
Evaluating a Session-based Recommender System using Prod2vec in a
Commercial Application

Hasan Tercan1,∗, Christian Bitter1,∗, Todd Bodnar2, Philipp Meisen2 and Tobias Meisen1

1Chair for Technologies and Management of Digital Transformation, University of Wuppertal, Wuppertal, Germany
2Breinify Inc., San Francisco, U.S.A.

Keywords: Recommender System, Deep Learning, Neural Network, Embedding, Prod2vec, Word2vec.

Abstract: Recommender systems are a central component of many online stores and product websites. An essential
functionality of them is to show users new products that they do not yet know they want to buy. Since
the users of the website are often unknown to the system, a product recommendation must be made using
the current activities within a browser session. In this paper we address this issue in a deep learning-based
product-to-product recommendation problem for a commercial website with millions of user interactions.
Our proposed approach is based on a prod2vec method for product embeddings, thus recommending those
products that often occur together with the target product. Following the idea of word2vec methods from
the NLP domain, we train an artificial neural network on user activity data extracted from historical browser
sessions. As part of several real A/B tests on the website, we prove that our approach delivers successful
product recommendations and outperforms the current system in use. In addition, the results show that the
performance can be significantly improved by an appropriate selection of the training data and the time range
of historical user interactions.

1 INTRODUCTION

Recommender systems are a central factor of suc-
cess in a range of different online applications such as
e-commerce, video/music streaming and social me-
dia by making it easier for users to find new items
matching their personal preferences and thus boosting
their engagement with the application. These systems
complement classic search engines by recommending
interesting items which the user may not even know
to search for (Ricci et al., 2015). The goal of the rec-
ommendation is, depending on the intended use, to
show items that match the user’s preferences (user-to-
item recommendation) or match the items with which
the user is currently interacting (item-to-item recom-
mendation). The systems are based on algorithms
which evaluate past interactions of users with items,
such as product purchases or web page views, and
identify relationships between them. However, this
is a non-trivial task, since it requires the handling of
large amounts of interaction data with complex and
dynamic, but also sparse relationships.

One major challenge when considering websites
with openly accessible content is the presence of users

∗These authors contributed equally to the work.

which are unknown to the system. Although ses-
sion cookies can be used to store information about
online activities of individual browser sessions, it is
hardly possible to uniquely assign activities to indi-
vidual users and thus to analyze user/item relation-
ships.

The current advances in deep learning research
in various application areas show a great potential to
master these challenges. Based on historical user in-
teraction data, deep learning models can learn pat-
terns that are essential for successful recommenda-
tions (Zhang et al., 2019). The question arises
whether meaningful recommendations based on the
single consideration of items within browser sessions
can be delivered.

In this paper, we address this question in a real
product-to-product recommendation problem for a
commercial website with millions of user activities
per week. The website is used by the provider to mar-
ket their products and to bind new customers through
campaigns. The portfolio includes approximately a
thousand products of different types, with each prod-
uct being described by detailed information on a ded-
icated web page. In addition, each page contains rec-
ommendations for other products that might be in-

610
Tercan, H., Bitter, C., Bodnar, T., Meisen, P. and Meisen, T.
Evaluating a Session-based Recommender System using Prod2vec in a Commercial Application.
DOI: 10.5220/0010400706100617
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 610-617
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

teresting for a user. The overarching task for this
use case is the development of a recommendation en-
gine which maximizes user engagement with the web-
site by providing relevant product recommendations
based on the currently viewed product.

The data basis consists of historical user activities
which are logged and stored within browser sessions,
enabling the training of a deep learning based rec-
ommendation system that learns from the data which
products are often viewed together in sessions. For
this purpose, we adapt an established concept from
natural language processing, namely word2vec and
word embeddings, to a prod2vec approach based on
low-dimensional product embeddings.

