
An Extreme Learning Machine based Approach for Software Effort
Estimation

Suyash Shukla and Sandeep Kumar
Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Keywords: Software Effort Estimation, Machine Learning, Extreme Learning Machine.

Abstract: Software Effort Estimation (SEE) is the task of accurately estimating the amount of effort required to develop
software. A significant amount of research has already been done in the area of SEE utilizing Machine Learn-
ing (ML) approaches to handle the inadequacies of conventional and parametric estimation strategies and align
with present-day development and management strategies. However, mostly owing to uncertain outcomes and
obscure model development techniques, only a few or none of the approaches can be practically used for de-
ployment. This paper aims to improve the process of SEE with the help of ML. So, in this paper, we have
proposed an Extreme Learning Machine (ELM) based approach for SEE to tackle the issues mentioned above.
This has been accomplished by applying the International Software Benchmarking Standards Group (ISBSG)
dataset, data pre-processing, and cross-validation. The proposed approach results are compared to other ML
approaches (Multi-Layer Perceptron, Support Vector Machine, Decision Tree, and Random Forest). From the
results, it has been observed that the proposed ELM based approach for SEE is generating smaller error values
compared to other models. Further, we used the established approaches as a benchmark and compared the re-
sults of the proposed ELM-based approach with them. The results obtained through our analysis are inspiring
and express probable enhancement in effort estimation.

1 INTRODUCTION

Estimation of effort or cost required a develop soft-
ware is a tedious task in software project manage-
ment. In the past, the experts have battled a lot in
estimating the right amount of effort or cost, or du-
ration to complete the software. The estimation of
these parameters at the beginning phases of the soft-
ware development lifecycle is more troublesome be-
cause limits for each activity are required to set up,
and the functionalities for the end product are consid-
erable (Boehm, 1981). Most of the time, less infor-
mation about affecting variables and threats that may
happen, insistence from the customer or the execu-
tives, and traditional techniques of software estima-
tion may prompt incorrect results. Thus, they may se-
riously affect conveying project results inside a char-
acterized time allotment, financial plan, and of satis-
factory quality. Despite the emergence of improved
software development methodologies, ongoing inves-
tigations of the Standish Group (2015) show that only
20% of projects are successful. The remaining 80%
of projects suffer from either the budget or time con-
straint, or the project won’t be able to meet the cus-

tomer satisfaction level, which results in the loss of
contracts and financial loss.

As mentioned earlier, each activity of a project to-
ward the start of its lifecycle needs to define its cost
and calendar to decide a business plan and get the en-
dorsement from a customer. Purposefully, the expert
judgment technique that depends upon the knowledge
of estimators has been widely employed in the past
(Wysocki, 2014). But, these techniques usually lead
to errors. Therefore, various techniques based on Line
of Code (LOC) (Boehm, 1981) and Function Point
(FP) (Albrecht, 1979) have been introduced in the
past. The LOC and FP techniques have been modified
regularly to inherit the naive patterns in software de-
velopment methodologies and programming. Still, in
the quick-paced world of development, these proce-
dures are battling to stay up with the latest (Galorath
and Evans, 2006), particularly with advancing code
reuse and altered software deployment. Additionally,
they will generally be subjective, especially those de-
pendent on (Kemerer, 1993), and require considerable
effort for their usage and upkeep.

Consequently, a lot of research has been directed
to SEE utilizing machine learning methods (Sehra

Shukla, S. and Kumar, S.
An Extreme Learning Machine based Approach for Software Effort Estimation.
DOI: 10.5220/0010397700470057
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 47-57
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

47

et al., 2017) to handle the issues mentioned above.
These methods are considered exceptionally com-
pelling for handling vulnerability, and the got out-
comes present their incredible prediction capacities
for effort estimation at the underlying phases of the
lifecycle of the project (Berlin et al., 2009; Tronto
et al., 2008; Lopez-Martin et al., 2012). Also, through
their robotized estimation process dependent on past
data, they will, in general, lessen human inclinations
and mental or political impacts. Nevertheless, mostly
owing to uncertain outcomes and obscure model de-
velopment techniques, only a few or none of the ap-
proaches can be practically used for deployment. The
explanation for this may fall in limited research that
concentrated on finding the most exact ML strategy
and fitting it for the best accuracy. Most of the re-
search has been done on the outdated and smaller
size datasets of finished projects, which tend to overfit
(Kocaguneli et al., 2012).

Furthermore, for data pre-processing, which is
considered important for creating successful mod-
els, different, often opposing techniques were applied
(Garcı́a et al., 2016; Huang et al., 2015). On account
of the limitations sketched out above, there are un-
certain outcomes related to the performance of indi-
vidual methods, regardless of whether they were ap-
plied to a similar dataset. This could be a result of
various methodologies used by researchers or prac-
titioners for data pre-processing and developing ML
models for SEE.

This paper aims to improve the process of SEE
with the help of a powerful and handy approach. For
this purpose, we have proposed an Extreme Learn-
ing Machine (ELM) based approach for SEE to tackle
the issues mentioned above. This has been ac-
complished by applying the International Software
Benchmarking Standards Group (ISBSG) dataset,
data pre-processing, and cross-validation. The results
of the proposed approach are compared against four
other ML approaches, namely Multi-Layer Percep-
tron (MLP), Support Vector Machine (SVM), Deci-
sion Tree (DT), and Random Forest (RF). Further, we
used the established approaches as a benchmark and
compared the results of the proposed ELM-based ap-
proach with them.

