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Abstract: Software maintenance is an important stage of software development, contributing to the quality of the soft-
ware. Previous studies have shown that maintenance activities spend more than 40% of the development effort,
consuming most part of the software budget. Understanding how these activities are performed can support
managers to previously plan and allocate resources. Despite previous studies, there is still a lack of accu-
rate models to classify software commits into maintenance activities. In this work, we deepen our previous
work, in which we proposed improvements in one of the state-of-art techniques to classify software commits.
First, we include three additional features that concern the size of the commit, from the state-of-art technique.
Second, we propose the use of the XGBoost, one of the most advanced implementations of boosting tree al-
gorithms, and tends to outperform other machine learning models. Additionally, we present a deep analysis
of our model to understand their decisions. Our findings show that our model outperforms the state-of-art
technique achieving more than 77% of accuracy and more than 64% in the Kappa metric.

1 INTRODUCTION

The present article is an extension of a work presented
in (Mariano et al., 2019). The development of a soft-
ware project is marked by several stages. Thus, the
software maintenance is important to keep certain lev-
els of software quality (Gupta, 2017). Furthermore,
previous studies (Lientz et al., 1978; Schach et al.,
2003; Levin and Yehudai, 2016; Gupta, 2017; Levin
and Yehudai, 2017b) have already discussed that soft-
ware maintenance is the most costly step in soft-
ware projects. Studies with different approaches have
been present (Swanson, 1976; Mockus and Votta,
2000), seeking to understand the maintenance activ-
ities. This information can be helpful to professionals
in the area to plan and allocate their resources, reduce
efforts and cost, and execute projects more efficiently
to improve maintenance tasks, allowing greater cost-
benefit in the development of the project. In Soft-
ware Engineering, we usually use a version control
system (VCS) to manage changes and evaluations in
the project. To understand this process, it is necessary
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to classify these maintenance activities based on the
history of commits. In the software industry and sci-
entific community, three classification categories are
widely used, proposed by Mockus and Votta (Mockus
and Votta, 2000):

- Adaptive: new features are added to the system.

- Corrective: both functional and non-functional
issues are fixed.

- Perfective: system and its design are improved.

Previous works that investigated commit classifica-
tion into maintenance activities use only commit texts
(through text analysis, such as word frequency) and
reported an average accuracy of below 60% when
evaluated within a unique project. Furthermore, it
performed an average accuracy below 53% when the
model was evaluated within several projects (Amor
et al., 2006; Hindle et al., 2009). The state-of-art
technique to classify commits was presented by Levin
and Yehudai (Levin and Yehudai, 2017b). The au-
thors proposed the use of Gradient Boosting Machine
(GBM) (Friedman, 2001; Caruana and Niculescu-
Mizil, 2006) and Random Forest (Breiman, 2001;
Hindle et al., 2009) learning algorithms and take into
account the commit text and source code changes
(e.g., statement added, method removed) as the
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models’ features. The GBM shows an average
accuracy of 72% and a Kappa coefficient of 57%.
The Random Forest presents an average accuracy
of 76% and a Kappa coefficient of 63%. Despite
many efforts towards finding the best approach of
the commit classification technique, highly accurate
models are still lacking. Also, many possible features
regarding commits performed by developers are not
taken into account in current models. In this research
paper, we studied the following problem statement:

Problem Statement: Current models to clas-
sify commits into maintenance activities do
not use all available features regarding com-
mits, which could potentially improve the ac-
curacy of the models.

In this article, we investigate how a state-of-art tech-
nique classifies commits into maintenance activities.
We improve the results of the state-of-art technique by
calculating quantitative changes in the source code.
In particular, our goal is to achieve a model with
high accuracy and Cohen’s Kappa coefficient. The
last metric is relevant in cases when the classifica-
tion categories are not balanced, i.e., when there are
many more occurrences of one class in comparison to
others. This scenario could mislead the results due
to high accuracy; however, these results are due to
imbalanced labels. We base our work on the study
of Levin and Yehudai (Levin and Yehudai, 2017b),
which is the current state-of-art method to classify
commits into maintenance activities.