For learning such embeddings, an artificial neural
network is trained by supervised learning on histor-
ical activities. Thereby the network learns from the
frequency distributions of pairs of products in the ses-
sions. The embedding itself is learned in the first
layer of the network. The idea of the embedding is
that two products, which are often viewed together
with other products in a browser session, are similar
to each other in the embedding space as well. Figure 1
illustrates a trained embedding for the given use case
in a two-dimensional feature space. It shows that the
learned representations place similar products that are
of the same category closer to one another in the em-
bedding space as well. There are two main questions
that we address:

1. Which approach based on the trained neural net-
work is suitable for product-to-product recom-

Figure 1: Trained embeddings of 1000 products,
transformed into a two-dimensional space using UMAP
(McInnes et al., 2018). The products are coloured according
to their categories, which are anonymized in this paper.

mendation?
The network as well as the product embedding
provide different possibilities of use for a recom-
mender. While the embedding extracted from the
trained network finds products that share the same
context (i.e. are viewed with the same products)
and thus can be used for a nearest neighbor ap-
proach, the network itself (i.e. in its entirety) finds
the probability that two products occur together in
a session. The question arises as to which variant,
a nearest neighbor approach vs. the end-to-end
network approach, is best suited for the given use
case.

2. What is the optimal time range of historical data
used for the model training?
The user behavior on the website changes over
time. Therefore the question arises on which pe-
riod of user activities the model should be trained
in the best possible way. In the present use case,
time spans of several weeks up to two and a half
years are possible.

To evaluate these questions we train and test differ-
ent approaches based on prod2vec on historical data.
Nevertheless, testing the models on historical data
provides only limited information about their perfor-
mance - the data only reflects what the user viewed
given the recommendations provided by the system
deployed at that time, but not the optimal products
whose recommendation would have led to the maxi-
mum engagement of the user. To address this bias in
the historical training data, we perform several expen-
sive A/B tests on a live system. As part of the tests,
we compare the approaches with a traditional recom-
mendation method based on similarity calculations.
It thereby becomes clear that results from real A/B
tests can be quite different from the results on histor-
ical data. In addition, by performing the tests sev-
eral times and successively improving the models we
get answers to the above questions and obtain insights
into the use of prod2vec approaches in this real-world
use case.

2 RELATED WORK

2.1 Recommender Systems

Modern algorithms for recommender systems can ba-
sically be divided into content based methods, collab-
orative filtering methods, or hybrids of them. While
content based methods calculate the similarity of
items based on their properties, collaborative filter-
ing methods consider similarities of user activities. A

Evaluating a Session-based Recommender System using Prod2vec in a Commercial Application

611

very popular class of collaborative filtering methods is
matrix factorization (Koren et al., 2009; Zhou et al.,
2008). These methods transform a sparse user-item
interaction matrix into low-dimensional latent factors
which are used to approximate the preferences of a
user for new articles. Other methods compute simi-
larities between item pairs and make item-based rec-
ommendations based on the nearest neighbors (Shen
and Jiamthapthaksin, 2016). In their implementa-
tion, (Shen and Jiamthapthaksin, 2016) use an effi-
cient all-pair similarity computation method (DIM-
SUM) based on MapReduce that is well suited for
real-world large-scale data sets (Zadeh and Carlsson,
2013; Zadeh and Goel, 2013).

2.2 Deep Learning-based
Recommender Systems

Deep learning methods allow the learning of complex
relationships and sequential dependencies from large
amounts of data. For this reason, they are also in-
creasingly used for recommendation systems (Zhang
et al., 2019). The neural networks often extend tradi-
tional methods to a larger recommender framework,
enabling both to learn latent features for collaborative
filtering and representations of items (Zhang et al.,
2016; Li and She, 2017; Wu et al., 2016b). (Wang
et al., 2015), for example, combine a probabilistic
matrix factorization method with a stacked denoising
autoencoder to capture sparse relationships and also
incorporate item information. Using a deep neural
network on sparse interactions may cause an over-
generalization to new interactions. (Cheng et al.,
2016) tackle this problem by combining a wide linear
model well suited for memorizing sparse feature in-
teractions with a deep neural network trained on low-
dimensional feature embeddings that can generalize
to new interactions.

Deep learning architectures are also well suited to
capture sequential patterns. One common approach
is to train a recurrent neural network to predict the
next item in a sequence of user interactions in a ses-
sion (Wu et al., 2016a; Hidasi et al., 2016; Tamhane
et al., 2017; Gui and Xu, 2018) or to model long-
term temporal dynamics of user behavior (Wu et al.,
2017; Chen and Lin, 2019). In contrast to that, (Tang
and Wang, 2018) capture short-term sequential pat-
terns by training a convolutional neural network on
sequence embeddings of previous items.