Based on the above discussion, this research paper
aims the following research questions:

• RQ1: Which model is producing lesser error val-
ues for UCP estimation?

• RQ2: How much improvement/deterioration is
shown by the proposed ELM model for UCP esti-
mation compared to existing models?

To address these inquiries, an ELM based approach is
developed over the ISBSG dataset to estimate the ef-

fort required to develop software. Then, we compared
the proposed models performance with four other ML
models to obtain the best performing model. Further,
we compared the results of the proposed ELM-based
approach with the established benchmark approaches.

The rest of the paper is organized as per the fol-
lowing: In section 2, we discuss the overview of the
related work for SEE. In section 3, we discuss the pro-
posed approach for effort estimation. Results and sta-
tistical analysis are discussed in section 4 and section
5, respectively. Section 6 presents answers to the re-
search questions. Threats related to validity are dis-
cussed in section 7. Finally, section 8 presents the
conclusion.

2 RELATED WORK

The ML and data mining strategies have been exten-
sively utilized in the last two decades for software
estimation. The focus was to estimate the effort at
the initial phases since the estimation of these param-
eters at the beginning phases of the software devel-
opment lifecycle is more troublesome because of un-
certain and incomplete information. Any noteworthy
deviation of those requirements during the software
development lifecycle may seriously affect the func-
tionalities of the end product, its quality, and at last,
its successful completion.

In (Wen et al., 2012), they performed the most
thorough review of ML methods utilized for SEE.
They investigated 84 studies for this purpose. As indi-
cated by the outcomes, the researchers or practition-
ers concentrated more on fitting single algorithms for
accurate results, especially; models based on Case-
Based Reasoning (CBR), decision trees, and Artifi-
cial Neural Network (ANN). They found that the ML
models are more accurate compared to the traditional
models, with the value of Mean Magnitude Relative
Error (MMRE) lies in the range of 35-55%. They
also demonstrated that relying upon the dataset uti-
lized for developing ML models and the approaches
applied for data pre-processing, the ML models may
lead to contrast results due to noisy data and the prob-
ability of underfitting and overfitting.

The inconsistency in using various methodologies
for developing ML models for SEE is considerably
more noticeable while exploring individual studies.
For example, In (Tronto et al., 2008), the performance
of multiple regression models is compared against
the ANN model utilizing the COCOMO dataset, ex-
hibiting the superiority of the ANN model. They
used MMRE, and Percentage Relative Error Devia-
tion (PRED) measures to assess the performance of

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

48

developed models. In (López-Martı́n, 2015), vari-
ous types of neural networks are used to accurately
estimate the amount of effort required to develop
any software over the ISBSG dataset along with nor-
malization, cross-validation approaches, and different
performance evaluation measures. In (Berlin et al.,
2009), they adopted a progressively thorough strategy
concerning the scope and precision of Linear Regres-
sion (LR) and ANN models for effort as well as dura-
tion estimation. They utilized two datasets: a dataset
from the Israeli Company and ISBSG dataset. They
found that the performance of ANN was better than
LR and the accuracy improved by the log transforma-
tion of the target variables. Also, they demonstrated
that the effort estimation is more accurate compare to
duration estimation because the effort is more corre-
lated with the size variable.

In (Nassif et al., 2019), they adopted a regres-
sion fuzzy approach for the estimation of effort.
They utilized the ISBSG dataset of 468 projects
along with data preparation and cross-validation ap-
proaches. They utilized regression fuzzy models
for effort estimation. They found that the data het-
eroscedasticity affected the performance of ML mod-
els. They also found that the regression fuzzy logic
models are sensitive to outliers.

The data pre-processing step is very important
throughout the training process of ML models, par-
ticularly in managing outliers, the missing data which
largely affects the performance of ML models. In
(Huang et al., 2015), they suggested that aside from
the various deletion and imputation methods are avail-
able for data pre-processing, they are largely depen-
dent on the dataset. However, it is recommended to
discard the projects with missing values to decrease
the biases that affect ML models’ accuracy instead of
imputing them because imputation may reduce data
variability (Strike et al., 2001).

To evaluate the performance of effort estimation
models, most of the researchers use MMRE and
PRED (Wen et al., 2012). The assessment mea-
sures depend on different basic investigations, par-
ticularly MMRE, that is viewed as an asymmetric
measure (Myrtveit and Stensrud, 2012) and sensitive
to noise. Nonetheless, MMRE and PRED establish
an assessment standard, empower examination of re-
sults, and regularly with the help of Mean Absolute
Residual Error (MAR), Mean of Balanced Relative
Error (MBRE), Magnitude Relative Error to Estimate
(MMER), and Standardized Accuracy (SA) are still
generally utilized by researchers. Also, K-fold cross-
validation has been used widely to tackle the issue of
overfitting (Idri et al., 2016).

A few limitations are clear in the existing work.

Firstly, most of the investigations mentioned above
utilized small-sized datasets for model assessments.
It is a significant downside since ML models’ accu-
racy may exceed expectations for the selected data
and decay large-sized data (Nassif et al., 2016). Sec-
ond, most of the existing studies have only used tra-
ditional ML models, especially ANN. The different
variants of the ANN model are needed to be explored
to get better results.

