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Abstract: An approach for sewerage systems monitoring based on Artificial Neural Networks is presented as a feasible 
and reliable way of providing operators with a real-time Decision Support System that is able to predict critical 
events and suggest a proper mitigation strategy. A fully-working prototype was developed and tested on a 
sewerage system in the city of Brescia, Italy. The system is trained to forecast flows and water levels in critical 
points of the grid based on their measured values as well as rainfall data. When relying on observed rainfall 
only, key parameters can be predicted up to 60 minutes in advance, whereas including very-short-term 
Quantitative Precipitation Estimates – nowcasting – the time horizon can be extended further, up to 140 
minutes in the current case study. Unlike classical hydraulic modelling, the proposed approach can be 
effectively used run-time as the execution is performed with a negligible computational cost, and it is suitable 
to increase safety measures in a Smart City context. 

1 INTRODUCTION 

In many urban scenarios, the management of 
wastewater is performed by combined sewer systems, 
collecting both storm water and black/greywater in 
order to send them to the wastewater treatment plant 
(WWTP). In case of intense rainfall events, the sewer 
discharge may reach its capacity limit and 
occasionally produce combined sewer overflow 
(CSO), leading to pollution risk. Moreover, excessive 
discharges of treated water may produce floods if the 
stage of the receiving bodies is already high due to 
rainfall. Specific structures – spillway gates, buffer 
tanks, pumps, etc – are designed to mitigate such 
occurrences. Clearly, an optimal intervention strategy 
during a critical event strongly relies on the accurate 
knowledge of the system status (water flows and 
levels, gate openings) and, possibly, the weather 
conditions (i.e. observed and expected rainfalls).  The 

lack of a comprehensive monitoring and forecast 
network requires the operators to choose the 
intervention strategy by relying mostly on their 
experience. In such contexts, a decision support 
system (DSS) may represent a fundamental aid 
(Pereira et al., 2019).  

DSSs are platforms dedicated to providing 
support to the human operator in deciding which 
operations to perform. Several examples are available 
in the literature for sewerage systems-related 
applications (Park and Kim, 2013; Rao, 2015), their 
focus being on the design, renovation, and upgrade of 
the physical system or on the offline reanalysis of past 
events in order to optimize future intervention 
strategies. Instead, the monitoring of sewerage 
networks using real-time data has been mainly 
focused on pollution emissions and concentrations 
(Rechdaoui-Guérin et al., 2018).  
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In recent years, smart network monitoring began 
to find development and applications. The advances 
in technology can be exploited by municipalities, 
utilities, and related organizations to implement smart 
data infrastructure for wet weather control. More 
specifically, advanced monitoring data are used to 
support wet weather control and decision-making in 
real time or near real time. The United States 
Environmental Protection Agency defines smart 
infrastructures as “the integration of emerging and 
advanced technology to enhance the collection, 
storage, and/or reanalysis of water-related data”, 
making use of “hardware, communication and 
management analytics to provide real and tangible 
benefits to utilities”, as “maximizing existing 
infrastructure and optimizing operations and 
responses to be proactive, not reactive” (US EPA, 
2018). Smart infrastructures are generally 
implemented in connection with a supervisory control 
and data acquisition (SCADA) system. Their main 
objective is usually the real-time monitoring of 
CSO’s flow rates and effluent level, in order to assess 
potential flooding and pollution incidents and to 
support real-time or quasi real-time decision making 
about actions to be taken (Botturi et al., 2020). 

However, to the best of the authors’ knowledge – 
with particular reference to the Italian territory – the 
diffusion of smart infrastructures is still quite limited. 
Despite the presence of few studies aimed at reducing 
CSO through Real Time Control of gates and sluices 
(Carbone et al., 2014; Campisano et al., 2016), some 
issues are not addressed properly, as the potential risk 
of flooding due to excessive discharge of treated 
water from the WWTP to the receiving body. Most of  
real-world DSS implementations aimed at flood 
mitigation still rely on traditional hydraulic models 
and are often characterized by a high computational 
demand making them unsuitable for real-time usage. 
Sometimes such models proved to be outdated and 
are not resilient to climate change. Moreover, there is 
lack of use of very-short-term precipitation forecasts, 
which are crucial in case of high-intense and short-
lasting rainfall events.  