2.3 From Word2vec to Prod2vec

In the field of natural language processing, it is com-
mon to train neural language models based on low-

dimensional word embeddings. These embeddings
can be efficiently learned for large vocabularies by
means of scalable word2vec methods like continuous
bag of words (CBOW) and skip-gram (Mikolov et al.,
2013a; Mikolov et al., 2013b). A very useful prop-
erty of word2vec is that words that are similar to each
other in the embedding space have a similar linguis-
tic context, i.e. they are often used with the same
words in a sentence. By assuming that words that
have a similar context have a very similar meaning,
word embeddings can be used to find related words
and word groups in a corpus.

It is natural to transfer the concept of word2vec
to recommender systems in terms of item2vec (or
prod2vec), as proposed by (Ozsoy, 2016) for recom-
mending new venues to visit to users or by (Grbovic
et al., 2015) for e-mail advertisement. (Ozsoy, 2016)
train venue embeddings based on bags of venues that
are visited by users. A new recommendation is done
by calculating the k-nearest venues in the embed-
ding space using the cosine similarty. (Grbovic et al.,
2015) perform a clustering approach upon the embed-
dings and recommend new items based on the transi-
tion probabilities between the target item and different
clusters. In addition, inspired by the paragraph2vec
approach (Le and Mikolov, 2014), user embeddings
are incorporated in order to perform user-item recom-
mendations. In (Vasile et al., 2016), the prod2vec ap-
proach is slightly extended to incorporate additional
categorical product information to overcome product
cold start problem.

Our approach follows the same intuition as the re-
lated works. Instead of the user history data we train
the prod2vec model based on co-occurring products
within browser sessions. In addition, we evaluate the
end-to-end model against the proposed nearest neigh-
bor approaches.

3 APPROACH

3.1 Prod2vec

We use the prod2vec approach for bigrams of prod-
ucts that are viewed together in browser sessions.
Specifically, given the set P of products p ∈ P, we
train a neural network on a set of all pairs of products
(pa, pb) that occur in the same session. The objec-
tive is to train a D-dimensional embedding represen-
tation ep ∈RD so that products that share the same co-
occurring products have similar embedding vectors.
We adapt the skip-gram technique for product pairs
to train the underlying neural network f (p). The aim
of the network is, given an input product pa, to pre-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

612

Figure 2: The adapted skip-gram architecture with an input
layer for all products, an embedding layer and a softmax
output layer.

dict the probabilities of all other products for being
viewed after pa. The architecture is depicted in figure
2. The input layer of the network contains the entirety
of all existing products, with each product being one-
hot-encoded. It is followed by a single hidden layer
that represents the product embedding. The number
of its neurons thus equals the dimension D of the em-
bedding. The output layer applies the softmax acti-
vation function to train the probabilities for all other
products. When training the network on product pairs
(pa, pb), the objective is to minimize the negative log
likelihood loss L over all m training examples:

L(f (p)) =
1
m

m

∑
i=1
−log(ŷi)

where ŷ is the softmax output for all products P:

ŷ =
ey j

∑
P
j ey j

In this way, the network output learns the distribution
of the products as they appear in the browser sessions
for the given product pa.

3.2 Recommender Approaches

Based on the trained neural network we derive and
test three recommendation strategies. The first recom-
mender uses the output of the network, which repre-
sents the probability of a product viewed in the same
session as the input product. Thus, when making k
new recommendations for a target product pa, we take
the top-k products according to the magnitude of their
respective output probabilities. Since this approach

uses the entire trained model, it will be referred to as
the e2e approach in the following.

Our second recommendation strategy, the k-nn ap-
proach, is based on a nearest neighbor search in the
product embedding space. We hereby take the trained
embedding representations from the neural network.
When we recommend k new products for a target
product pa, we look for the k nearest neighbors of
pa in the embedding space. We use the cosine sim-
ilarity as a distance measure to calculate the product
similarities.

The third and final recommendation strategy com-
bines the intuitions behind the e2e and the k-nn ap-
proaches, hence it is subsequently referred to as the
hybrid approach. First, we search for the one nearest
neighbor pb of the target product pa in the embed-
ding space. Then, we take the model outputs for pb as
a basis for recommendations. When recommending
products, we prefer products that have a high proba-
bility output probability for pb but a low probability
for pa. The motivation behind this strategy is to rec-
ommend appropriate, but also surprising products to
a user.

