
How to Mock a Bear: Honeypot, Honeynet, Honeywall & Honeytoken:
A Survey

Paul Lackner
Institute of IT Security Research, St. Pölten University of Applied Sciences, Austria

Keywords: Honeypot, Honeynet, Honeywall, Honeytoken, Survey.

Abstract: In a digitized world even critical infrastructure relies on computers controlled via networks. Attacking these
sensitive infrastructures is highly attractive for intruders, who are frequently a step ahead of defenders. Honey
systems (honeypots, honeynets, honeywalls, and honeytoken) seek to counterbalance this situation. Honey
systems trap attackers by generating phoney services, nets, or data, thereby preventing them from doing dam-
age to production systems and enable defenders to study attackers without letting intruders initially notice.
This paper provides an overview of existing technologies, their use cases, and pitfalls to bear in mind by
illustrating various examples. Furthermore, it shows the recent efforts made in the field and examines the
challenges that still need to be solved.

1 INTRODUCTION

Due to continuously improving endpoint protection
and network protection, attacks against computer sys-
tems are becoming more complex. Various new attack
vectors are found continuously and multiple system
components, hosts, and services in combination are
necessary to successfully attack a system (Simmons
et al., 2014) (Papp et al., 2015). Automated attacks
based in machine learning are increasing, which re-
veals the need for adjusted defense methods (Bland
et al., 2020) (Cui et al., 2020). To learn new tech-
niques from attackers, honeypots are one of many
tools to implement (Spitzner, 2002), especially in
Supervisory Control and Data Acquisition (SCADA)
networks, as there is little to no human interaction re-
quired to manage the networks (Disso et al., 2013).

This survey paper offers an introduction to the
respective purposes of honeypots, honeynets, honey-
walls, and honeytokens and shows the benefits of im-
plementing them. These four systems study attackers
by generating fake networks, hosts, services, and data.

The motivation to write this survey was to create
a new collection of relevant literature and a structured
overview to get more insight in this already estab-
lished, but still promising topic. This survey is in-
tended to give a brief introduction into the topic and
to show what has already been done with honey sys-
tems to see the variability of them and attract more
attention to this topic.

This paper is structured as follows: First, section 2
explains the differences between the honey tools. The
following sections describe the properties of the dif-
ferent honey tools and illustrate some use cases as
well as implementation considerations. Furthermore,
section 5 describes monitoring, detection and hiding
methods followed by a standardised threat informa-
tion exchange approach. Finally, legal aspects are de-
scribed and a list of some implementations and hon-
eypot tools finalises the paper. Further research that
needs to be done concludes the paper.

2 TERMINOLOGY

Honeypots, honeynets, honeywalls, and honeytoken
all serve the same purpose, namely to detect intruders
and analyse their intrusive behaviour. No legitimate
user would ever access a honey system (Petrunić,
2015), even a connection attempt is considered an at-
tack (Provos, 2003).

Invented in the 1990s, a honeypot is the best
known application of the honey systems (Cheswick,
1992). It is a single host, network device or dae-
mon (Provos, 2003) luring potential attackers to dis-
tract them from valuable network ressources (Pouget
et al., 2013). “A honeypot is a security resource
whose value lies in being probed, attacked, or com-
promised.” (Spitzner, 2002). “A honeypot is a re-

Lackner, P.
How to Mock a Bear: Honeypot, Honeynet, Honeywall Honeytoken: A Survey.
DOI: 10.5220/0010400001810188
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 181-188
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181



Figure 1: A honeynet, which consists of honeypots, du-
plicating the production system and being separated by a
honeywall. The honeywall routes legimite users to the pro-
duction network (white hosts) and attackers to the honeynet
(yellow hosts).

source which pretends to be a real target.” (Provos,
2003). A honeypot itself is not a security fix but
helps fixing issues by gaining information about at-
tacks. “The main goals are the distraction of an at-
tacker and the gain of information about an attack and
the attacker” (Baumann and Plattner, 2002).