This paper presents a case study about the design 
of a DSS dedicated to WWTP management. It allows 
real-time monitoring of the system status through a 
network of ground-based meters and weather radars. 
It also includes a forecasting tool that provides 
additional information to help operators in planning 
manoeuvres, thanks to a methodology based on 
Artificial Intelligence – specifically Artificial Neural 
Networks (ANNs) (Maier et al., 2010) – estimating 
water levels and flows inside the network. ANNs are 
suitable tools for the purposes of this study, since they 

allow for a reduction in the input data variety – 
selecting only the most statistically significant in the 
input-output relation – and the non-use of parameters 
needed by traditional models, as for example the soil 
properties in rainfall-runoff modelling. Moreover, 
after being calibrated, their execution is immediate 
and perfectly matches the real-time requirements. 
They can also be easily updated, well facing possible 
changes in the real environment.  

The aim of the implemented DSS is to give 
operators useful insights about the current status of 
the receiving water body in strategic locations, the 
potential CSO amount, the WWTP inflow, the current 
and recent rainfall and the estimated evolution of the 
strategic variables, collecting all data and showing 
them in a single User Interface, to eventually guide 
them to apply a proper risk mitigation strategy. 

As regards rainfall information, the DSS also 
exploits high resolution very-short-term quantitative 
precipitation forecasting, also known as 
“nowcasting” (Wilson et al., 1998). Quantitative 
precipitation forecasting is performed by means of 
algorithms working on rainfall measures provided by 
weather radars (Bellon et al., 2010; Lee et al., 2010). 
It has been proved that radar-based nowcasting can 
give more reliable results than classic numerical 
weather prediction within a time horizon of 3-8 hours 
(Mandapaka et al., 2012), being therefore a valuable 
tool for real-time decision-making. In the present 
context, nowcasting is used to further extend the time 
horizon of ANNs predictions for hydraulic variables, 
allowing to manage the potential emergencies with a 
reasonable advance. 

The designed DSS provides real-time monitoring 
of the hydraulic system status and – thanks to ANNs 
– predicts its future evolution. Once the model 
calibration has been performed, the ANNs algorithms 
consist in linear algebra operations on matrices which 
require negligible computational times, unlike more 
traditional hydraulic models that as of today require 
large computational times and computing resources 
(Clark et al., 2017).  

2 METHODOLOGY 

2.1 Description of the System Layout 

The WWTP for which the DSS was developed 
collects the sewage and urban runoff in the city of 
Brescia (Italy) and its surrounding area, serving a 
total of 296.000 inhabitants over a 146 km2 surface. 
Figure 1 shows the system layout.  
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Figure 1: System layout. 

An urban drainage channel named Vaso Fiume 
(VF) runs parallel to the final sewer collector, 
upstream the WWTP. When the sewer flow raises 
above a critical level, the excess is directed into the 
VF trough two lateral spillways, one located just 
before the WWTP and one a few km upstream. The 
VF also receives the treated wastewater. A bigger 
urban drainage channel, named Vaso Garzetta (VG), 
collects water from the VF approximately 2.4 km 
downstream and eventually flows into the Mella river 
after a 3.4 km path. The whole network of receiving 
water bodies is characterized by potential hydraulic 
risk in case of extreme rainfall events: over the last 
years urban flooding has occurred several times along 
the VG channel, in a critical location corresponding 
to the gz_lt01 measuring point (approximately 1.7 km 
downstream the confluence with VF). In such 
circumstances, the water flowing from VF into VG 
should be constrained and the WWTP technicians 
must pay close attention in order to minimize the risk 
of flooding. To this aim, the VF channel is equipped 
with a series of inline or lateral gates, which can be 
used effectively for flood prevention. Two lateral 
gates (g10 and g15), which are closed in standard 
conditions, can be gradually opened to direct the flow 
in the surrounding rural area, within environmental 
law limitations. A couple of paired inline gates (g14a 
and g14b), which are kept open in standard 
conditions, can be progressively closed to reduce, and 
in certain cases completely arrest, the VF flow into 
the VG. A storage area is also present next to the 
WWTP and is used to reduce the peak discharge into 
the VF: an inline gate (g2) can be partially closed in 
order to increase the upstream water level and 
activate a lateral spillway into the storage area.  

The WWTP and the sewage network are managed 
by a leading multiutility society which has been 
playing much effort in Smart City projects over the 
last years. The wish of the WWTP managers was to  
 

have a tool able to assist them in taking proper 
decision especially when dealing with severe rainfall 
events. Indeed, prior to the development of the 
present DSS platform, the gate-opening strategy 
relied only on operator experience – based on 
information from the upstream gz_lt02 meter – to 
foresee impending flood waves. Operators decided 
whether to use the storage area and to open lateral 
spillways in order to reduce the outflow towards the 
VG channel and prevent downstream overflows. 
However, the users lacked an interface allowing a 
thorough monitoring of the system status. In 
particular, information about forthcoming rainfall 
amounts, water levels and sewer flows was 
completely missing. In case of severe events, such an 
approach was not able to completely avoid risks.  

