considering only the state of the sensor at a specific 
time to generate the ranking can compromise the 
quality of the responses provided by the algorithms. 

The researched works also do not have a previously 
created list (ranking), which makes it impossible to 
respond immediately to a request for a list of trusted 
sensors. The active perception theory for ranking the 
sensors was not used in any of the related works. This 
approach has as main objective to create a method that 
adds knowledge to the reasoning, improving the data 
analysis process. Only three studies use more than one 
technique for data evaluation. 

The literature review presents some approaches 
that demonstrate the importance of this activity for 
the development of the IoT. However, there are still 
challenges and opportunities to be overcome: 
- Differentiate data that represent real 

measurements from data generated by failures or 
interferences, reducing uncertainty in decision 
making. 

- Reduce the amount of data to be analyzed (reduce 
the time) to meet services with low latency 
requirements. 

4 EXPERIMENTAL RESULTS 

Since the cases of datasets do not have labels, and to 
provide some metrics capable of demonstrating the 
quality of our method, the clustering techniques are 
used to generate labels for the data.  

This approach provides a way to evaluate the 
proposed method, allowing the comparison of the 
outputs generated by the proposal with the 
information obtained in the cluster methods. 

Before creating clusters, metrics were used to 
assess the tendency to clustering and the number of 
clusters and can be seen in Table 2. 

Table 2: Tendency to clustering and quality of clusters. 

Dataset Tendency 
[%] 

SC 
[-1, +1] 

CH 
[+] 

DB 
[-] 

BOM 0.99 0.23 6458.31 3.44
IntelLab 0.84 -0.29 128.61 157.38
NOAA 0.86 0.07 254.57 4.90
PhenoNet 0.93 0.23 754.55 1.14

 
Figure 8: Number of clusters for the IntelLab dataset. 

The clustering tendency and the quality of each 
generated cluster were evaluated using the Hopkins 
test (Hopkins & Skellam, 1954). The quality of the 
clusters was evaluated using three different metrics: 
Silhouette Coefficient (SC) score (Aranganayagi & 
Thangavel, 2007), Calinski-Harabasz (CH) index 
(Caliński & Harabasz, 1974), and Davies-Bouldin 
(DB) index (Davies & Bouldin, 1979). For the SC 
index, the values vary from -1 to +1, indicating better 
and worse clusters, respectively. In the case of the 
metric CH, the higher the value, the better the quality 
of the generated cluster. In the DB metric, the lower 
the value, the better the quality of the cluster. Figure 
8 shows the indication of the best number of clusters 

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

174



for the IntelLab dataset generated using the Elbow 
metric (Pascual et al., 2010). 

A graphical representation of the division of the 
data from the dataset IntelLab into the normal, 
anomaly, and failure groups are shown in Figure 9. 
The graph was generated using the Gaussian Mixture 
Model (GMM). In addition to the GMM method, the 
methods Spectral clustering, Agglomerative 
clustering, DBSCAN, and k-means were applied. 
Despite this, in all datasets, the best result was 
obtained with the GMM method. Figure 9 shows, in 
green color (representing normal values), the natural 
variations of the temperature during the day (between 
20o C and 30o C), in yellow the intermediate or 
anomaly values (indicating real changes in the 
environment) and finally the values in red 
representing the values considered failures (capture 
or transmission failures). 

 
Figure 9: Clusters of dataset IntelLab generated using 
GMM (Costa et al., 2019). 

It should be noted that the values considered as 
anomalies are in a range of possible values for the 
environment, which is not the case for values 
considered as failures. The data shown in the image 
refer to a random sample containing data from all 54 
sensors. This graph gives an idea of the approach of 
this work to classify the data generated by the sensors 
in three categories. 

The Grafana tool is used to display the state of the 
system (Figure 10). The image shows the monitoring 
of the IntelLab dataset and is divided into four regions. 
In the upper left area is presented the monitoring, over 
time, of the values of the column’s temperature, 
humidity, and voltage of this dataset. In this region, it 
is possible to observe that the temperature rises 
considerably over time, while the humidity tends to 
decrease, and the voltage remains stable. 

 
Figure 10: A tool for monitoring tests develop in Grafana 
(Costa et al., 2019). 