A honeynet is a network of multiple honey-
pots (Project, 2002; Project, 2001). Analogous to
honeypots, the entire network is to be attacked. The
honeynet is not emulated and therefore can be a copy
of the production system (Spitzner, 2003a). “Hon-
eynets represent the extreme of research honeypots.
They are high interaction honeypots, which allow
learning a great deal; however they also have the high-
est level of risk. Their primary value lies in research
and gaining information on threats that exist in the
Internet community today. Little or no modifications
are made to the honeypots of the honeynet to provide
a plausible copy of the production net. This gives the
attackers a full range of systems, applications, and
functionality to attack. From this it can be learnt a
great deal, not only their tools and tactics, but also
their methods of communication, group organization,
and motives” (Project, 2002). Low and high inter-
action honeypots are further explained in section 3.
Figure 1 shows an example of a honeynet.

As also visualised in Figure 1, a honeywall is
the perimeter border between honeynets and pro-
ductive systems, although the term honeywall is not
clearly defined. Some literature describe it as a gate-
way (Spitzner, 2003a), some describe it as a layer-2
or layer-3 filtering bridge firewall/Network Intrusion

Detection System (NIDS) (Dittrich, 2004). It is also
not clear whether the term “honeywall” refers to the
product name of The Honeynet Project or the basic
functioning in honey environments itself. The prod-
uct honeywall is based on iptables rules, Snort, and
Snort-inline (Dittrich, 2004). Other implementation
use similar tools. In this paper, the term honeywall
refers to a general implementation. Honeywalls sup-
port interception of SSL connections and decide if in-
coming traffic is malicious and therefore needs to be
redirected to a honeynet, or if it is valid and therefore
redirected to the productive system.

Unlike honeypots or honeynets, honeytokens are
just data in the form of files, entries within files, or
special strings (Spitzner, 2003a) (Malin, 2017). The
data looks valid even though it is fictional and does
not have any production use. The files are monitored
in case of their modification. Data and strings are
monitored as well, e.g. via Google Alerts. Google
Alerts, a web service, notifies a user if a string ap-
pears in Googles search. Therefore, when a user is
notified about a published honeytoken, it is likely that
this honeytoken has been stolen and a successful in-
trusion occurred. A paper defines the following hon-
eytoken properties (Bowen et al., 2009):

• Believable: A honeytoken looks like valid data.

• Enticing: A honeytoken lures an attacker.

• Conspicuous: A honeytoken is easily found.

• Detectable: Interacting with a honeytoken gener-
ates an alert.

• Variability: Various honeytoken do not contain
the same information that create a connection be-
tween them.

• Non-interference: A Honeytoken does not inter-
fere with desired data or system interactions.

• Differentiable: A legitimate user can differentiate
between a honeytoken and actual data while an
intruder cannot.

3 PROPERTIES OF HONEYPOTS

Another survey (Mokube and Adams, 2007) defines
honeypots as devices which distract attackers from
valuable machines, provide early warnings about at-
tacks and allow in-depth examination of adversaries
during and after the exploitation. To this end, it is
in the interest of a defender that an attacker interacts
with the honeypot over an extended period of time,
while being closely monitored. There are several
types (Spitzner, 2002) and several use cases (Mokube
and Adams, 2007) of honeypots. While each type can

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

182



be used in each use case, there are different advan-
tages and disadvantages for each honeypot configura-
tion.

3.1 Types

A low interaction honeypot has a very limited set
of commands available for an attacker. While there
is not much information one can obtain about at-
tackers, the risk of damaged production systems due
to a successful attack through that honeypot is also
low (Mairh et al., 2011).

A high interaction honeypot has the goal to obtain
a maximum amount of information about the attacker.
The honeypot allows itself to be used, tampered with,
or even be damaged. High interaction honeypots of-
ten are a clone of a production server. The goal is
mainly to learn about novel attack techniques (Mairh
et al., 2011). When deploying a high interaction
honeypot, considerations about an extremely resilient
monitoring system have to be made, to obtain authen-
tic information of a partially compromised honeypot.

A medium interaction honeypot is in between of
a low and a high interaction honeypot. While a low
interaction honeypot only provides a limited set of
commands and a high interaction honeypot grants
access to the operating system (OS) of the honey-
pot, a medium interaction honeypot emulates a ser-
vice (Mokube and Adams, 2007).

3.2 Use Cases

Widely known literature regards two use cases; re-
search and production. This paper introduces a third
use case: vulnerability scan.