Moreover, most of the studies have used MMRE,
MMER, and PRED for assessing the performance of
the proposed models. Furthermore, only some of the
studies have used statistical tests to validate the per-
formance of their models. As indicated by (Myrtveit
and Stensrud, 2012), it is invalid to show one model’s
superiority over other models without doing proper
statistical analysis.

This paper aims to tackle the issues mentioned
above. For that reason, we developed an ELM based
model for SEE using the ISBSG dataset (2019 re-
lease) and compared its performance with four fre-
quently used existing ML models. Further, we com-
pared the results of the proposed ELM-based ap-
proach with the established benchmark approaches.
The statistical tests and assessment criteria proposed
by (Shepperd and MacDonell, 2012) are also used for
model validation.

3 PROPOSED APPROACH

A viable methodology dependent on best practices
and useful research discoveries for developing SEE
models utilizing ML algorithms is introduced in this
segment. Purposefully, the ISBSG dataset is used by
applying smart data pre-processing. Furthermore, the
acquired pre-processed data is applied to the mod-
elling of four ML models.

3.1 Data Preparation

Noisy data may seriously impact the performance of
ML models. A dataset in which the missing val-
ues and outliers are present in a significant amount
is considered low-quality data, prompting inconsis-
tent results. So, data pre-processing is a basic assign-
ment during the development of ML models. This
study has used ISBSG release 2019 (ISBSG, 2019)
data to inspect ML models’ accuracy. As per (Jor-
gensen and Shepperd, 2007), using real-life projects
in SEE enhances the unwavering quality of the inves-
tigation. The 9178 projects developed using different
programming languages, and development paradigms
are present in this dataset.

An Extreme Learning Machine based Approach for Software Effort Estimation

49

3.1.1 Data Filtering

Provided the heterogeneous nature of the ISBSG
dataset and its huge size, a data pre-processing is
needed prior to performing any analysis. The rules
used for data filtering are adapted from (Lokan and
Mendes, 2009) and shown in Table 1.

Table 1: Rules used for filtering projects.

Criteria Removed
Projects

Selected
Projects

Data quality
should be high 973 8205

Functional size
quality should
be high

1351 6854

No missing
value for the
development
team effort

720 6134

IFPUG 4+ is
used as a size
measure

1690 4444

Projects in this study are selected based on the fol-
lowing characteristics:

• High Data Quality: Each project in the ISBSG
dataset is assigned a data quality rating (A, B, C,
or D). For this study, we have only used projects
with data quality A or B.

• High UFP Quality: Each project in the ISBSG
dataset is assigned an unadjusted function point
(UFP) rating (A, B, C, or D). For this study, we
have only used projects with UFP quality A or B.

• Remove all the projects with missing develop-
ment team effort value.

• Remove all the projects in which the measure-
ment for size is other than IFPUG 4+. The IFPUG
projects are selected due to their popularity in the
industry.

3.1.2 Selected Features

The ISBSG dataset has three effort features: Sum-
mary Work Effort (SWE), Normalized Work Ef-
fort (NWE), and Normalized Work Effort Level 1
(NWEL1). The SWE is the most fundamental mea-
sure that represents the project’s complete effort in
terms of staff hours. Yet, SWE couldn’t cover all
the stages of the software development lifecycle. The
normalized effort is the total effort when missing
phases are added. However, there may be some ir-
regularities when using normalized effort because the

effort is reported based on various participants indi-
cated by resource level variable. The resource level
variable has four values: level 1 represents a devel-
opment team effort, level 2 represents an effort for
development team support, level 3 shows effort for
computer operations involvement, and level 4 shows
effort for end-users. Thus, to guarantee high consis-
tency, the utilization of NWEL1 as the target variable
has been suggested (Guevara et al., 2016), which is
chosen here.

Initially, the twenty most frequently used features
have been selected as independent features for ML
models (Guevara et al., 2016). The features with
missing values of more than 60% have been removed
from the initial set of 20 features. The removed fea-
tures are business area type, max team size, average
team size, input count, output count, enquiry count,
file count, and interface count. As mentioned above,
the NWEL1 is used as a dependent variable in this
study. The resource level value will be one for all
the projects because NWEL1 represents only the de-
velopment team’s effort. So, we have removed the
variable resource level from the initial set of features.
Hence, the dataset contains 4444 projects with 11 in-
dependent variables and one dependent variable.

This study has not used the two features, Applica-
tion Type (AT) and Organization Type (OT). Instead,
their derived versions, Application Group (AG) and
Industry Sector (IS) have been utilized to reduce their
complexity. Finally, the projects having missing val-
ues in any independent variable have been removed
from the dataset. The final dataset has 927 projects
with 12 features. The independent variables used in
this study are shown in Table 2.

The statistical characteristics of the target variable
(NWEL1) are shown in Table 3. Also, before provid-
ing the dataset into the model, it is important to see
whether the input feature can be directly used in the
model or not. For instance, the DT is a categorical
feature. So, it can’t be used directly in the ML model.
For that reason, we performed one-hot encoding for
the encoding of the categorical variable. Since the
DT can take three values, the one-hot encoding pro-
cess will create three dummy variables. Similarly, we
perform one-hot encoding for other categorical vari-
ables, namely AG, 1DBS, DP, IS, LT, PPL, and UM.