4 USE CASE AND
EXPERIMENTAL SETUP

4.1 User Interaction Data

In this paper, we investigate the described recommen-
dation approaches for a commercial website which
encounters millions of user interactions every week.
Each of its product pages contains thirteen recom-
mendations for other products that might be interest-
ing for a user. Hereby four products are displayed di-
rectly, while the remaining nine products are provided
upon the user requesting further recommendations.
For analysis and advertising purposes some user ac-
tivities on the website are recorded and stored. This
includes the products the user views, some browser
information, and a unique session ID. Thus, for each
of the sessions we know how a user behaves and
which products he has viewed. Unlike other recom-
mendation use cases, there is no option to purchase
products directly via the website. It is therefore im-
portant to note that the interaction data reflects user
interests but not the actual purchasing behavior.

In our experiments we utilize historical data over
a time span of two and a half years. From this data
we extract all interactions which indicate the visit of a
product page. With this step we filter out interactions
irrelevant to a recommendation decision, e.g. visits

Evaluating a Session-based Recommender System using Prod2vec in a Commercial Application

613

of the landing or contact page. We generate our data
set by aggregating the interaction data for individual
sessions and subsequently creating bigrams for each
product combination in the respective session. The
data set serves as the basis for training and testing the
neural network-based recommenders.

4.2 Testing

In our experiments, we first train and test our recom-
mender on historical data. We divide the data into a
training set that comprises several month and a test
set that contains product views of the last month, thus
simulating the case of using a trained model for future
recommendations. While the training minimizes the
loss function on the data, we assess a recommender
on the test set by calculating the hit rate (HR or top-k
accuracy) on all product pairs:

HRk =
#hits

#pairs
where a hit occurs when the target product appears in
the top-k recommendations for an input product. We
further perform live A/B tests on the website, each
test for a period of two weeks. After completion of an
A/B test, we calculate the click through rates (CTR)
of all tested recommenders:

CT R =
#clicked recommendations

#provided recommendations
We implement our models and learning methods us-
ing PyTorch, an open source library for deep learning
(Tor, 2020). For the evaluation, we first conducted
initial grid search based tests on the historical data to
identify the best performing topology and hyperpa-
rameters for the underlying neural network, resulting
in a model with an embedding layer of 32 neurons
with Rectified Linear Unit (ReLU) activation func-
tions and the Adam optimization algorithm with a
learning rate of 0.0001.

As part of the A/B tests, the models are compared
with a control model that is currently in use for the
website and that is based on the users’ browsing his-
tories. The recommendations provided by this model
are derived from the co-occurrence of products that
a user has viewed and calculated based on the DIM-
SUM algorithm (Zadeh and Carlsson, 2013; Zadeh
and Goel, 2013). The implementation of DIMSUM
is based on Apache Spark’s implementation but with
modifications for integrating with the rest of the exist-
ing system and memory improvements over the Spark
model. This model is then run weekly and the results
are stored to be later resolved when a user browses the
relevant product pages. However, because this train-
ing only happens once a week, this does not account
for products that are recently added to the system.

Every time a new product is added, we provide
a fallback recommendation based on meta data pro-
vided with the products such as its name, type and
description. Specifically, these recommendations are
determined by the cosine similarity of the products
calculated from a case-insensitive TF-IDF vector de-
rived from a pre-determined set of a product’s text-
based attributes.

5 RESULTS

5.1 Recommender Performances

At first, we train the underlying neural network for
the three recommender approaches on data of the last
two and a half years, containing all product pairs that
are viewed within a browser session. Figure 3 shows
the test results of the approaches on the historical
data. They show that the e2e-approach performs best,
achieving a top-13 hit rate of 19.11%.

Figure 3: Calculated hit rates (top-4 and top-13 accuracies)
of the three recommender approaches trained on all product
pairs for the last two and a half years.

It can also be seen that the nearest neighbor based ap-
proach clearly performs the worst. As shown in fig-
ure 4, the results are also confirmed by the A/B test.
The figure depicts how the CTRs of the recommen-
dation approaches improve or deteriorate compared
to the control approach. The results show that none
of the mentioned approaches perform as well as the
control (the e2e approach achieves about 82% of its
CTR).

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

614

Figure 4: Evaluation results of the first A/B test for the con-
trol model and the three recommender approaches. Here,
the ratios of the CTRs of the approaches to the CTR of the
control model is shown.