Aiming at improving both accuracy and Kappa
metrics of current classification models, we pro-
pose three modifications to classify commits: (i) in-
clude the following information regarding quantita-
tive changes in source code as additional features: to-
tal lines of code added total lines of code deleted, per
commit, and the number of files changed, per com-
mit; and (ii) use XGBoost as one of the learning algo-
rithms. We then analyze the accuracy and kappa met-
rics of XGBoost and Random Forest, in comparison
to the GBM and Random Forest, respectively, used in
the previous paper (Levin and Yehudai, 2017b). We
use XGBoost in our work due to its recent benefits
and advantages over other implementations of boost-
ing learning algorithms (Chen and Guestrin, 2015;
Chen and Guestrin, 2016). Hopefully, including the
three additional features and using XGBoost can in-
crease the model’s accuracy and Kappa coefficient.
Third (iii), we propose the application of a more ac-
curate analysis of the dataset and used an algorithm
to select the best features of the model, and evaluate

the algorithm XGBoost (proposed on ii) in this new
dataset.

The main contribution of this work is the im-
provement of the classification model using new soft-
ware features. We believe our results can assist the
development of a tool to classify commits on VCS
platforms, such as GitHub. Thus, the software tool
could help managers and stakeholders to track defec-
tive commits.

The remainder of this article is organized as fol-
lows. In Section 2, we present the related works.
Section 3 exhibits the proposed approach. Section 4
shows the experimental setup and results. Section 5
discuss the possible applications of our results. Fi-
nally, Section 6 concludes our work and presents di-
rections for future work.

2 RELATED WORK

2.1 Commit Classification

Classifying software maintenance commits is an al-
ways relevant challenge in the literature. The rele-
vance given to maintenance activities is due to the
large consumption of resources in this stage of soft-
ware development. Swanson (Swanson, 1976) names
maintenance as the “iceberg” of software develop-
ment. His studies suggest that maintenance activity
can consume up to 40% of the effort spent to develop
the software, and this value tends to grow. These
spent efforts can prevent organizations from develop-
ing new products since the main objective is to keep
the software running. So understanding and classi-
fying maintenance activities can help prevent future
problems, make maintenance efficient, and cut costs.

Taking into account the importance of classifi-
cation, many previous studies, with different ap-
proaches, have attempted to propose accurate models
to classify commits into maintenance activities. Most
works are based on the commit messages, using text
analysis, such as word frequency approaches, to find
specific keywords (Mockus and Votta, 2000; Fischer
et al., 2003; Sliwerski et al., 2005; Hindle et al., 2009;
Levin and Yehudai, 2016). For instance, Mockus and
Votta (Mockus and Votta, 2000) reported an average
accuracy of approximately 60% within the scope of a
single project.

Levin and Yehudai (Levin and Yehudai, 2017b)
combined keywords from commit comments and
source code changes to classify commits. The authors
used Gradient Boosting Machine (GBM) and Ran-
dom Forest as underlying learning algorithms. Their
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results show that both algorithms present higher accu-
racies than previous studies, with Random Forest per-
forming better than GBM. However, both algorithms
present regular Kappa coefficient values.

As we can note, previous studies that attempt to
classify commits into maintenance activities have not
taken into account many properties of the commits,
such as information about the size of the commit. Pre-
vious studies (Herraiz et al., 2006; Hattori and Lanza,
2008) show some properties of the commit concern-
ing its size, and that it can be used to help classifica-
tion. In this work, we improve the model’s accuracy
and Cohen’s Kappa coefficient (Cohen, 1960) in rela-
tion to the previous study that achieved the best results
so far (Levin and Yehudai, 2017b).

2.2 Model Explainability

Machine learning classification techniques and mod-
els are often “black boxes”, where we are unable
to understand the reasons behind predictions. Previ-
ous studies have already emphasized the importance
of understanding the nature of these predictions and
making our models more reliable. A series of dif-
ferent methods have been proposed to solve this is-
sue (Lipovetsky and Conklin, 2001; Strumbelj and
Kononenko, 2013; Bach et al., 2015; Ribeiro et al.,
2016; Datta et al., 2016; Shrikumar et al., 2017).
The SHAP values propose in (Lundberg and Lee,
2017) unified proposed approaches, providing a sin-
gle method more effective than existing ones.