In the upper right region, a box is displayed for each 
sensor in the dataset with the colors green, yellow or 
red, indicating the current state of the sensor, that is, 
normal, anomaly or failure. In the lower-left region, the 
time of the last sensor data capture, the sensor 
identification and the value of the capture sequence are 
shown, and three columns in the colors green, yellow 
and red, indicating the total data considered in each 
category (normal, anomaly and failure). Finally, in the 
lower right region, three columns are presented with 
the overall values considered as normal, anomaly, or 
failure for this dataset. 

The idea of the tool showed in Figure 10 
demonstrates a possible practical application of this 
research work. The tool reflects the possibility of 
monitoring an environment and its sensors, 
identifying sensors in a failure state, and 
environments in which an anomaly may be occurring. 

Table 3: Error rates and Normalized Confusion Matrix for 
BOM and IntelLab datasets. 

Actual  
BOM (2.96) IntelLab (0,07) 

  P
re

di
ct

ed
 N A F N A F 

N 0.840 0.000 0.000 N 0.801 0.000 0.00
A 0.000 0.101 0.000 A 0.000 0.036 0.00
F 0.000 0.029 0.030 F 0.000 0.000 0.163

Table 4: Error rates and Normalized Confusion Matrix for 
NOAA and PhenoNet datasets. 

Actual 
NOAA (6.58) PhenoNet (7.55) 

  P
re

di
ct

ed
 N A F N A F 

N 0.371 0.041 0.001 N 0.839 0.001 0.000
A 0.000 0.376 0.000 A 0.074 0.005 0.00
F 0.024 0.000 0.187 F 0.000 0.000 0.081
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Comparing the results generated by the algorithm 
executions with the label values in each sample, Table 
3 and Table 4 presents the general error rates (next to 
the dataset name, in parentheses) and the confusion 
matrices for all datasets. Since the datasets cases had 
no labels, the ranking algorithm responses were 
compared with the clustering algorithm results 
applied to each dataset. 

The error rates obtained in the datasets BOM and 
IntelLab are shown in Table 3, and the error rates for 
the datasets NOAA and PhenoNet are displayed in 
Table 4. These values demonstrated the excellent 
performance of our algorithm. In the PhenoNet 
dataset, the error rate remains at a higher value and 
will be investigated in conjunction with the values 
obtained from cluster quality metrics for this dataset. 
Table 3 and Table 4 show the error rates in each class, 
i.e., normal (N), anomaly (A), and failure (F). 

 
Figure 11: Response time and latency costs. 

Figure 11 shows the times spent, per dataset, for 
processing a request. The item "Response Time" 
refers to the total time taken from the submission of 
the request to the receipt of the response. The item 
"Latency" refers to the processing time of the ranking 
algorithm. 

5 CONCLUSIONS AND 
RESEARCH DIRECTIONS 

In this paper was presented the GoAT method, which 
is characterized by successfully reducing the amount 
of data to be analyzed in decision making (reduction 
in latency), selecting the most reliable sensors, and 
providing the identification of anomalies in the 
environments. 

The error rates showed interesting levels 
according to the results obtained in all datasets. 
Although it presents a higher error rate in one of the 
four datasets, the results presented in this work 

demonstrate the feasibility of our proposal. As this 
work is under development, and these are the initial 
results obtained, it will still be possible to reduce the 
error rate in the PhenoNet and NOAA datasets.  

The solution allows to reduce drastically the 
computational effort involved in the data processing 
once the data is analyzed only at the first level of the 
proposal. This happens because only data considered 
non-normal are handled at the second and third level 
of proposal processing. 

In addition, considering that only a small part of 
the data needs to be analyzed in three evaluation 
steps, a reduction in latency is also possible because 
the solution allows only the most reliable sensors are 
selected. Thus, the model is able to provide reliability 
and lower latency, at the same time, in the use of 
sensor data. 

Anomaly and failure identification, on the other 
hand, allows quick answers to correct problems in 
environments, such as feedback from cyber-physical 
systems.  

Finally, considering that the main objective of this 
proposal is precisely to make the selection of the most 
reliable sensors, the results can be regarded as 
promising. Future works intend to use the data 
collection of online sensors as well as tests with 
configurations for distributed environments. 
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