5.2 Different Training Data Sizes

One reason for the weaker performances compared to
the control model could be that the control model is
derived solely from recent data, while the other rec-
ommenders are based on a much longer time span of
2.5 years. The large historical data pool might po-
tentially include outdated data, keeping the new rec-
ommenders from picking up on current trends in user
preference. To investigate this, we train the previously
best performing recommender (e2e) on different peri-
ods of user activities. They range from two years to
a single month. The resulting models are then evalu-
ated and compared in a second A/B test. The results
(see figure 5) show that changing the underlying time
period has a significant impact on the performance of
the recommendation system. It is shown that model
training on more recent user activities delivers better
results in general than activities that lie longer in the
past. This indicates that user interest changes over
time and throughout the year.

5.3 Consecutive Product Views

So far we have trained the neural network on all
product pairs where the two products were viewed
in the same session. However, as cookie-based ses-
sions may last over multiple weeks, this pairing strat-
egy also pairs up products between which many other
products were viewed. Such training samples of
weakly linked products may distort the temporal de-
velopment of user preference. We therefore investi-
gate the case where we train the neural network only
on bigrams with product pairs that were viewed con-
secutively in the same session. Although this modifi-

Figure 5: Evaluation results of the second A/B test for the
control model and the e2e recommender approach trained
on data sets with different time periods, ranging from the
last two years to the single last month.

cation greatly reduces the size of the training data, the
new data distribution allows the neural network to ap-
proximate the user behavior more precisely. On his-
torical test data, the e2e-approach based on this new
model achieves a top-13 hit rate of 46.9%. In the third
and last A/B test, the approach is compared again to
the control model. As shown in figure 6, the model
achieves a 5.6% improvement in CTR over the con-
trol model.

Figure 6: Evaluation results of the third A/B test for the
control model and the e2e recommender approach trained
on three months of user activity data containing consecu-
tively viewed product pairs.

5.4 Further Discussion

The results of the three A/B tests show that the se-
lection of a suitable training data basis has a consid-
erable impact on the model performance. Figure 7
summarizes the results of the best recommendation
approach, namely the E2E model, for the three tests.

Evaluating a Session-based Recommender System using Prod2vec in a Commercial Application

615

Both the reduction of the training data to more re-
cent user activities (difference from test two to one)
and the focus on consecutive product views (differ-
ence from test three to two) yield significant improve-
ments which, taken together, outperform the currently
deployed recommendation system.

Figure 7: Performances (CTR) of the best performing
model (E2E) across the three A/B-tests in relative to the
CTR (gain) of the respective control model.

However, there is still potential for improvement. A
crucial aspect here is that the proposed approach does
not differentiate between users and user groups, so
it always delivers the same product recommendations
regardless of who the user is and, for example, from
where he accesses the website. At least the latter is
currently stored in the browser information in form of
the time zone in which the user device is running. A
breakdown of the CTR performance of the final model
into the different time zones shows that the recom-
mendation system performs very differently for dif-
ferent regions (see figure 8). Note that although the
website is accessed worldwide, the majority of users
are based in the USA. We can clearly see that while
the recommendations for users from Eastern Standard
Time (ET) perform better, they perform worst in Pa-
cific Standard Time (PT). This indicates different user
behavior in the regions, be it different recommenda-
tion click behaviors or different product preferences.

6 SUMMARY AND OUTLOOK

In this paper we addressed a real product-to-product
recommender system for a commercial website by us-
ing the prod2vec approach. For this purpose we tested
different recommenders based on an artificial neural
network which is trained on historical user activity

Figure 8: Performances of the E2E model in A/B test three
for the individual time zones in the USA. The percentages
represent the CTR of the respective time zone compared to
the CTR of the Central Time Zone (CT).

data. The evaluation on the data as well as the per-
formed A/B tests show on the one hand that an end-
to-end neural network performs better than, for ex-
ample, a nearest-neighbor approach, and on the other
hand that the appropriate selection of the training data
basis has a significant impact on delivering successful
recommendations.

The best performing approach outperforms the
currently used recommender system, which provides
recommendations based on pre-calculated similarities
of products. Yet, there are still further potential im-
provements to the proposed prod2vec approach. One
possibility for improvement is the consideration of
user and context information, such as the location or
time of website access. To do this, the existing ap-
proach could be extended to incorporate additional
input variables. Another possible improvement is the
extension to handle sequential customer activities. In-
stead of making a recommendation based on the last
product, the system would use the entire user history
from the current browser session.

REFERENCES

(2020). Pytorch deep learning framework. Accessed: 2020-
11-11.