In many applications understanding the prediction
provided by a model can be as significant as the ac-
curacy. More than provide predictions, usually it’s
important to know why the model makes some de-
cisions and what factors influence that. In software
development, have this information allow the devel-
opers to know the action that brings more efficiency
to maintenance activities. For researchers, this infor-
mation provides better choices of features and more
transparency about how to improve the model. Thus,
we also conducted a study to understand our model
and the features that have the most impact.

3 PROPOSED APPROACH

We propose an empirical study consisting of three
phases to achieve the goal. In the first phase we per-
form a Literature Review to find related works on
classification of commits into maintenance activities.
From previous studies (Mockus and Votta, 2000; Fis-
cher et al., 2003; Sliwerski et al., 2005; Hindle et al.,

2009; Levin and Yehudai, 2016) we select the cur-
rent state-of-the-art (SOTA) model (Levin and Yehu-
dai, 2017b). Here, in this work, we propose a new
model to overcome accuracy and kappa coefficient
provided by the SOTA work by including three ad-
ditional features and an implementation of XGBoost
learning algorithm.

In the second phase we Collect the Additional
Features from GitHub1 via http requests to the
GitHub GRAPHQL API2. These features bring more
information on commits performed by developers and
may help in the classification of commits into main-
tenance tasks. In Section 3.1, we explain how the la-
beled dataset was obtained from a previous study, in
Section 3.2 we detail how the new features may be
useful in distinguishing the commit categories, and in
Section 3.3 we present a deeper analysis of the data.

In the third and last phase of Experiments and
Analysis we replicate the results obtained by the
SOTA using the original dataset and the same split
and evaluation methods. In addition, we analyze the
impact of our new features and follow the experiments
with them. We split the dataset into training and test.
Then, for each algorithm, the cross-validation method
was used to tune the hyperparameters (Claesen and
De Moor, 2015). We evaluate the training dataset us-
ing 10-fold cross-validation (Kohavi, 1995), and the
average accuracy metric was reported.

Lastly, we focus on understanding the most rel-
evant feature groups, evaluate each group separately
and their combination using the XGBoost algorithm.
Particularly, we evaluate the impact of the main fea-
tures separately.

3.1 Labeled Commit Dataset

In this work, the dataset is composed of repositories
hosted on GitHub, which were selected in a previous
study (Levin and Yehudai, 2017b). The criteria to se-
lect the repositories following: (i) Use the Java pro-
gramming language; (ii) Have more than 100 stars;
(iii) Have more than 60 forks; (iv) Have their code
updated since 2016-01-01; (v) Created before 2015-
01-01; (vi) Had size over 2MB.

By following the mentioned criteria, 11 reposi-
tories remained in the final dataset, representing a
wide domain of software projects, such as IDEs, dis-
tributed database and storage platforms, and integra-
tion frameworks. The repositories are: RxJava, In-
tellij Community, HBase, Drools, Kotlin, HAdoop,
Elasticsearch, Restlet, OrientDB, Camel e Spring

1https://github.com/
2https://developer.github.com/v4/
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FrameWork. A better descripition of these reposito-
ries can be seen on (Levin and Yehudai, 2017b).

Levin and Yehudai (Levin and Yehudai, 2017b)
download and analyze each repository with its com-
mit history. For each of two subsequent commits c1
and c2 (c2 has been done right after c1), the source
code changes between them were identified and reg-
istered. These changes were first proposed by (Fluri
and Gall, 2006) and they add up to 48 different types
of changes.

Furthermore, for each commit, the authors in-
spected its comment and searched for a specific set
of 20 keywords (as detailed in (Levin and Yehudai,
2017b)). The keywords are also part of the features
of the model. They are represented by a binary array
(of size 20) where each coordinate corresponds to a
keyword and the value “1” indicates the occurrence
of that keyword, while “0” indicates the absence.

Now, there are 68 features (48 + 20), correspond-
ing to source code changes and keyword occurrences,
respectively. The labeling process was manually per-
formed by the authors from the previous study (Levin
and Yehudai, 2017b) in which we based this work.
Approximately 100 commits were randomly sampled
from the 11 repositories and the authors classified
them according to one of the three maintenance cate-
gories (corrective, adaptive, and perfective). When a
commit did not present sufficient information to allow
classification, the authors selected another one, until
finding one which was possible to safety classify.