The idea of a research honeypot is to provoke an
attack and learn about the attacker. The purpose of
a research honeypot is to learn about new techniques
and tools of attackers. It also serves to learn about
new combinations of tools attackers use to tamper
with systems. There is no intention to defend the sys-
tem against attackers (Mairh et al., 2011).

A production honeypot is only used in productive
networks to obtain information about attackers invad-
ing the productive network. The purpose is not to gain
maximum intel about the attacker but to detect the in-
terest of the attacker. Spitzner and Schneider defined
three interest groups within security issues: Detec-
tion, Prevention and Response (Mairh et al., 2011).
A honeypot can provide value to Detection and Re-
sponse.

HosTaGe constitutes a further use case, the non
intrusive vulnerability scan (Vasilomanolakis et al.,
2014). HosTaGe is a honeypot for mobile phones

which scans public wireless networks. It detects mal-
ware spreading from devices within the same network
and checks the basic security of public networks. It
is considered to be a honeypot-to-go. HosTaGe also
supports Industrial control system (ICS) protocols,
making it relevant for industrial companies (Vasilo-
manolakis et al., 2015).

When implementing a honeypot, several problems
should be considered (Mokube and Adams, 2007):

• Data Types: Data provided should look authentic
to gain the attention of an attacker but it should not
be possible to harm the company with this data.

• Uplink Liability: Honeypots can and will get
compromised, which enables an attacker to attack
other systems with it. Considerations about plac-
ing a honeypot in separate networks, maybe even
a different public IP range than the production net-
work of the enterprise have to be made (see more
in section 6).

• Build Your Own Honeypot?: Most of the hon-
eypot frameworks are open source and therefore
customisable. The established honeypots profes-
sionally emulate the services they offer, when
configured correctly. Additional services have to
be programmed by the respective end-users them-
selves.

• Hiding: A honeypot should not obviously appear
as a honeypot (see subsection 5.3).

Some researcher created a method to evaluate the po-
tency of a honeynet which can be deployed to any
honeynet (Ren et al., 2020).

3.3 Advantages and Disadvantages of
Honeypots

Honeypots have particular advantages over traditional
NIDS and network security approaches (Mokube and
Adams, 2007):

• Small data sets: Only traffic addressing the hon-
eypot is being observed. This can also be a disad-
vantage however.

• Minimal resources: Only attackers access a hon-
eypot; normal users have no intention of using it.
There is not always the need to use state-of-the-
art hardware as the system does not have to carry
normal production traffic and interactions.

• Simplicity: Honeypots, especially low interaction
honeypots, are “simple and flexible”. They fea-
ture easy deployment and update routines as they
do not offer the whole functionality of the original
service.

How to Mock a Bear: Honeypot, Honeynet, Honeywall Honeytoken: A Survey

183



• Discovery: Honeypots can help discover new tac-
tics and tools directed at them.

Naturally, honeypots also have some disadvantages.
To decide if a honeypot is the right device to moni-
tor one’s network, one has to consider the following
points (Mokube and Adams, 2007):

• Limited Vision: Only the traffic that hits the target
is visible and analysed. Traffic that does not target
the honeypot in any way will not be detected. This
can also be an advantage.

• Discovery and Fingerprinting: Honeypots can ei-
ther emulate a service or provide the service itself.
All services have different fingerprints in terms
of reaction time and properties when using differ-
ent network stacks, operating systems, and hard-
ware. Nevertheless some fingerprints can reveal
the implementation of a service. If a service is
emulated, the fingerprint can reveal the emulating
service (e.g.: honeypot tool). It might be possible
to distinguish a real service from a honeypot from
network meta data.

• Risk of Takeover: A honeypot may be used as an
attacking device if it is taken over. So a honey-
pot should be monitored to determine, if it is still
working as intended or already got compromised.

4 IMPLEMENTATION
EXAMPLES OF VARIOUS
HONEY SYSTEMS

Honey systems are used in various ways with various
goals to achieve. The following subsections enumer-
ate some examples of the possibilities.

4.1 Honeynets as a NIDS

A Network Intrusion Detection System is a system
which detects known attacks (Karen A. Scarfone, Pe-
ter M. Mell, 2007) and warns administrators mostly
through a Security Information and Event Manage-
ment (SIEM) tool about incidents. During a project
a honey net was created through container orchestra-
tion and Conpot as a honeypot backend (Wang et al.,
2019). They define three modules to achieve an easy-
to-work-with honeynet: the deployment module de-
ploys a honeypot as a container with the desired prop-
erties. The management module manages the de-
ployed container in terms of power management and
honeypot properties. The intrusion detection module
is the brain of this system. It processes traffic pro-
vided by the honeypots, trying to find attack patterns.