3.2 Methodology

We have proposed an ELM based model for SEE. An
ELM model is an extension of a feed-forward neural
network (FFNN) model, which is in practice nowa-
days with good results. To the best of our knowl-
edge, an ELM model has not been used until now

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

50

Table 2: Independent variables used in this study.

Variable Description

Adjusted Function
Points (AFP)

Represents the size of the
software adjusted by the
Value Adjustment Factor

Application Group
(AG)

Groups the application type
into a set

1st Data Base
System (1DBS)

Shows the database for the
project

Development
Platform (DP)

PC, Mid-Range, Main
Frame, or Multi-
Platform

Development
Type (DT)

New, Enhanced, or Re-
development project

Functional Size
(FSZ)

Represents size in
adjusted function points

Industry Sector
(IS)

Represents organization
type responsible for
project submission

Language Type
(LT) 2G, 3G, 4G, or ApG

Project Elapsed
Time (PET)

Total time passed for
completing the project in
terms of calendar months.

Primary
Programming
Language (PPL)

The primary language
utilized for project
development.

Used Methodology
(UM)

Represents whether the
development methodology
is used or not.

Table 3: Statistical characteristics of effort variable in the
dataset.

Count 926
Mean 4893.91
Standard
Deviation 7803.52

Minimum 21
Maximum 88555
Median 2606
Skewness 5.04
Kurtosis 34.87

for the problem of SEE. Apart from that, we found
frequently used ML techniques for effort estimation
to compare the proposed ELM-based model’s per-
formance. The ML models used to compare the re-
sults of ELM based model are Multi-Layer Percep-
tron, Support Vector Machine, Random Forest, and
Decision Tree. We have implemented these ML mod-
els with 10-fold cross-validation and grid search ap-
proach to improve their performance. Further, the
accuracy estimates of these models are compared
against the benchmark model implemented over the

same dataset. The methodology used to develop these
ML models is shown in Figure 1.
The step by step methodology for SEE in this study is
explained below:

• Load Dataset: This step involves the loading of
raw data.

• Data Pre-processing: In this step, data cleaning
is done to make it suitable for the ML models.
In this study, several guidelines have been used
to handle missing data, as mentioned above. We
will have the final dataset with 927 projects and
12 features at the end of this step.

• Train/Test Splitting: Divide each of the four
datasets into 80% training data and 20% testing
data.

• Apply ML Models: In this step, the dataset is
given as input to the ML models. The ML model
learns on train data and gives estimations for test-
ing data.

• Performance Evaluation: The error estimates of
different models on different datasets are evalu-
ated with different performance evaluation mea-
sures.

• Statistical Analysis: Then, the statistical analy-
sis is performed to compare the results of the pro-
posed models.

• Comparison with Benchmark Models: Finally,
the best performing proposed model’s error esti-
mates are compared against the benchmark mod-
els implemented over the same dataset.

4 EXPERIMENTAL ANALYSIS

4.1 Used ML Methods

ML algorithms are useful in extracting inherent data
patterns through automated learning over the input
(Ben-David and Shalev-Shwartz, 2014). The main
benefit of ML algorithms over traditional methods is
that they can adapt well to the changing environment.
This property of ML algorithms is really useful for
SEE because, in the case of software, the technol-
ogy advancing by each passing day, naı̈ve tools and
coding languages are accessible, and improved devel-
opment methodologies with a change in the skills of
the project development teams may affect the tradi-
tional SEE approaches. So, the problem of SEE is
complex, and ML algorithms are generally used to
model the complex relationship among the features
in the dataset.

An Extreme Learning Machine based Approach for Software Effort Estimation

51

Figure 1: Proposed Methodology for SEE using ML mod-
els.

The ML algorithms are mainly categorized into
supervised and unsupervised algorithms. Countless
algorithms have been developed in the past under both
categories. This paper aims to estimate the effort re-
quired to develop software, and for that, we used five
ML algorithms ELM, SVR, MLP, DT, and RF.

SVM can model complex linear and nonlinear
problems and produces fewer error estimates, even
when the data contains outliers. This is because the
SVM utilizes kernels, and it won’t converge to local
minima (Han et al., 2006), whereas the MLP model
converges to local minima instead of global. The
MLP models performed well in noisy data because of
hidden layers and biases (Larose and Larose, 2015).
The MLP models are robust because of hidden layers
and biases. The DT model performs well for the noisy
datasets; they don’t require much data pre-processing
(Nie et al., 2011). So, they are useful for the ISBSG
dataset that contains many categorical variables with
lots of missing values and noise. The RF model is
almost similar to the DT model, except that the RF
model reduces overfitting and is more accurate to the

DT (Simone et al., 2016). The ISBSG dataset con-
tains noise and nonlinear variables; using these mod-
els can produce good results. The ANN model has
been studied a lot for SEE, but only traditional ANN
models have been used in most of the studies. The
different variants of the ANN model are needed to
be explored to get better results. The ELM model is
a type of neural network model which is very popu-
lar nowadays because of its super-fast nature. To the
best of our knowledge, the ELM model has not been
studied for SEE until now. Due to the reasons men-
tioned above, we decided to choose these models for
this study. The basics of these models are the follow-
ing:

4.1.1 ELM

ELM is an extension of the FFNN model with a sin-
gle hidden layer (Huang et al., 2011). The weights
for hidden neurons in the ELM model are assigned
randomly. The ELM models utilize the least square
regression method to predict the outcome. It is an
FFNN model, so data will go in a single direction,
and also, in ELM, the tuning of parameters is not re-
quired. The ELM model is famous for its simplic-
ity, super-fast computation, and unpredictable perfor-
mance. The ELM models are better than MLP and
other ANNs in terms of training time. The major limi-
tation of an ELM model is that it may lead to the prob-
lem of overfitting. Suppose a training sample (xi, ti)
is given, where x represents the input vector, t rep-
resents the output vector, i = 1...n, and n represents
the total training samples. The ELM model’s output
function with h hidden neurons can be mathematically
presented using equation 1.

fh(x) =
h

∑
i=1

βi ∗ai(x) = Aβ (1)

Where A represents the hidden layer output matrix,
and β = [β1 β2 ... βh]

T represents the output matrix of
the ELM model.

A =

a1(x1) a2(x1) ... ah(x1)
a1(x2) a2(x2) ... ah(x2)
...

a1(xn) a2(xn) ... ah(xn)

 (2)

The output matrix β can be defined using the follow-
ing equation:

β = Ap ∗Y (3)

Here, Ap represents the Moore-Penrose generalized
inverse of matrix A and Y = [y1 y2 . . . yn]

T is the target
matrix.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

52

4.1.2 SVM

In the SVM technique, each data sample will be plot-
ted in the n-dimensional space as a data point, where n
depicts the number of input attributes (Drucker et al.,
1997). Then, the regression will be performed by
identifying the hyperplane. The hyperplane will help
us to predict the value of the target. In this method,
the main focus is on fitting the error value inside some
threshold value, whereas in simple linear regression,
the aim was to reduce the amount of error. Based on
different kernel functions, the SVM method has three
variants; Linear SVM, Radial Basis Function (RBF)
SVM, and Polynomial SVM.

4.1.3 MLP

An MLP is a model that consists of at least three lay-
ers; 1 input layer, one hidden layer, and one output
layer (Murtagh, 1991). One can increase the num-
ber of hidden layers based on the complexity of the
task. The number of neurons in the input layer will be
equal to the number of input features. The number of
neurons in the output layer depends upon the type of
problem. The output of an MLP model for the regres-
sion problem will be a continuous value, and only one
neuron will be there in the output layer. If the value
predicted by the model differs from the actual value,
we will calculate the error and adjust the weights of
the model to reduce the amount of error.

4.1.4 DT

This model develops a tree-based model for classi-
fication as well as regression problems. The main
idea of this method is to predict the value of the tar-
get based on decision rules generated by the attributes
(Nie et al., 2011). This method divides the dataset
into smaller subsets and develops a related decision
tree at the time of division. The tree will be gener-
ated by recursive partitioning of each node. For tree
construction, knowledge of the domain is not required
and appropriate for the problem where enough infor-
mation is not available.

4.1.5 RF

The RF regression algorithm is an extension of the DT
algorithm. One of the DT algorithm’s main problems
is that they are very computationally expensive with
the risk of overfitting. Also, they are very much sen-
sitive to the training data samples. On changing the
training data, the predictions will be different. So, the
RF model combines various decision trees into one

to overcome the disadvantages of the decision tree
model (Simone et al., 2016).

4.2 Performance Evaluation Measures

• MAE: It is the average of actual and estimated val-
ues (Hardin et al., 2007).

MAE =
1
K

K

∑
i=1
|ai− ei| (4)

where, ai = actual values, ei = estimated values,
K= total number of samples.

• MBRE: It is the mean of the absolute error divided
by the minimum of actual and estimated values
(Hardin et al., 2007).

MBRE =
1
K

K

∑
i=1

AEi

min(ai,ei)
(5)

where,
AEi = |ai− ei| (6)

• MIBRE: It is the mean of the absolute error di-
vided by the maximum of actual and estimated
values (Hardin et al., 2007).

MIBRE =
1
K

K

∑
i=1

AEi

max(ai,ei)
(7)

• RMSE: It is calculated by taking the square root
of the mean of squared differences between actual
and estimated values (Satapathy and Rath, 2017).

MSE =
∑

K
i=1(ai− ei)

2

K
(8)

RMSE =
√

MSE (9)

• SA: It is calculated by taking the ratio of MAE
and MAEP (Azzeh and Nassif, 2016).

SA = 1− MAE
MAEP

(10)

MAEP will be obtained by predicting the value
ei for the query utilizing many random sampling
runs over the remaining K-1 cases.