The authors made efforts to prevent class starva-
tion (i.e., not having enough instances of a certain
class). In case they detected a considerable imbal-
ance in some projects classification categories they
added more commits of the starved class from the
same project. This balancing was done by repeat-
edly sampling and manually classifying commits un-
til a commit of the starved class was found. The final
dataset consisted of 1,151 manually classified com-
mits and was made open access by Levin and Yehu-
dai (Levin and Yehudai, 2017b), (Levin and Yehudai,
2017a).

3.2 Additional Features

In this work, we propose three additional features
for the 11 selected repositories to be incorporated in
the labeled commit dataset. As mentioned before,
the features were collected through HTTP requests to
the GitHub GRAPHQL API and refer to the changes
on the files, and lines of code (LOC) changes in the
source code, i.e., quantitative source code changes.

We propose the inclusion of the total files changed
by the commit, total LOC added by the commit, and

total LOC deleted by the commit, giving a total of
71 features for our model. Given the 3 categories
of maintenance activities, we hypothesize that the
three features may reflect each class. Therefore,
including these features may help in the separation of
the classes, as explained below.

Adaptive: This maintenance activity class refers to
adding new functionalities to the system, so it is more
likely that added LOC is considerably higher than
deleted LOC. Adding new functionalities can also
cause more files to receive changes.
Corrective: This maintenance activity class refers to
fault fixing, whence it is more likely that added LOC
is very close to deleted LOC.
Perfective: This class refers to system design
improvements. In this case, there is no previous
knowledge regarding the relationship between added
LOC and deleted LOC. Therefore, we may have
different combinations of the features for this class.

The additional features may be extremely useful
for separating adaptive class from the others, how-
ever, they may not be conclusive regarding the other
classes. As we can see in Figures 1, 2 and 3, in fact,
added LOC is considerably higher in adaptive class,
changed files is less significant in corrective, while
deleted LOC does not present a strong difference.

Figure 1: Added lines of code.

These boxplots were generated based on the values
of the features collected for the repositories that con-
stitute our dataset. We decided to include all three
features since their co-occurrences may be helpful to
separate the maintenance classes.

3.3 Dataset Overview

To better understand the behavior and characteristics
of the dataset, we present a deeper analysis of the
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Figure 2: Deleted lines of code.

Figure 3: Changed Files.

data. Here we make the analysis and create two new
datasets to be used in our experiments. First, we
check all the commits, one by one, search for any
problem, and find two appearances of duplicate com-
mits.

1. Rows 503 and 523 are identical with all their
columns, including the commitID and label, so we
decided to delete line 523 and keep line 503.

2. Rows 96 and 97 also have duplication in all
columns, including the commitID however the la-
bel for line 96 was provided as corrective and line
97 as perfective, we decided to exclude both lines
since the correct classification of this commit is
not accurate.

Next step, to improve the analysis, we apply the Pan-
das Profiling1, a Python tool that generates a report
about a dataset. They show the column-by-column in-
formation interactively, allowing a more detailed and

1https://pypi.org/project/pandas-profiling/

quantitative visualization of each feature in addition
to the existing correlation between them. Among the
main information, besides size and data type, we re-
ceive information like missing values, most frequent
values, descriptive and quantile statistics, data distri-
bution, and variance. Thus, we could identify mean-
ingful information about the data.

The feature “PARENT INTERFACE CHANGE”
presents in all rows a constant value equal to 0. In
this way, the feature was automatically rejected by the
tool. It is important to state that the feature is only
rejected concerning this dataset since none of the in-
stances present this information, which makes it use-
less in model production. However, for a more robust
dataset, with new instances that present the character-
istics of this feature, it could return to the model.

We observe that 80% (56) of the features have
more than 86% (1000) of that data are constant, more
specifically equal to zero. This occurred because the
keywords are binary features until each instance has
only a few source code changes, but this can have
many influences in the model. For example, The fea-
ture “ADDING CLASS DERIVABILITY”, have only
one instance with a value different than zero. Al-
though, in our analysis, we have not noticed a high
correlation with the features. After all the removals,
rows, and columns, now we have a second dataset,
that we call “Complete”, with 1,148 lines and 70 fea-
tures(47 source code changes + 20 keywords + 3 ad-
ditional).