Using a Support-Vector-Machine (SVM) algorithm
the traffic data, especially the meta data (connection
duration, protocol type, number of source bytes, num-
ber of destination bytes, whether it comes from the
same host, the number of wrong segments, the num-
ber of urgent packets, etc.) is used to train a model,
which was initally trained with the KDDCUP991 data
set (a data set from 1999). The intrusion detection
module uses this model to create alerts. They argue,
since every connection to a honeypot is an attack per
definition (Provos, 2003), this is a way to determine
whether an attack is just random noise or a targeted at-
tack against the system and to achieve a better detec-
tion rate with a lower amount of false positives (Wang
et al., 2019). The detection rate of 89% still remains
low compared to common detection rates using the
SVM algorithm. A newer approach describes a simi-
lar concept (Fan et al., 2019).
A different approach describes a honeynet out of high
interaction honeypots to detect a botnet in its cre-
ation phase using machine learning to detect hidden
patterns (Martı́nez Garre et al., 2020). Furthermore,
honeypots can organize themselves with a (private)
blockchain to act and save data distributed and be
more resistant to takedowns (Shi et al., 2019).

4.2 Honeywall

As seen in Figure 1, a honeywall is the perimeter bor-
der between a honeynet, a possible production net,
and the internet. Its three main goals are: data capture,
data control, and automated alerting. This is achieved
by combining a layered firewall with NIDS/IPS and
a monitoring tool. The honeywall decides if traffic is
malicious or valid, and helps to correlate traffic from
or to various honeypots in the honeynet (Chamales,
2004). A problem is the generation of good train-
ing material. To generate malware traffic signatures
which let the honeywall decide if traffic is valid or ma-
licious, malware traffic needs to be routed to the hon-
eynet by the honeywall. Obviously, this is a chicken-
and-egg problem, which can be mitigated by revers-
ing the function of a NIDS. While a NIDS usually
works by block-listing malicious traffic (Karen A.
Scarfone, Peter M. Mell, 2007) it can also pass-lists
legitimate traffic: All known legitimate traffic is sent
to the productive network, everything else to the hon-
eynet.

4.3 Honeytokens as an Active Defense

Honeytokens could be used as an active de-
fense (Petrunić, 2015).

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

184



Zone 0: acts as the perimeter zone and may contain
a firewall (honeywall), NIDS, and Web Application
Firewall (WAF). Honeytokens are not placed there,
because they are meant to address attackers who are
able to circumvent these defense technologies. Al-
though, on the perimeter border, an IDS rule can de-
tect the usage of a honeytoken (Qassrawi and Hongli,
2010).
Zone 2: represents the web application. Honeyto-
kens are placed here as they enable the application
to react just-in-time to an attack. A URL parameter
(https://example.com/site.php?admin=false) is an ex-
ample of how applications react to the usage of hon-
eytokens. When accessing the site with the parameter
admin=true, the application knows to call a specific
function defending against an attack. A further im-
plementation is a web application honeypot to track
bot crawls on a website (Lewandowski et al., 2020).
Zone 1 and 3: represent the web server and pos-
sible databases. These zones contain classic file or
database-entry tokens to collect as much data as pos-
sible about the attacker if zone 2 is compromised. A
webserver for example, storing honeytokens as files,
can monitor them through the meta data. An exfil-
tration of these honeytokens is noticed by monitoring
the file metadata, or by creating a trigger for the usage
of a query for these honeytoken database entries.
The higher the zone number, the further an attacker
has advanced into a system.

An example of the usage of honey token and the
reaction of webservers follows: (Petrunić, 2015):

• Session Manipulation: If an attacker accesses a
honeytoken, the session in use may be terminated
or isolated into a sandbox mode. Also, every or
randomly chosen requests may be answered with
a HTTP 200 OK status code to feed the attacker
with false information. A request rate limiting or
intentional connection timeouts may further slow
down the attacker.

• Generated Vulnerabilities: Once the system de-
tects attackers it dynamically generates vulnera-
bilities to “keep the attackers happy” and to gain
more time to study the attackers.