4.3 Results

In this study, the ELM model is designed to estimate
the effort required to develop software over the IS-
BSG dataset. Also, the error estimates of the pro-
posed ELM based model are compared against four
other models: SVR, MLP, DT, and RF. The ISBSG
dataset consists of 9178 projects with more than 100
features that contain noise and outliers. A dataset in

An Extreme Learning Machine based Approach for Software Effort Estimation

53

which the missing values and outliers are present in
a significant amount is considered low-quality data,
prompting inconsistent results. So, the necessary
steps have been taken to remove the noise from the
data. After data processing, the dataset was left with
927 projects and twelve features. From the selected
927 projects, 80% of the projects were used for train-
ing, and the remaining 20% of the projects were used
for testing. The machine learning models have been
implemented with the help of a Scikit learn library in
python. 10-fold cross-validation and grid search ap-
proaches are used to find the optimum parameters for
each model. After the model preparation and effort
prediction, the error estimates of proposed models are
evaluated based on different performance evaluation
measures. The results obtained after utilizing differ-
ent ML models on the ISBSG dataset are shown in
Table 4.

Table 4: Different error measures for effort estimation.

ELM SVM MLP DT RF
MAE 2310.7 2696.9 3580.2 3689.5 3599.5
RMSE 3350.8 4071.7 3311.4 3841.4 3432.4
MBRE 1.619 3.31 2.253 4.459 3.587
MIBRE 0.432 0.52 0.469 0.522 0.494
SA 60.10 53.43 38.18 36.29 37.84

From Table 4, we can say that the proposed ELM
model is performing well compared to the other mod-
els. The ELM is performing better than the other
models for all the accuracy measures. The MAE
value obtained by the proposed ELM based model is
2310.7. The DT model is the worst performing model
with an MAE value of 3689.5. The reason for the high
MAE values is that the dataset consists of heteroge-
neous projects and outliers. So, the outlier analysis
is also required for improving the performance of the
ML model.

5 STATISTICAL ANALYSIS

5.1 Comparison of Models

In the previous section, the error estimates of different
ML models on the ISBSG dataset are shown, and the
results show that the proposed ELM based approach
is efficient for the SEE. Yet, the results of these ML
models are needed to be validated. So, we have per-
formed a statistical analysis on the estimated values
to investigate their statistical properties. We have se-
lected the Wilcoxon Rank test (Nassif et al., 2019) to
validate the proposed models’ performance based on
their estimated values. The Wilcoxon Rank test uses

to inspect whether two distributions are following the
same trend or not. The hypothesis for the test is the
following:
H0: No significant difference among the two models
M1 and M2.
H1: The two models M1 and M2, are significantly dif-
ferent.
The hypothesis mentioned above depends upon the
p-value. If the p-value exceeds 0.05, the model the
H0 will be accepted; otherwise, the hypothesis will
get rejected. The results of the Wilcoxon test for the
dataset are shown in Table 5.

Table 5: Wilcoxon Test Results for the Proposed ELM
Model.

P-value Nature
MLP 0.0678 Same
SVR 0.00 Different
RF 0.0037 Different
DT 0.0086 Different

Table 5 suggests that the ELM model is signif-
icantly different from the other models except for
MLP, whereas there is no significant difference be-
tween MLP and ELM models.

5.2 Comparison with Benchmark
Models

The comparison of the best performing proposed
model has been made against the benchmark Fuzzy
and ANN models applied on the same datasets.In
(Nassif et al., 2019), they have used different fuzzy
logic models and multiple linear regression models.
They also compared the performance of the best per-
forming fuzzy logic model with the ANN model. Ta-
ble 6 shows the comparison of the proposed model
with the benchmark models based on similar accuracy
measures.

Table 6: Comparison of the proposed model with bench-
mark models based on different measures.

MAE MBRE MIBRE SA
Proposed ELM 2310.7 1.619 0.432 60.10
ANN Model
(Nassif et al., 2019) 5654.99 - - -

Fuzzy Model
(Nassif et al., 2019) 4925.23 1.761 0.609 55.1

MLR Model
(Nassif et al., 2019) 5536.3 3.192 0.497 49.6

From Table 6, it is clear that the proposed model
is better in comparison to the benchmark models.
The MAE estimates of the proposed ELM model are
half the MAE of the best performing ANN or Fuzzy

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

54

model. The MAE value for the ELM model is 2310.7,
whereas the MAE value for the fuzzy model 4925.23.
The reason for this difference may be the varying
sizes of datasets. They have used ISBSG release 11,
which was having nearly 6000 projects, whereas this
study based is conducted on the latest release of the
ISBSG dataset, which contains 9178 projects.

6 DISCUSSION

RQ1: Which machine learning model is generating
lesser error values for effort estimation?
To answer this research question, we have imple-
mented an ELM based model and applied it over the
ISBSG dataset and other frequently used ML models
for SEE studies. To evaluate the performance of these
models, we have used different performance evalua-
tion measures. Table 4 display the values of these per-
formance measures after applying above mentioned
ML models. By looking at the results, we can say that
the ELM model has outperformed the other ML mod-
els. The MAE obtained for the ELM model is 2310.7,
whereas the ELM has achieved 60.10% SA. To vali-
date the results of these models, we have conducted a
Wilcoxon Rank test to check whether the models have
a significant difference or not. Based on the results,
we found that the ELM model is significantly differ-
ent from every other model for the dataset except the
MLP model.
RQ2: How much improvement/deterioration is shown
by the proposed ELM model for effort estimation in
comparison to existing models?
To answer this research question, we have compared
the results of the proposed models with the bench-
mark ANN and fuzzy models develop over the same
dataset. Table 7 shows the comparison of the pro-
posed model with the benchmark models based on
MAE accuracy measures. From Table 7, we can say
that the proposed model is better than the benchmark
model. The proposed ELM model is better than the
fuzzy and ANN models in different error measures
values.