Searching the features that were more important
to a model, we also apply a Supervised Tree-based
Feature Selection, and select the more impactful fea-
tures for the Classification. We chose Random For-
est for this selection because it is the best perform-
ing algorithm in the previous work and is different
from the XGBoost algorithm used for analyzing. Se-
lecting the more impactful features can help find the
true importance of these features in the classification.
After applying this supervised feature Selection, we
have a third dataset, that we call “Select” with 1,148
lines and 21 features. Of these 21, we have 11 source
code changes, 7 keywords, and the 3 additional fea-
tures. It is important to note that the selection model
itself selected the additional features, which helps to
show that the addition of features with the quantita-
tive change can bring a significant result. The compo-
sition of Both Complete and Select dataset is classi-
fied as 43.5% (499 instances) were corrective, 35.1%
(403 instances) were perfective, and 21.4% (246 in-
stances).

That will be important to give a brief explanation
of each feature on the Select dataset to understand our
experiments. First, we have the 3 new features that we
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propose, “additions”, “deletions” and “changedFiles”
that represent the number of lines added, number of
lines delete and a number of files change, respectively,
we can see more explanation on section 3.3. Second
we have the 7 keywords as described in Section 3.2
they indicate if the word appeared in the message,
they are the following words: “add”, “allow”, “fix”,
“implement”, “remov”, “support” and “test”. Finally,
we have the 11 features of source code changes, a
more detailed explanation can be found on (Fluri and
Gall, 2006), follow:

- ADDITIONAL FUNCTIONALITY: add func-
tionality on code.

- REMOVED FUNCTIONALITY: remove func-
tionality on code.

- ADDITIONAL OBJECT STATE: add of at-
tributes that describe the state of an object.

- ALTERNATIVE PART INSERT: the inserting or
deleting that does not have any impact on the over-
all nested depth of a method.

- COMMENT INSERT: inserting comments.

- CONDITION EXPRESSION CHANGE: update
operation of a structured statement.

- DOC UPDATE: update on a document.

- STATEMENT DELETE: delete operation in the
entities control structure, loop structure, and state-
ment.

- STATEMENT INSERT: insert operation.

- STATEMENT UPDATE: update operation.

- STATEMENT PARENT CHANGE: move opera-
tion.

4 EXPERIMENTS AND RESULTS

4.1 Replicating Results

Before proceeding with the experiments, it is impor-
tant to check if the results acquired by the SOTA
are replicable. For this reason, we split the original
dataset into a training dataset and a test dataset. The
split is the same made by the SOTA, 85% on training,
and 15% on the test. We performed the split by us-
ing scikit-learn library (Pedregosa et al., 2011) from
Python language, which use the label to balance the
class distributions. The detail of the split label is in
Table 1, and the split by commits per project is on
Table 2.

Since we propose a new algorithm, we train the
model with the training dataset using XGBoost. Then,

Table 1: Split labels.

Corrective Perfective Adaptive
Train 424 345 209
Test 76 59 38

Table 2: Split commits.

Project Train Test
hadoop 100 12
drools 97 17
intellij-community 93 16
ReactiveX-RxJava 88 12
spring-framework 87 13
kotlin 86 15
hbase 86 23
elasticsearch 86 14
restlet-framework-java 86 15
orientdb 85 17
camel 84 19

the trained models were evaluated using the test
dataset. The test dataset did not take part in the model
training process. We do the training using the same
models, as proposed by the SOTA. The best perform-
ing compound model for each classification algorithm
was evaluated on the test dataset.

Our results are very close to the results reported by
Levin and Yehudai (Levin and Yehudai, 2017b). We
obtained 76% of accuracy and 63% of Kappa from
Random Forest, and 73% of accuracy and 58% of
Kappa from XGBoost. We conclude that the SOTA
is replicable and XGBoost is an option for evaluation.