Chen, H. and Lin, Z. (2019). A hybrid neural network
and hidden markov model for time-aware recom-
mender systems. In Proceedings of the 11th Inter-
national Conference on Agents and Artificial Intel-
ligence - Volume 2: ICAART,, pages 204–213. IN-
STICC, SciTePress.

Cheng, H.-T., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain,
V., Liu, X., Shah, H., Koc, L., Harmsen, J., Shaked, T.,
Chandra, T., Aradhye, H., Anderson, G., Corrado, G.,
and Chai, W. (2016). Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, pages
7–10, [Place of publication not identified]. ACM.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati,

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

616

N., Savla, J., Bhagwan, V., and Sharp, D. (2015). E-
commerce in your inbox. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1809–1818,
New York, NY. ACM.

Gui, Y. and Xu, Z. (2018). Training recurrent neural net-
work on distributed representation space for session-
based recommendation. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–6.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D.
(2016). Session-based recommendations with recur-
rent neural networks. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Re-
search, pages 1188–1196, Bejing, China. PMLR. 22–
24 Jun.

Li, X. and She, J. (2017). Collaborative variational autoen-
coder for recommender systems. In Proceedings of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 305–
314, New York, NY. ACM.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction. arXiv preprint arXiv:1802.03426.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013b). Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’13, pages
3111–3119, Red Hook, NY, USA. Curran Associates
Inc.

Ozsoy, M. G. (2016). From word embeddings to item rec-
ommendation. arXiv preprint arXiv:1601.01356.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recom-
mender systems: Introduction and challenges. In Rec-
ommender Systems Handbook, pages 1–34. Springer
US, Boston, MA.

Shen, F. and Jiamthapthaksin, R. (2016). Dimension inde-
pendent cosine similarity for collaborative filtering us-
ing mapreduce. In 2016 8th International Conference
on Knowledge and Smart Technology (KST), pages
72–76.

Tamhane, A., Arora, S., and Warrier, D. (2017). Model-
ing contextual changes in user behaviour in fashion e-
commerce. In Advances in knowledge discovery and
data mining, LNCS sublibrary. SL 7, Artificial intelli-
gence, pages 539–550, Cham, Switzerland. Springer.

Tang, J. and Wang, K. (2018). Personalized top-n sequen-
tial recommendation via convolutional sequence em-
bedding. In WSDM 2018, pages 565–573, New York,
NY. Association for Computing Machinery.

Vasile, F., Smirnova, E., and Conneau, A. (Sept. 2016).
Meta-prod2vec: Product embeddings using side-
information for recommendation. In Proceedings of
the 10th ACM Conference on Recommender Systems,
pages 225–232, New York. Association for Comput-
ing Machinery.

Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collab-
orative deep learning for recommender systems. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 1235–1244, New York, NY. ACM.

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., and Jing,
H. (Feb. 2017). Recurrent recommender networks. In
Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining, pages 495–503,
New York. Association for Computing Machinery.

Wu, S., Ren, W., Yu, C., Chen, G., Zhang, D., and Zhu, J.
(2016a). Personal recommendation using deep recur-
rent neural networks in netease. In IEEE International
Conference on Data Engineering, ICDE, 2016, pages
1218–1229, [Piscataway, NJ]. IEEE.

Wu, Y., DuBois, C., Zheng, A. X., and Ester, M. (2016b).
Collaborative denoising auto-encoders for top-n rec-
ommender systems. In Proceedings of the Ninth ACM
International Conference on Web Search and Data
Mining, pages 153–162, New York, NY. ACM.

Zadeh, R. B. and Carlsson, G. (2013). Dimension indepen-
dent matrix square using mapreduce. arXiv preprint
arXiv:1304.1467.

Zadeh, R. B. and Goel, A. (2013). Dimension independent
similarity computation. Journal of Machine Learning
Research, 14(14):1605–1626.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y.
(2016). Collaborative knowledge base embedding for
recommender systems. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 353–362,
New York, NY. ACM.

Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learn-
ing based recommender system: A survey and new
perspective. ACM Computing Surveys, 52(1):1–38.

Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008).
Large-scale parallel collaborative filtering for the net-
flix prize. In Algorithmic aspects in information and
management, volume 5034 of Lecture Notes in Com-
puter Science, pages 337–348. Springer, Berlin.

Evaluating a Session-based Recommender System using Prod2vec in a Commercial Application

617