In addition to the VG level at gz_lt02, particular 
attention is also devoted to the WWTP inlet (ml01), 
as treatment cycles can be optimized thanks to the 
presence of an internal buffer tank. Since during 
extreme events the flow at ml01 may exceed the 
WWTP processing capacity, knowing this flow in 
advance can help to properly manage the internal 
operation of the plant. Therefore, the VG level at 
gz_lt02 and the flow at ml01 are key parameters to be 
monitored. Their expected values are forecasted by 
the ANNs developed for the DSS. 

2.2 The Decision Support System 

2.2.1 Data Acquisition 

Prior to the DSS implementation, the acquired data 
(rainfall, levels, flows, gate openings) were collected 
in diverse databases and visualized in separate 
interfaces, preventing the WWTP operators from 
having a comprehensive view of the system status.  

Rainfall data used to be provided only by six 
pluviometers within the catchment; for the purposes 
of the present study it was instead decided to also 
exploit advanced meteorological radar 
measurements. To this end, distributed rainfall 
measurements performed by radars were calibrated 
through the punctual pluviometer records, eventually 
obtaining reliable information in terms of both value 
accuracy and spatial variability. The resulting product 
has 1×1 km spatial resolution as in Panziera et al. 
(2011) and a 10-minutes time resolution. 

The resulting integrated rainfall measurements 
were spatially averaged over the whole catchment to 
obtain a single value to be used as an input for the 
ANNs. Preliminary attempts demonstrated that 
distinguishing over rainfalls precipitated in different 
zones only makes water levels and flows forecasts 
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less stable and does not produce any significant 
improvement over using the mean areal rainfall.  

The readout of each sensor was synchronized, the 
time step was fixed to 10 minutes, and a dedicated 
server was realized to host the system database 
containing all the records of measured data, computed 
quantities and final parameters. 

2.2.2 ANNs Setup 

Rainfall, gz_lt02 level and ml01 discharge data were 
made available for a period spanning from October 
2016 to August 2018.  

A set of four ANNs was set up, two predicting VG 
level variation and the other two predicting sewer 
flow variation. 

The effect produced on target variables by rainfall 
is visible with a lag time that was found to vary 
between 30 minutes and 2 hours. Thus, it was decided 
to predict them up to 60 minutes beyond the last 
known rainfall information, whether measured or 
predicted. 

More specifically, the ANN named ANNLS  
(level/short-term) makes use of measured rainfalls 
only and provides gz_lt02 level forecast up to 60 
minutes; ANNLL  (level/long-term) uses also 
nowcasting up to +80 minutes, thus extending the 
forecast horizon to 140 minutes. Similarly, ANNFS 
(flow/short-term) and ANNFL (flow/long-term) 
forecast sewer discharge at ml01. ANNLS and ANNLL 
were trained and validated using 18 suitably trimmed 
rainfall events in the analysed period, corresponding 
to a total 1714 datapoints; ANNFS and ANNFL used 17 
events, with 12057 datapoints. Due to the available 
data, the two samples refer to different sets of events. 
The higher number of datapoints used to train sewer-
related ANNs depends on the fact that events were 
trimmed in larger chunks, because flows at ml01 take 
longer to return to the unperturbed value after 
rainfalls with respect to levels at gz_lt02.  

Measured rainfall inputs for ANNLS and ANNLL 
cover the antecedent 2-hours interval. This extension 
was considered appropriate, covering the whole range 
of observed lags. A longer period (six hours) was 
required for ml01 forecast, due to the longer-lasting 
observed perturbation induced on the sewer collector 
by precipitation. 

Rainfall measurements are updated every 10 
minutes, while nowcasting is updated every 20 
minutes due to computing limitations. This results in 
two different updating frequencies for short-term and 
long-term predictions, consistent with rainfall input 
updates. For convenience, the rainfall measurements 
provided to the ANNs are also aggregated in 20-

minute bins, although updated every 10 minutes. 
Moreover, to keep track of the initial conditions, the 
current level/flow is also used as input.  