4.2 Impact of Features

Now we take our second dataset (complete) and an-
alyze the impact that our additional features have on
the model. For better visualization, we did an im-
pact test of each feature separately, and their com-
binations (Changed Files: CF, added LOC: AL, and
deleted LOC: DL). The XGBoost is the default algo-
rithm from the Shap value. We use the Shap to show
the importance of the features in section 4.7. So, we
decide to use also XGBoost algorithm for visualiza-
tion of the impact of the features. For this test, we use
a simple 10-fold cross-validation across all datasets
without using hyperparameters. The techniques were
made using the scikit learn library (Pedregosa et al.,
2011). We can see the difference in Table 3.

4.3 XGBoost

We run XGBoost on the training dataset and evaluate
it by using 10-fold cross-validation. A grid-search
of hyperparameters was passed to the evaluation
method in order to find the best hyperparameters.
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Table 3: Features Impact.

Accuracy Kappa
NaN 71,69 55,89
CF 71,60 55,74
AL 72,30 56,99
DL 71,62 55,57
CF, AL 72,50 57,26
CF, DL 71,36 55,23
AL, DL 72,66 52,55
CF, DL, AL 72,31 56,81

The main parameter to tune is the maximum depth
of a tree in the XGBoost. Table 4 shows a simple
example of some variations in the hyperparameters
colsample bytree, or simply colsample (subsample
ratio of columns), and max depth (maximum tree
depth), with 150 iterations. The best parameters are
in bolded text. We also verified the model perfor-
mance during the training by plotting some graphs
for several hyperparameters. We choose accuracy to
decide which parameters we should select.

Table 4: Example of hyperparameters grid for XGBoost.

max depth colsample Accuracy Kappa
1 0.4 0.6952 0.5258
1 0.7 0.7004 0.5334
3 0.4 0.7443 0.6011
3 0.7 0.7280 0.5766
6 0.4 0.7239 0.5683
6 0.7 0.7259 0.5721

As we can observe in the presented table 4, the best
hyperparameters were 0.4 (colsample bytree) and 3
(for max depth). Using these parameters, the model
presented 74.43% of accuracy and 60.22% of Kappa
in training. With these values in hand, the model was
evaluated in the test dataset. It is important to remind
that this dataset was not taken into account during
the training phase so that we can have a more precise
evaluation of the model. In Table 5, we can see
the predicted classes by the model in the confusion
matrix. This matrix presents the corrected and wrong
predictions, from which we are able to calculate the
accuracy and Kappa.

Table 5: XGBoost confusion matrix for test dataset.

True class
Prediction Adaptive Corrective Perfective
Adaptive 26 1 7
Corrective 5 63 13
Perfective 6 11 40

By inspecting the confusion matrix for XGBoost, our
model presented an Accuracy of 75.7% and a Kappa

Coefficient of 60.7% regarding the commit classifica-
tion into adaptive, corrective, and perfective mainte-
nance classes.

4.4 Random Forest

Similarly to XGBoost, we run Random Forest in the
training dataset and evaluated it by using 10-fold
cross-validation. We also use a grid-search to find
the best hyperparameters. In particular, the main
parameter to tune is the number of predictors that
are randomly selected for each tree. This technique
is used to make sure that trees are uncorrelated.
The hyperparameter tuning is also done by the
scikit-learn library (Pedregosa et al., 2011). Table 6
presents a simple example of some variations in the
hyperparameter mtry (number of randomly selected
predictors). The best parameter is in bolded text in
Table 6. As for XGBoost, we also verified the model
performance during the training by plotting graphs
for different values of the mtry. We choose accuracy
to decide which parameters we should select.

Table 6: Example of hyperparameters grid for Random For-
est.

mtry Accuracy Kappa
2 0.6546 0.4384

35 0.7013 0.5355
69 0.6868 0.5123

Table 6 show that the best hyperparameter value was
35 (mtry). This means that for each tree in the for-
est, 35 features are randomly selected among the 70.
Using this parameter, the model presented 70.13% of
accuracy and 53.55% of Kappa in training. With this
parameter value in hands, the model was evaluated in
the test dataset. In Table 7, we can see the predicted
classes by the model in the confusion matrix.

Table 7: Random Forest confusion matrix for test dataset.