Table 7: Benchmark vs. proposed model comparison based
on different measures.

MAE MBRE MIBRE SA
Benchmark
Model

4925.23
(Fuzzy)

1.761
(Fuzzy)

0.609
(Fuzzy)

55.1
(Fuzzy)

Proposed
ELM Model 2310.7 1.619 0.432 60.10

Improvement/
Deterioration

53.08%
(imp)

8.06%
(imp)

29.06%
(imp)

5%
(imp)

Table 7 displays that the proposed model shows

an improvement of 53.08 for the ISBSG dataset in
terms of MAE. Here, imp stands for Improvement

7 THREATS TO VALIDITY

Internal Validity: As explained in the data pre-
processing step, the ISBSG data set consists of
projects in which the FP’s are used as the sizing meth-
ods. In this study also, only those projects have been
selected for which the sizing measure is IFPUG. Nev-
ertheless, the effect of other sizing measures on SEE
utilizing ML should be explored. But, setting up this
type of investigation is itself a challenging task be-
cause the data of good quality and reliability is not
easily available.
External Validity: The external validity questions
about the generalizability of results, whether the out-
comes of the research can be generalized or not. In
this study, we have used the ISBSG dataset with the
help of a smart data pre-processing approach. We
have also applied different ML models and evaluation
measures to assess the performance of applied ML
models. Finally, the results generated are validated
with the help of statistical analysis. So, we can say
the results of this study can be generalized up to an
extent. However, the results can improve more with
the help of more datasets.

8 CONCLUSIONS

Estimation of effort or cost required to develop soft-
ware is a tedious task in software project manage-
ment. Each activity of a project toward the start of
its lifecycle needs to define its cost and calendar to
decide a business plan and get the endorsement from
a customer. Purposefully, different traditional meth-
ods such as expert judgment and algorithmic meth-
ods have been developed in the past. But, in the
quick-paced world of development, these procedures
are battling to stay up with the latest. The ML algo-
rithms are useful in extracting inherent patterns from
the data through automated learning over the input.
The main benefit of ML algorithms over traditional
methods is that they can adapt well to the changing
environment. This property of ML algorithms is re-
ally useful for SEE because, in the case of software,
the technology advancing by each passing day, naı̈ve
tools and coding languages are accessible, and im-
proved development methodologies with a change in
the skills of the project development teams may af-
fect the traditional SEE approaches. A significant

An Extreme Learning Machine based Approach for Software Effort Estimation

55

amount of research has already been done in SEE, uti-
lizing ML approaches to handle the inadequacies of
conventional and parametric estimation strategies and
align with present-day development and management
strategies. However, mostly owing to uncertain out-
comes and obscure model development techniques,
only a few or none of the approaches can be practi-
cally used for deployment.

This paper aims to improve the process of SEE
with the help of a powerful and handy approach. For
this purpose, we have proposed an ELM based ap-
proach for SEE to tackle the issues mentioned above.
This has been accomplished by applying the ISBSG
dataset. The ISBSG dataset contains 9178 projects
developed in different programming languages using
different development methodologies. So, this data
is heterogeneous data, which usually leads to incon-
sistent estimates. So, the necessary steps are needed
to remove the noise from the data. The projects in the
dataset have been filtered based on data quality rating,
UFP rating, missing values in the dependent variable,
and missing values in independent variables. Here,
we have considered only those projects in which the
functional size is measured in IFPUG 4+. After per-
forming the data pre-processing, only 927 projects
were left with 12 features. Then, the acquired dataset
is given as input to the ML models.

The ML model learns on train data and gives esti-
mations for testing data. Then, the error estimates of
different models are evaluated with different perfor-
mance evaluation measures. By looking at the results,
we can say that the ELM model has outperformed the
other models, depending on the evaluation measures.
To validate the results of these models, we have con-
ducted a Wilcoxon Rank test to check whether the
models have a significant difference or not. Based on
the results, we found that the ELM model is signifi-
cantly different from every other model except MLP.
Finally, we compared the results of the proposed mod-
els with the benchmark ANN and fuzzy models de-
velop over the same dataset. Table 7 shows the com-
parison of the proposed model with the benchmark
models based on different accuracy measures. The
MAE values of the ELM model largely differ from
ANN and fuzzy models. The proposed model shows
an improvement of 53.08% compared to the bench-
mark fuzzy model.

In the future, it is recommended to use the more
advanced ML algorithms on some other datasets.
Also, the ISBSG dataset contains outliers that have
not been studied in this study. So, it’s recommended
to use different techniques to remove outliers from the
data to make it more useful for ML. The ISBSG data
without outliers may improve SEE analysis.

REFERENCES

Albrecht, A. (1979). Measuring application development
productivity. In In IBM Application Development
Symposium, pages 83–92.

Azzeh, M. and Nassif, A. (2016). A hybrid model for es-
timating software project effort from use case points.
Applied Soft Computing, 49:981–990.

Ben-David, S. and Shalev-Shwartz, S. (2014). Understand-
ing Machine Learning: From Theory to Algorithms,
Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York.

Berlin, S., Raz, T., Glezer, C., and Zviran, M. (2009). Com-
parison of estimation methods of cost and duration in
it projects. Information and software technology jour-
nal, 51:738–748.