For all the ANNs, the targets are the level/flow 
variations induced by rainfall, with respect to the 
current value, evaluated on a 10-minute basis. Thus, 
at every execution, ANNLS and ANNFS produce six 
outputs (10-minute bins from +10 to +60), while 
ANNLL and ANNFL produce fourteen outputs (10-
minute bins from +10 to +140). 

The expected levels are obtained by the algebraic 
sum of current values and predicted variations. The 
expected flows calculation needs an additional term 
to be considered in the sum, i.e. the characteristic 
daily modulation of sewer discharge. Thus, the 
average flow profile at ml01 was obtained 
disregarding rainy days and was found to lie in the 
range 0.5-1.2 m3/s (Figure 2), then the corresponding 
144 average flow variations – on a 10-minute basis 
from 0:00 to 23:50 – were computed.  

 
Figure 2: Average ml01 profile during dry days (blue line). 

The Multilayer Perceptron structure was chosen 
to build the ANNs, that were developed in a 
MATLAB environment. After trial-and-error 
attempts, the layout was chosen so that all the ANNs 
share a common structure, with a 20-nodes single 
hidden layer connecting the input and output layers. 
All the inputs and targets were normalized between 0 
and 1. A logistic activation function is used in the 
hidden layer, and a linear activation function is used 
in the output layer to produce the results. It is 
customary in Machine Learning to use three different 
sets of data, namely the calibration, validation and 
testing set: the calibration and validation set are used 
to train the networks, with the first used to fix weights 
and biases and the latter to adjust the 
hyperparameters; the testing set is used to test the 
ANNs performance on unseen data. However, due to 
some uncertainties in the available data, and since the 
aim of this study was not to explore ANNs’ theory but 
instead it was necessary to exploit as much data as 
possible to build a ready-to-use product, it was 

SMARTGREENS 2021 - 10th International Conference on Smart Cities and Green ICT Systems

18



decided to disregard the testing set. Therefore, the 
available datasets were split using the last four events 
(380 datapoints, i.e. 22.17% for level forecast; 2274 
datapoints, i.e. 18.86% for flow forecast) for the 
validation set and the previous ones for the calibration 
set. 

Weights and biases in the ANNs nodes were 
randomly initialized, and the Levenberg-Marquadt 
backpropagation algorithm was used to minimize the 
cost function, specifically the mean square error 
between the target/output pairs; the algorithm 
execution was imposed to stop if the validation error 
increased for 20 consecutive iterations. Since the 
training procedure outcome varies depending on the 
randomly generated initial parameters and on the 
chance of the training algorithm getting stuck in local 
minima, each ANN was trained 2000 times using the 
above-mentioned procedure, and the best-performing 
network was then selected.   

Rather than considering the cost function, a more 
detailed multi-objective optimization was 
implemented to select the best performing ANNs, 
keeping in mind their final purpose, i.e. a correct and 
prompt forecast of the most severe events. Thus, for 
both level and flow, three threshold values were 
defined, i.e. 70, 100 and 140 cm at gz_lt02 and 2.5, 
3.5 and 4.5 m3/s at ml01. Four objectives were defined 
to select the best performing ANNs. 

1) The Nash-Sutcliffe Efficiency index (NSE) 
computed on actual network targets and outputs 
(normalized values). The optimization variable to 
be minimized is the subtracted ratio in the NSE 
definition: 

𝑁𝑆𝐸 = 1 − ∑ ሺ𝑂௜ − 𝑆௜ሻଶ௡௜ୀଵ∑ ሺ𝑂௜ − 𝑂തሻଶ௡௜ୀଵ  (1)

where 𝑂௜  are the observed values, 𝑂ത  is their mean 
value and 𝑆௜  are the simulated values. NSE is 
computed for each prediction horizon (10 minutes, 20 
minutes, …etc.) and the objective is found from the 
mean of the computed values. 

2) Maximum number of correct predictions of 
threshold values crossing. The optimization 
variable, to be minimized, is the ratio of missed 
predictions to observed crossings. It is computed 
for each alert level and the objective is set to the 
mean of the three computed values. 

3) Minimum number of fake predictions (threshold 
crossing prediction not corresponding to observed 
crossing). The optimization variable, to be 
minimized, is the ratio of fake predictions to total 

predictions, either true or false. It is computed for 
each alert level and the objective is set to the mean 
of the three computed values. 

4) Optimal prediction timing. Every time there is an 
observed threshold level crossing in the forecast 
time horizon after current timestamp and there is 
also a predicted crossing, the delay between the 
observed and predicted time of crossing is 
computed. The objective to minimize is the mean 
squared delay for all alert levels. 