True Class
Prediction Adaptive Corrective Perfective
Adaptive 25 2 6
Corrective 3 61 7
Perfective 9 12 47

From the observe of confusion matrix for Random
Forest, our model presented an Accuracy of 77.32%
and a Kappa Coefficient of 64.61% regarding the
commit classification into adaptive, corrective, and
perfective maintenance classes.
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4.5 Summary of Results

The models proposed in this work achieved better re-
sults in comparison to the SOTA technique to classify
commits into maintenance activities. This is indica-
tive that, in fact, there are ways to improve this task.
Table 8 reveals that, for each learning algorithm, how
the accuracies and Kappa coefficients are achieved by
our models compare to the previous study.

Table 8: Comparison of SOTA and proposed improvements.

SOTA OURS
GBM RF XGBoost RF

Accuracy 0.7200 0.7600 0.7570 0.7732
Kappa 0.5700 0.6300 0.6070 0.6461

We note that XGBoost presented an increase in both
accuracy and Kappa coefficient in comparison to
the Gradient Boosting Machine used in the previous
work. While Levin and Yehudai (Levin and Yehu-
dai, 2017b) achieved 72.0% of accuracy and 57.0%
of Kappa, our model achieved 75,7% of accuracy and
almost 61.0% of Kappa. These results show that in-
cluding added lines of code and deleted lines of code
as features may be useful for classifying commits. In
addition, using advanced implementations of boost-
ing algorithms, such as XGBoost, in fact, can improve
model performance.

Regarding Random Forest, we can observe that
the difference from our results to the past one was
smaller, but still, we achieved higher accuracy and
Kappa Coefficient. While the previous model pre-
sented 76.0% of accuracy and 63.0% of Kappa, our
model reached an accuracy of 77.3% and Kappa of
64.6%.

In summary, our model presented higher accura-
cies and Kappa coefficients for both algorithms. For
XGBoost, our model achieved an increase of almost
4% for accuracy and Kappa. Regarding the Random
Forest, we increased the accuracy by 1.3% and the
Kappa by almost 2%.

4.6 Dataset Measures

It is possible to observe that depending on the way we
evaluate the model, using keywords or source code
changes, our results may be different. Now we look
at the real impact using different datasets. First, we
evaluate the types of features separately, and then
combine them, and finally compare with our two new
datasets, “Complete” and “Select”. We can see all
comparisons in Table 9.

Table 9: Dataset Comparison.

Accuracy Kappa
Keywords 72.72 57.82
Changes 50.87 21.99
Quantitative 49.02 18.56
Keywords + Changes 73.64 59.16
Keywords + Quantitative 73.35 58.75
Changes + Quantitative 56.47 31.01
Combine 75.72 62.41
Complete 74.45 60.11
Select 71.16 54.78

4.7 Model Understandability

It Is important to analyze which group of features are
most important for the model. In Table 9, we observe
these features importance. The “Quantitative” group
of features proposed in this paper proves to be slightly
efficient in the prediction. Only a group of 3 features
achieved accuracy and kappa very close of the 48 fea-
tures of Source code changes(“Changes”). Moreover,
we can see that “Keywords” are essential for high ac-
curacy. The “Select” dataset presented in this paper
has only 22 features, which is less than a third of the
original “Combine” dataset and still achieved relevant
results, and close to the dataset with all features.

It is possible to notice that some features are more
important than others in the model. Understanding
only the groups with the greatest impact is not enough
to understand the whole model. Comprehend the im-
pact of each feature, separately, can be done with a
model understandability.

To explain our model decisions, we use a tech-
nique development, proposed and present in (Lund-
berg and Lee, 2017), which uses SHAP values. This
technique is a unified measure of feature importance,
to unveil the “black boxes” in the classification mod-
els. The SHAP values work with any tree-based
model, they calculate the average of contributions
across all permutation of the features. In summary,
they can show how each feature contributes, posi-
tively or negatively to a model. We use the “Select”
dataset for this analysis.