• Attack the Attacker: The generated vulnerabilities
can deface attackers and reveal their identity by
forcing them to establish a direct communication
channel (Djanali et al., 2014) (Petrunić, 2015).

• robots.txt: Fake URLs and entries in the robots.txt
help to identify attackers and malicious web spi-
ders. robots.txt defines whether a web spider is
allowed to index an URL or is not. When one of
the fake URLs in robots.txt is accessed by either
an attacker or malicious web spider, a specific re-

action may get triggered.

Honeytokens are either handcrafted or generated
through a tool like HoneyGen (Bercovitch et al.,
2011). Like honeypots, honeytokens slow down at-
tackers (Sandescu et al., 2017), and feed them with
false information2.

4.4 Real World Implementations

Honey systems are already used by different compa-
nies with different implementations. While compa-
nies usually do not publish their use of honey systems,
some are well known to use them and even openly ad-
mit to use honey systems. Nevertheless, enterprises
do not publish the exact implementation and version
of their honey system. Many telecom providers, as
well as security enterprises (firewall/NIDS manufac-
turers, antivirus/HIDS manufacturers, etc.) sustain
many honeypots in a honeynet. They are distributed
worldwide and create threat information and an attack
map, among other things. Associations hide their crit-
ical infrastructure with honey systems and improve
security efforts with the obtained information. Also,
hospitals and medical facilities test the integrity of
their personnel with a bogus patient record, for exam-
ple a honeytoken called “John F. Kennedy” (Spitzner,
2003b).

5 MOCK THE BEAR,
MANIPULATE THE HONEY

When operating any honey system there is always the
risk of a compromised system as well as a defaced
honey system. Either way, a honey system should
work as intended. Monitoring and logging tools must
be resistant to attacks to still record trustworthy in-
formation about an attack and an attacker. Also, at-
tackers are capable to detect honey systems with var-
ious methods. This demands various hiding meth-
ods. The following paragraphs explain monitoring
and logging methods, ways to distinguish honey sys-
tems from productive systems, and methods to miti-
gate a detection and to hide honey systems.

5.1 Find the Bear, Monitor the Honey

Various ways of monitoring honeypots exists. When
honeypots became popular, SEBEK was a popular

2https://arstechnica.com/information-technology/2017/
05/macron-campaign-team-used-honeypot-accounts-to-
fake-out-fancy-bear/

How to Mock a Bear: Honeypot, Honeynet, Honeywall Honeytoken: A Survey

185



monitoring tool, superseded by XEBEK, a SEBEK-
like tool optimised for virtual machines. These are
data/traffic capture kernel modules which send data
to a central logging server to monitor and visualise
events (Quynh and Takefuji, 2006). Nowadays, stan-
dard tools like syslog and Trusted Automated eX-
change of Indicator Information (TAXII) in combina-
tion with a central monitoring server are more com-
mon (Wagner, 2019). Since a honeypot is accessed
by an attacker, there has to be a focus on log authen-
ticity. Sending logs immediately to a remote logging
station and not storing them locally on a compromised
honeypot is part of a good log handling.

5.2 Detect the Honey

A recent paper describes a method to monitor and
analyse botnets with honeynets (Bajtoš et al., 2018).
To get authentic results, considerations must be made
on the fact, that many different ways of detecting hon-
eypots have been developed by attackers to avoid hon-
eypots. A quite old paper describes a way to detect
honeypots in a botnet (Zou and Cunningham, 2006).
The underlying problem is still present: “Should a
honeypot attack other systems to look authentic?” A
botnet is a network of infected machines controlled
by a bot controller (Puri, 2003). A bot controller com-
mands a new bot to attack a list of hosts. This list of
hosts or addresses include sensors, controlled by the
attacker, which report every attempt to contact them
to the bot controller. When the bot controller receives
an IP address, to which the controller commanded an
attack before, it is assumed a valid bot, otherwise it
might be a honeypot trying to sanitize its outgoing
traffic to not attack others (Wang et al., 2010). This
introduces the dilemma of sanitising outgoing traffic
due to legal affairs and getting authentic results.