Objectives n.2 and n.3 vary between 0 and 1. In order 
to give objective n.1 the same range of variability, the 
upper boundary of the subtracted ratio was set to 1, as 
values greater than 1 would imply a non-acceptable 
performance and the related solution should be 
discarded. Objective n.4 was normalized between 0 
and 1 with respect to its possible minimum and 
maximum values (i.e. 0 and 50 minutes for short-term 
predictions and 0 and 130 minutes for long-term 
predictions). In looking for the Pareto front of 
undominated solutions, the second and fourth 
objectives were given a weight triple than the others. 
This was mainly due to sewer management reasons. 
Among these points in the 4-D resulting spaces, the 
best performing combinations were selected as those 
with the minimum Euclidean norm and the 
corresponding sets of weights and biases matrices 
were used in the algorithms running in the DSS. 

Since objectives n.2, n.3 and n.4 can be computed 
only on threshold crossings – and therefore on a small 
amount of data – the above-mentioned optimization 
procedure was performed on the whole available 
dataset, comprising both training and validation 
datapoints.  

3 RESULTS 

3.1 ANNs Performance 

The multi-objective optimization led to the selection 
of the best performing ANNs. A first evaluation of 
their performance was made according to the 
objectives described in section 2.2.2. The obtained 
values are shown in Table 1. A better general 
performance of level prediction with respect to sewer 
discharge prediction can be noticed. Moreover, better 
predictions are obtained from ANNs exploiting 
nowcasting information.  
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Table 1: Results of the multi-objective optimization: values 
for the selected ANNs. 

 OBJ 1 OBJ 2 OBJ 3 OBJ 4 

ANNLS 0.241 0.150 0.106 0.061 

ANNLL 0.128 0.137 0.039 0.037 

ANNFS 0.531 0.175 0.117 0.100 

ANNFL 0.412 0.201 0.069 0.083 

Statistical analyses were performed on the results. 
For all the selected ANNs, the NSE index was 
calculated for each event and each forecasting 
horizon (+10 to +60 minutes or +10 to +140 minutes). 
Calibration values for ANNLS – averaged on the 14 
events in the set – range between 0.484 and 0.888, 
with higher values corresponding to shorter 

forecasting horizons. Similarly, average validation 
values are comprised between 0.294 and 0.906. 
ANNLL gave NSE average values ranging between 
0.301 and 0.601 for calibration events and between 
0.103 and 0.903 for validation ones. The ranges of 
average NSE values are 0.987÷0.909 and 
0.904÷0.989 for ANNFS calibration and validation 
events, respectively. Finally, NSE average ranges for 
ANNFL are 0.843÷0.986 (calibration) and 
0.789÷0.988 (validation).  As a term of comparison, 
Jeong et al. (2010) obtained NSE = 0.74 for 
calibration data and NSE = 0.63 for validation data 
when modelling stream flows in a small watershed 
using the SWAT tool. However, this kind of analysis 
does not give useful insights on the ANNs efficiency 
in the DSS and may even be misleading. Indeed, the 
main goal of a real-time DSS like as the one presented 

Table 2: Performance of the selected ANNs in predicting threshold crossings. Values outside brackets refer to the whole 
dataset; values in brackets refer to calibration and validation sets, respectively. 

  Threshold 1 Threshold 2 Threshold 3 

ANNLS 

n. observed. 22 (17 / 5) 9 (6 / 3) 4 (2 / 2) 

n. predicted. 22 (17 / 5) 6 (4 / 2) 3 (2 / 1) 

predicted % 100.0 (100.0 / 100.0) 66.7 (66.67 / 66.67) 75.0 (100.0 / 50.0) 

a.w.t. (min) 36.8 (35.2 / 42.0) 25.0 (27.5 / 20.0) 33.3 (35.0 / 30.0) 

a.p.d. (min) 3.2 (3.6 / 2.0) 1.7 (0.0 / 5.0) -3.3 (0.0 / -10.0) 

false alerts 10 (7 / 3) 1 (1 / 0) 0 (0 / 0) 