Boehm, B. W. (1981). Software Engineering Economics.
Prentice Hall, 10 edition.

Drucker, H., Burges, C., Kaufman, L., Smola, A., and Vap-
nik, V. (1997). Support vector regression machines.
In In Advances in neural information processing sys-
tems, pages 155–161.

Galorath, D. and Evans, M. (2006). Software Sizing, Es-
timation, and Risk Management. Auerbach Publica-
tions.

Garcı́a, S., Luengo, J., and Herrera, F. (2016). Tuto-
rial on practical tips of the most influential data pre-
processing algorithms in data mining. Knowledge
based Systems, 98:1–29.

Guevara, F. G. L. D., Diego, M. F., Lokan, C., and Mendes,
E. (2016). The usage of isbsg data fields in software
effort estimation: a systematic mapping study. ournal
of Systems and Software, 113:188–215.

Han, J., Kamber, M., and Pei, J. (2006). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann.

Hardin, J., Hardin, J., Hilbe, J., and Hilbe, J. (2007). Gen-
eralized linear models and extensions. Stata press.

Huang, G., Zhou, H., Ding, X., and Zhang, R. (2011). Ex-
treme learning machine for regression and multiclass
classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 42(2):513–
529.

Huang, J., Li, Y., and Xie, M. (2015). An empirical anal-
ysis of data preprocessing for machine learning-based
software cost estimation. Information and Software
Technology, 67:108–127.

Idri, A., Hosni, M., and Abran, A. (2016). Improved esti-
mation of software development effort using classical
and fuzzy analogy ensemble. Applied Soft Computing,
49:990–1019.

ISBSG (2019). International Software Benchmarking Stan-
dards Group.

Jorgensen, M. and Shepperd, M. (2007). A system-
atic review of software development cost estimation
studies. IEEE Transaction of Software Engineering,
33(1):33–53.

Kemerer, C. (1993). Reliability of function points measure-
ment: a field experiment. In Commun. ACM 36, page
85–97.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

56

Kocaguneli, E., Menzies, T., and Keung, J. (2012). On the
value of ensemble effort estimation. IEEE Transaction
of Software Engineering, 38:1402–1416.

Larose, D. and Larose, C. (2015). Data Mining and Predic-
tive Analytics. John Wiley & Sons, New Jersey.

Lokan, C. and Mendes, E. (2009). Investigating the use of
chronological split for software effort estimation. IET
Software, 3(5):422–434.

Lopez-Martin, C., Isaza, C., and Chavoya, A. (2012).
Software development effort prediction of industrial
projects applying a general regression neural network.
Empirical Software Engineering, 17:738–756.

López-Martı́n, C. (2015). Predictive accuracy comparison
between neural networks and statistical regression for
development effort of software projects. Applied Soft
Computing, 27:434–449.

Murtagh, F. (1991). Multilayer perceptrons for classifi-
cation and regression. Neurocomputing, 2(5-6):183–
197.

Myrtveit, I. and Stensrud, E. (2012). Validity and reliabil-
ity of evaluation procedures in comparative studies of
effort prediction models. Empirical Software Engi-
neering, 17:23–33.

Nassif, A., Azzeh, M., Capretz, L., and Ho, D. (2016). Neu-
ral network models for software development effort
estimation: a comparative study. Neural Computing
and Applications, 27(8):2369–2381.

Nassif, A., Azzeh, M., Idri, A., and Abran, A. (2019). Soft-
ware development effort estimation using regression
fuzzy models. Computational intelligence and neuro-
science.

Nie, G., Rowe, W., Zhang, L., Tian, Y., and Shi, Y. (2011).
Credit card churn forecasting by logistic regression
and decision tree. Expert Systems with Applications,
38(12):15273–15285.

Satapathy, S. and Rath, S. (2017). Empirical assessment of
ml models for effort estimation of web-based appli-
cations. In In Proceedings of the 10th Innovations in
Software Engineering Conference, page 74–84.

Sehra, S., Brar, Y., Kaur, N., and Sehra, S. (2017). Research
patterns and trends in software effort estimation. In-
formation and software technology journal.

Shepperd, M. and MacDonell, S. (2012). Evaluating pre-
diction systems in software project estimation. Infor-
mation and Software Technology, 54(8):820–827.

Simone, P., Alessandrlo, M., Demeyer, S., Marchesi, M.,
and Tonelli, R. (2016). Estimating story points from
issue reports. In In Proceedings of the 12th Interna-
tional Conference on Predictive Models and Data An-
alytics in Software Engineering, pages 1–10.

Strike, K., Emam, K., and Madhavji, N. (2001). Software
cost estimation with incomplete data. IEEE Transac-
tion of Software Engineering, 27:890–908.

Tronto, I. D. B., Silva, J. D., and Anna, S. (2008). An inves-
tigation of artificial neural networks based prediction
systems in software project management. Journal of
Systems and Software, 81:356–367.

Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Sys-
tematic literature review of machine learning based

software development effort estimation models. In-
formation and Software Technology, 54:41–59.

Wysocki, R. (2014). Effective Project Management: Tradi-
tional, Agile, Extreme, Industry Week. John Wiley &
Sons.

An Extreme Learning Machine based Approach for Software Effort Estimation

57