5.3 Hide the Honey

Honeypots, honeynets, honeywalls, and honeytokens
need to be concealed from the attackers. The first
step to hide them is to determine the type of attacker
they are hidden from. Usually, “attacker” means ev-
erything outside of an organisation or company. To
hide a honeypot from the outside, it should behave
like the emulated service in terms of user interaction.
This means that the front-end and user responses, es-
pecially the reaction time of the service, remain the
same as the original service (Litchfield et al., 2016).
The back-end can be adjusted to the operators’ needs.
In the best case, an attacker does not know about the
structural design of an organisation, so little to no
management effort is required to hide honey systems.

The emulation of several things, including the net-
work stack and processing must be authentic to the
real service to disguise the honeypot (Litchfield et al.,
2016). Network scanning tools like nmap3 look
for protocol quirks to identify the exact implementa-
tion. Depending on the purpose, honeypots should or
should not emulate the exact quirks. Various methods
to properly emulate services are suggested (Qassrawi
and Hongli, 2010):

• Vulnerability Emulation: Only the vulnerable part
of a service or OS is emulated. PHP.HoP (Qass-
rawi and Hongli, 2010) uses this technique. This
obviously works only for already known vulnera-
bilities!

• Connection Tarpitting: Tarpitting in terms of hon-
eypots means delaying network traffic and ser-
vice responses. Network traffic may be delayed
by manipulation of the window flag in Transmis-
sion Control Protocol (TCP/IP) packets. Service
responses may be delayed deliberately by wait-
ing milliseconds before sending them. Appropri-
ate waiting times might help to make a honey-
pot more authentic; e.g. sending a command to
a machine via a controller implies waiting for a
response from a controller which waits for the re-
sponse of the machine, which takes time. Imme-
diately sending a response likely unmasks a hon-
eypot.

• Traffic Redirection: Suspicious traffic gets redi-
rected to a honeypot. For example, a connection
establishment to an unused IP or suspicious traf-
fic, detected with help of a NIDS, can be redi-
rected to a honeypot. However, a NIDS only de-
tects already known attack vectors and needs to
know the network topology or at least the used IP
addresses to detect unused IP addresses.

The techniques described here hide a honey system
from an external attacker. Hiding honey systems from
personnel or specific groups of personnel of an organ-
isation or company was not found in literature.

6 LEGAL AFFAIRS AND
PRIVACY

When operating a honeypot one has to consider sev-
eral legal aspects.

Liability is an important factor to consider. Ac-
tivity and traffic from the honeypot is linked to the
organisation hosting the honeypot. If a honeypot is
compromised and attacks other systems or acts as an

3https://nmap.org/

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

186



illegal market place for example, there are legal con-
sequences for the organisation. Especially neglected
honeypots, which are not monitored regularly, are a
popular target. To prevent consequences, aside from
the technical aspects, the goal and methods of a hon-
eypot should be documented in detail (Mokube and
Adams, 2007).

The right to monitor is competitive to the right of
privacy. As this tension is part of the daily life of
an IT-security engineer, this applies to honey systems
as well. Most countries already passed laws regard-
ing privacy matters, such as the Fourth Amendment,
the Wiretap Act, the Patriot Act, and the Freedom
Act in the USA and the GDPR in the EU. A deci-
sion, whether and how information can be logged,
is made regarding these laws (Mokube and Adams,
2007). A profound analysis of privacy matters, con-
cerning honey systems, has already been done based
on EU laws, already including GDPR, in 2017 (Sokol
et al., 2017).

7 CONCLUSION

This paper describes the different types of honeypots,
honeynets, honeywalls, and honeytoken. It explaines
the terminology and properties of the honey systems
and describes the fields where the systems are de-
ployed. Additionally, advantages and disadvantages
are discussed. Implementation thoughts, including
legal aspects and different techniques to detect and
hide honey systems, are given as well as techniques
to transmit threat information. As the purpose of hon-
eypots is to communicate with an attacker they are
at risk of being compromised. Therefore, a honey
system should always be operated with a NIDS and
should never be left unmonitored. Also, any logging
data should be transferred to a safe place immediately.
Honey systems are not a new field in computer sci-
ence anymore. New insights into the topic based on
public research are limited, even though a lot of im-
plementation methods and tools have been developed.
Further research needs to be done to evaluate the hon-
eypot implementation of new services and protocols.
Recent papers combine honeysystems with modern
technologies like blockchains and machine learning
to mitigate honeysystem detection methods and to in-
crease malware detection rates. Although the meth-
ods are new, the data used to train systems is either
old (Wang et al., 2019) and is not comparable to mod-
ern internet traffic or not described (Martı́nez Garre
et al., 2020). The main challenge in upcoming honey
system development will be trusted, automated, dy-
namic attack pattern matching. Unfortunately, no so-

lution to hide a honey system from employees and ad-
ministrators in the same company has been developed
so far which is why further research into the matter is
necessary.