ANNLL 

n. observed. 22 (17 / 5) 9 (6 / 3) 4 (2 / 2) 

n. predicted. 22 (17 / 5) 5 (3 / 2) 3 (2 / 1) 

predicted % 100.0 (100.0 / 100.0) 55.6 (50.0 / 66.67) 75.0 (100.0 / 50.0) 

a.w.t. (min) 97.7 (91.8 / 118.0) 116.0 (110.0 / 125.0) 113.3 (115.0 / 110.0) 

a.p.d. (min) -7.3 (-5.9 / -12.0) -10.0 (-3.3 / -20.0) 3.3 (0.0 / 10.0) 

false alerts 9 (6 / 3) 4 (2 / 2) 0 (0 / 0) 

ANNFS 

n. observed. 56 (45 / 11) 11 (7 / 4) 2 (1 / 1) 

n. predicted. 34 (31 / 3) 7 (4 / 3) 2 (1 / 1) 

predicted % 60.7 (68.9 / 27.3) 64.7 (57.1 / 75.0) 100.0 (100.0 / 100.0) 

a.w.t. (min) 35.9 (36.4 / 30.0) 22.9 (22.5 / 23.3) 45.0 (30.0 / 60.0) 

a.p.d. (min) 0.0 (0.3 / -3.3) 5.7 (15.0 / -6.7) 5.0 (20.0 / -10.0) 

false alerts 16 (10 / 6) 2 (1 / 1) 0 (0 / 0) 

ANNFL 

n. observed. 56 (45 / 11) 11 (7 / 4) 2 (1 / 1) 

n. predicted. 36 (32 / 4) 9 (5 / 4) 2 (1 / 1) 

predicted % 64.3 (71.1 / 36.4) 81.8 (71.4 / 100.0) 100.0 (100.0 / 100.0) 

a.w.t. (min) 71.4 (69.7 / 85.0) 73.3 (98.0 / 42.5) 100.0 (70.0 / 130.0) 

a.p.d. (min) 8.9 (8.4 / 12.5) 5.6 (2.0 / 5.0) 15.0 (30.0 / 0.0) 

false alerts 15 (5 / 10) 2 (2 / 0) 0 (0 / 0) 
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in this case study is to guarantee that accurate alerts 
are sent sufficiently in advance, allowing operators to 
act promptly. Therefore, the performances of the 
selected ANNs were also evaluated according to the 
metrics defined in Table 2 (please note that values 
outside brackets refer to the whole datasets, while 
first and second values in brackets refer to calibration 
and validation sets, respectively).   For each ANN, the 
total number of observed crossings of the defined 
threshold values (70, 100 and 140 cm at gz_lt02; 2.5, 
3.5 and 4.5 m3/s at ml01) is displayed, along with the 
number of corresponding predictions and related 
percentages of correctly predicted crossings. Given 
the DSS updating frequency, observed crossings can 
be forecasted with an anticipation varying (with a 10-
minute resolution) from 60 to 10 minutes for ANNLS 
and ANNFS and from 140 to 10 minutes for ANNLL and 
ANNFL. A crossing is considered predicted if it is 
signalled to occur at least once in the available 
forecasting horizon. Two other parameters that were 
evaluated are the average warning time (a.w.t. in 
Table 2), i.e. the mean anticipation corresponding to 
the first alert of impending crossing, and the average 
prediction delay (a.p.d. in Table 2), indicating the 
accuracy of the prediction timing. As an example, if 
the DSS first signals an impending crossing by 
warning that it will happen after 40 minutes, but the 
actual crossing is observed after 30 minutes, then the 
warning time is 30 minutes and the prediction delay 
is 10 minutes. Finally, the number of false alerts is 
shown. In contrast to correct crossing predictions, an 
alert is considered false if there is no actual crossing 
at any time step of the forecasting horizon.  

From Table 2 it is possible to see that all the ANNs 
can predict the majority of the most severe gz_lt02 
level occurrences: threshold 3 crossings are predicted 
three times on four occurrences, with the missed 
prediction referring to a validation event. The 
validation set comprises only two crossings of the 
higher threshold and the prediction percentage is 
50%, but more data would be necessary to better 
assess the performance. All the lower threshold 
crossings are  predicted, while some are missed for 
the intermediate one, and for both the performances 
on the calibration and validation sets are comparable. 
The average warning time ranges between 
approximately 25 and 40 minutes for short-term 
predictions, while the use of nowcasting information 
allows to increase the forecast anticipation to 
approximately 2 hours. The absolute value of the 
average prediction delay is generally lower than 10 
minutes, the only higher value being the -20 minutes 
delay obtained for ANNLL with respect to the two 
predicted Threshold 2 crossings in  the validation set 

(i.e. the signalled crossing times are, on average, 20 
minutes early with respect to the actual ones). As 
regards sewer flow predictions, they are again slightly 
outperformed by level forecasts. This may be due to 
observed ml01 flows during rainfall events being less  
 

 
Figure 3: ANNLS envelop of level forecast for a validation 
event. 
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regular with respect to those of the VG level. The 
highest flow threshold crossings are always predicted, 
even if they occur just once in the calibration events 
and once in the validation events. The average 

warning time and prediction delay are comparable to 
the ones obtained for level forecasts. All models 
generate some false alerts, especially for the lowest 
threshold, while never for the highest one. 