Figure 4 presents a SHAP summary plot, show-
ing the impact of each feature on the model. We
observe that 7 features are important for the model,
ranked in descending order, the most important fea-
ture “support” is the first in the plot, and “ADDI-
TIONAL FUNCTIONALITY”(ADD FUNCT) is the
second. On the horizontal, we have the module of
the impact on the prediction model. The closer the
values of 0, the smaller its impact, In contrast, the
farther from 0 means a bigger impact. Therefore, an-
alyzing Figure 4, the “support” feature has a bigger
impact, with an average of 0.08 of magnitude. In this
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Figure 4: The most important features for the model.

way, we can conclude that has the “support” word on
the commit message follows a significant impact on
the classification of the model. Besides that, corrob-
orating with Table 9, we note that keywords are the
most important group on the model, representing 4 of
the 7 best features. Following this rationale, we have
2 of our proposed features and 1 of the source code
changes between the most important features for the
prediction.

5 APPLICATIONS

Levin and Yehudai investigated the amount of a com-
mit that a given developer made in each of the main-
tenance activities and suggested the notion of a de-
veloper’s maintenance profile (Levin and Yehudai,
2016). Their model to predict developer maintenance
profile could be supported by our proposed model
to classify commits into maintenance tasks, possibly
with yield higher accuracy in their prediction.

Another application of our proposed model is in
the identification of anomalies in the development
process. It is important to manage the maintenance
activities performed by developers, i.e., the volume of
commits made in each maintenance category. Mon-
itoring unexpected behavior in maintenance tasks
would assist managers to plan and allocate resources
in advance. For instance, lower adaptive activity may
indicate that the project is not evolving as it was ex-
pected, and lower corrective activity may suggest that
developers are neglecting fault fixing. Identifying the
root causes of problems may aid the manager to over-
come them. Furthermore, recognizing maintenance
patterns in successful projects may be useful as guide-
lines for other projects.

Building a software team is a non-trivial task
given the diverse factors involved with it, such as
technological and human aspects (Gorla and Lam,
2004; dos Santos and Figueiredo, 2020). Com-
mit classification may help to build a more reliable
and balanced developer team regarding the devel-

oper maintenance activity profile (Levin and Yehudai,
2016; dos Santos and Figueiredo, 2020). This can be
done create an API or software linked to the version
control to identify and classify the commit automati-
cally. When a team is composed of more developers
with a specific profile (e.g., adaptive) than others, the
development process may be affected, and the ability
of the team to meet usual requirements (e.g., develop-
ing new features, adhering to quality standards) could
also be negatively impacted.

6 CONCLUSIONS

Software maintenance is an extremely relevant task
for software projects, and it is essential for the whole
software life cycle and operation. Maintenance is
shown to consume most of the project budget. There-
fore, understanding how maintenance tasks are per-
formed is useful for practitioners and managers so
that they can plan and allocate resources in advance.

In the present article, we proposed improvements
on a SOTA approach used to classify commits into
software maintenance activities. In particular, we pro-
posed the adoption of three new features that measure
quantitative changes of source code, since the SOTA
do not use that type of features on their commit clas-
sification. We also proposed the use of the XGBoost
algorithm to perform commit classifications. Also,
we carried out experiments using an already labeled
commit dataset to evaluate the impact of our proposed
improvements on commit classification.

Experimental results showed that our proposed
approach achieved 76% accuracy and 61% of Kappa
for the XGBoost, an increase of 4% in comparison
to the past study. Also, our Random Forest achieved
77.3% and 64.6% of accuracy and Kappa, respec-
tively, with an increase of 1.3% and approximately
2% related by SOTA. We notice that quantitative
changes can be helpful to understand the character-
istics of a commit. Furthermore, the use of additional
features have become extremely relevant in our ma-
chine learning model. Thus, in terms of model under-
standability, we could determine that the additional
features are on the top of the most important features
in the classification model.

As future work, we intend to evaluate other fea-
tures related to software commits and use other
datasets with a larger number of commits to improv-
ing the accuracy of the classifiers. We also intend
to evaluate other classification algorithms using dif-
ferent evaluation metrics, e.g., precision and recall,
to improve our understanding of the behavior of the
classifier. Commits have more metadata that was not
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analyzed in this article due to the scope of the appli-
cation and the intended comparison with the existing
approach. Moreover, we intend to use NLP (Natu-
ral Language Processing) to investigate the commit
text based on maintenance activities. Thus, we could
generate a classification approachable to classify the
commits automatically based on the labels discussed
in this article. Finally, we intend to use other cat-
egories (i.e., activities) proposed in the literature to
generalize the results.
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