ACKNOWLEDGEMENT

This work has been supported by the Austrian State
Printing House. Furthermore, I would like to thank
Martin Pirker and Patrick Kochberger for giving help-
ful feedback about this paper.

REFERENCES

Bajtoš, T., Sokol, P., and Mézešová, T. (2018). Virtual hon-
eypots and detection of telnet botnets. In Proceed-
ings of the Central European Cybersecurity Confer-
ence 2018, CECC.

Baumann, R. and Plattner, C. (2002). Honeypots. Master’s
thesis, ETH Zürich.

Bercovitch, M., Renford, M., Hasson, L., Shabtai, A.,
Rokach, L., and Elovici, Y. (2011). Honeygen: An
automated honeytokens generator. In Proceedings of
2011 IEEE International Conference on Intelligence
and Security Informatics. IEEE ITSS.

Bland, J. A., Petty, M. D., Whitaker, T. S., Maxwell, K. P.,
and Cantrell, W. A. (2020). Machine learning cyber-
attack and defense strategies. Computers & Security.

Bowen, B., Hershkoop, S., Keromytis, A., and Stolfo, S. J.
(2009). Baiting Inside Attackers Using Decoy Docu-
ments. In International Conference an Security and
Privacy in Communication Systems. SecureComm,
Springer.

Chamales, G. (2004). The honeywall cd-rom. IEEE Secu-
rity Privacy.

Cheswick, B. (1992). An evening with Berferd in which
a cracker is lured, endured and studied. In In Proc.
Winter USENIX Conference. USENIX.

Cui, M., Wang, J., and Chen, B. (2020). Flexible machine
learning-based cyberattack detection using spatiotem-
poral patterns for distribution systems. IEEE Transac-
tions on Smart Grid.

Disso, J. P., Jones, K., and Bailey, S. (2013). A plausi-
ble solution to SCADA security honeypot systems. In
2013 Eighth International Conference on Broadband
and Wireless Computing, Communication and Appli-
cations.

Dittrich, D. (2004). Customizing ISOs and the Honeynet
Project’s Honeywall.

Djanali, S., Arunanto, F. X., Pratomo, B. A., Baihaqi, A.,
Studiawan, H., and Shiddiqi, A. M. (2014). Aggres-
sive web application honeypot for exposing attacker’s
identity. In 2014 The 1st International Conference
on Information Technology, Computer, and Electrical
Engineering. ICITACEE.

How to Mock a Bear: Honeypot, Honeynet, Honeywall Honeytoken: A Survey

187



Fan, W., Du, Z., Smith-Creasey, M., and Fernández, D.
(2019). Honeydoc: An efficient honeypot architecture
enabling all-round design. IEEE Journal on Selected
Areas in Communications.

Karen A. Scarfone, Peter M. Mell (2007). Guide to Intru-
sion Detection and Prevention Systems (IDPS). Tech-
nical report, NIST.

Lewandowski, P., Janiszewski, M., and Felkner, A. (2020).
Spidertrap - an innovative approach to analyze activity
of internet bots on a website. IEEE Access.

Litchfield, S., Formby, D., Rogers, J., Meliopoulos, S., and
Beyah, R. (2016). Rethinking the honeypot for cyber-
physical systems. IEEE Internet Computing.

Mairh, A., Barik, D., Verma, K., and Jena, D. (2011). Hon-
eypot in network security: A survey. In Proceedings
of the 2011 International Conference on Communica-
tion, Computing & Security. ICCCS, ACM.

Malin, C. (2017). LureBox - Using Honeytokens for De-
tecting Cyberattacks. Master’s thesis, UAS St. Pölten.

Martı́nez Garre, J. T., Gil Pérez, M., and Ruiz-Martı́nez, A.
(2020). A novel machine learning-based approach for
the detection of ssh botnet infection. Future Genera-
tion Computer Systems.