 
Figure 4: Level 3 crossing prediction efficiency from 140 to 10 minutes before the first occurrence during a validation event. 
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Some examples of the prediction performance on a 
severe event in the validation set, during which all the 
thresholds are crossed, are shown in Figures 3 and 4. 
Figure 3 shows, for all the short-term prediction 
horizons, the envelop of the forecasted level vs the 
observed one. Figure 4 shows, for the same event, a 
sort of “snap-shot” of the User Interface (UI) from 140 
to 10 minutes prior to the first crossing of the L3 
threshold. As in the actual UI described in next section, 
the time axis spans from 120 minutes prior to the 
current time to 180 minutes after. Measured and 
forecasted rainfalls and levels are shown. The observed 
future level is also shown for comparison purpose. As 
it can be noticed, the first alert is given 110 minutes 
before the actual crossing, thanks to the long-term 
predicting ANN (red line), even if the crossing is 
signalled to occur within 120 minutes. 80 minutes 
before the crossing, the amount of expected level 
becomes more reliable. The short-term prediction (blue 
line) raises above L3 only 30 minutes before the 
crossing. Indeed, up to 40 minutes before the crossing, 
the amount of measured rainfall is still quite low, and 
consequently ANNLS predicts just a small level raise. 
The considerable rainfall intensity increase that is 
measured 30 minutes before the crossing is finally 
allowing ANNLS to predict a steep raise of gz_lt02 level. 
This example underlines the importance of nowcasting 
information, that permits to have alerts of incoming 
critical events with a reasonable advance. 

3.2 User Interface 

The DSS was designed to provide a comprehensive 
view of the sewerage network, with a particular focus  
 

on the two key parameters defined in section 2. Thus, 
a UI was created. Specifically, it was developed as a 
QGIS plugin, to allow further improvements using 
georeferenced data. Weights and biases were 
extracted from the selected ANNs allowing to write 
real-time running forecast algorithms   consisting in 
in linear algebra operations on matrices. These 
algorithms, together with all the other necessary 
scripts running behind the DSS, were developed 
through the Python language. All measured and 
processed data are stored in the DSS database. From 
there, data are picked to be shown in the User 
Interface. In particular, the UI (Figure 5) shows 
directly measured quantities (e.g. current values of 
levels along the VG channel, VF gate openings, 
flows) together with derived quantities (as for 
example the estimated CSO downstream ml01 that, 
given the difficulty in placing a meter due to 
morphological issues, was estimated by means of 
water mass balance between the collector flow and 
the internal WWTP flow during rainfall events). The 
UI also can display the results of simulations of the 
VF channel behaviour using different mitigation 
strategies, as explained later on. The main section is 
dedicated to the visualization of the VG levels at 
gz_lt02 (blue lines) and ml01 discharge (orange lines) 
as recorded for the past 6 hours (continuous lines) and 
predicted for the next 60 minutes (dashed lines) or 
140 minutes (dotted lines). Above the main plot, the 
current and suggested openings for the 5 operable 
gates (labelled as Nr.2, Nr.10, Nr.14A, Nr.14B, and 
Nr.15 in the UI) is also shown. The gate-opening 
strategy is driven by the measured VG level at 
gz_lt02. The three threshold values defined for the 
 

 
Figure 5: User Interface in the QGIS plugin. 
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Figure 6: Real-time Grafana visualization dashboard. 

VG level (L1=70 cm, L2=100 cm, L3=140 cm) 
trigger four different combinations of suggested gate 
openings (namely “A”, “B”, “C” and “D” in the UI) 
that are characterized by an increasing quantity of 
spilled water and storage area usage, resulting in a 
decreasing discharge into the VG channel until it is 
completely blocked in case most  severe events. The 
suggested strategy is highlighted in yellow and the 
current openings are highlighted in green or red, 
depending on whether they are in accordance or not 
with the proposed ones, with a 5 cm tolerance. At this 
first stage, the suggested strategies are based on the 
long-time experience of the WWTP technicians. 
However, the “Simulation” section of the UI, below 
the main plots, embeds a physically-based HEC-RAS 
hydraulic model of the VF (not discussed here for the 
sake of brevity) that can be executed between two 
selected timestamps using past boundary conditions. 
Thus, by changing the threshold values of the VG 
level or the suggested gate openings, ex-post analyses 
can be performed with the final aim of assessing the 
goodness of the adopted strategies or detecting more 
efficient parameter combinations.  