Mokube, I. and Adams, M. (2007). Honeypots: Concepts,
approaches, and challenges. In Proceedings of the
45th Annual Southeast Regional Conference. ACM-
SE.

Papp, D., Ma, Z., and Buttyan, L. (2015). Embedded sys-
tems security: Threats, vulnerabilities, and attack tax-
onomy. In 2015 13th Annual Conference on Privacy,
Security and Trust (PST).

Petrunić, R. (2015). Honeytokens as active defense. In
2015 38th International Convention on Information
and Communication Technology, Electronics and Mi-
croelectronics (MIPRO). MIPRO.

Pouget, F., Dacier, M., and Debar, H. (2013). Honeypot,
Honeynet, Honeytoken: Terminological issues. Insti-
tut Eurécom (EURECOM), Sophia Antipolis, France,
Research Report RR-03-081.

Project, T. H. (2001). Know Your Enemy: Honeynets.
Project, T. H. (2002). Know Your Enemy: Defining Virtual

Honeynets.
Provos, N. (2003). HoneyD: A Virtual Honeypot Daemon.
Puri, R. (2003). Bots & botnet: An overview.
Qassrawi, M. T. and Hongli, Z. (2010). Deception method-

ology in virtual honeypots. In 2010 Second Inter-
national Conference on Networks Security, Wireless
Communications and Trusted Computing. NSWCTC.

Quynh, N. A. and Takefuji, Y. (2006). Towards an invisible
honeypot monitoring system. In Australasian Confer-
ence on Information Security and Privacy. ACISP.

Ren, J., Zhang, C., and Hao, Q. (2020). A theoretical
method to evaluate honeynet potency. Future Gen-
eration Computer Systems.

Sandescu, C., Rughinis, R., and Octavian, G. (2017). Hunt:
Using honeytokens to understand and influence the
execution of an attack. In Proceedings of the 13th
International Scientific Conference ”eLearning and
Software for Education”. eLSE.

Shi, L., Li, Y., Liu, T., Liu, J., Shan, B., and Chen,
H. (2019). Dynamic distributed honeypot based on
blockchain. IEEE Access.

Simmons, C., Ellis, C., Shiva, S., Dasgupta, D., and Wu, Q.
(2014). Avoidit: A cyber attack taxonomy. In 9th An-
nual Symposium on Information Assurance (ASIA’14).
ASIA.

Sokol, P., Mı́šek, J., and Husák, M. (2017). Honeypots and
honeynets: issues of privacy. EURASIP Journal on
Information Security.

Spitzner, L. (2002). Honeypots: Tracking Hackers. Addison
Wesley.

Spitzner, L. (2003a). Honeypots: Catching the Insider
Threat. In 19th Annual Computer Security Applica-
tions Conference, 2003. Proceedings. IEEE.

Spitzner, L. (2003b). Honeytokens: The other honeypot. In
Endpoint Protection. Broadcom.

Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., and
Fischer, M. (2014). Hostage - a mobile honeypot for
collaborative defense. In Proceedings of the 7th Inter-
national Conference on Security of Information and
Networks. SIN.

Vasilomanolakis, E., Srinivasa, S., and Mühlhäuser, M.
(2015). Did you really hack a nuclear power plant?
an industrial control mobile honeypot. In 2015 IEEE
Conference on Communications and Network Security
(CNS).

Wagner, T. D. (2019). Cyber threat intelligence for
“things”. In 2019 International Conference on Cy-
ber Situational Awareness, Data Analytics And As-
sessment (Cyber SA).

Wang, P., Wu, L., Cunningham, R., and Zou, C. C. (2010).
Honeypot detection in advanced botnet attacks. Int. J.
Inf. Comput. Secur.

Wang, Z., Li, G., Chi, Y., Zhang, J., Liu, Q., Yang, T., and
Zhou, W. (2019). Honeynet construction based on in-
trusion detection. In Proceedings of the 3rd Interna-
tional Conference on Computer Science and Applica-
tion Engineering, CSAE 2019. CSAE.

Zou, C. C. and Cunningham, R. (2006). Honeypot-aware
advanced botnet construction and maintenance. In In-
ternational Conference on Dependable Systems and
Networks (DSN’06). DSN.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

188