The described UI, allowing to change the DSS 
parameters, is thought to be used by expert operators. 
In addition, for all other operators, a visualization-
only UI was developed through the Grafana platform. 
It allows data visualization on desktop and mobile 
devices and is composed of three dashboards, the 
main one showing the current system status (Figure 
6), another showing past data in a selected time 

interval and the last showing “snap-shots” of the main 
dashboard plots at a selected past timestamp. 

4 DISCUSSION 

The results presented in Section 3 indicate that the 
developed DSS is already able to give useful insights 
to the WWTP operators and to help them in managing 
potentially critical events.  

The real-time monitoring of measured quantities 
gives useful advice to the operator: when the crossing 
of a threshold level happens, the flood wave takes 
some time (approx. 30 to 90 minutes) to reach the 
overflow point, allowing for a timely intervention to 
mitigate the risk of overflows. Furthermore, the 
system status forecast provides operators with 
additional information, guiding them in taking the 
proper decision. As an example, if an alert in the UI 
suggests a specific strategy related to measured 
gz_lt02 threshold crossing, but the forecast is 
showing that level is going to decrease soon after, the 
operator may decide not to adopt any mitigation 
strategy. On the contrary, forecasts of incoming 
critical conditions allow to be ready and possibly 
anticipate the mitigation manoeuvres. The average 
warning time is in fact sufficient for operators to be 
ready to adopt proper risk mitigation strategies. In 
particular, the most critical events are predicted with 
an average warning time of approximately 30 minutes 
based on observed rainfall only, while nowcasting 
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allows for an alert anticipation greater than 100 
minutes. The prediction timing is fairly accurate, in 
particular for VG level variation, with an average 
delay almost always lower than 10 minutes. Based on 
these considerations, the implemented ANNs can be 
considered helpful tools in the developed DSS. 

However, since this is a first stage project, several 
improvements may be implemented. First, the ANNs 
performance may be enhanced as long as more data 
become available, being all collected in the DSS 
database. Also, different ANN structures may be 
implemented. Recurrent neural networks as the Long 
Short-Term Memory (LSTM) ones (Hochreiter and 
Schmidhuber., 1997) are particularly suited in 
modelling time series and an attempt could be made 
using such ANN architecture. Given the DSS 
structure, such an operation would not be 
complicated. New ANNs can be trained offline, then 
if better performances are gained the scripts may be 
easily adjusted. Moreover, at the current stage it was 
decided not to use a testing set to evaluate the ANNs 
performance. The future availability of more records 
will allow to perform analyses on unseen data. 

Another aspect that should be investigated is 
related to rainfall forecasts. As already said, 
nowcasting allows to generate alerts with a 
reasonable advance. However, in the present study 
measured rainfalls were used also as predicted ones, 
in a perfect forecast hypothesis. Obviously the actual 
nowcasting information could be less accurate and the 
effects on level and flow predictions should be 
evaluated. This is why it was chosen to keep also the 
short-term ANNs in the DSS, as they rely on 
measured data which are not affected by 
uncertainties.  

As regards the risk mitigation strategies, they are 
currently suggested in the UI based on the level of the 
receiving channel. The four different gate openings 
combinations, associated to three VG thresholds 
levels, have been discussed with the WWTP 
technicians and at this stage are still based on their 
long-time experience. However, the hydraulic model 
integrated in the DSS allows operators to perform ex-
post simulations, assessing the effectiveness of the 
adopted strategy or evaluating the effects of different 
gate openings or different threshold levels. On this 
basis, the predefined suggested strategies may be 
easily changed by expert operators directly in the UI. 
Future developments will include the integration of 
multi-objective optimization functionalities in the 
system, benefitting from the detailed information that 
will become available in the database, in order to face 
conflicting objectives as the need of sending as much 
water as possible to the receiving body while 

minimizing the chance of overflows, eventually 
obtaining case-specific threshold levels and gate 
openings combinations. For example, the premature 
filling of the storage area may produce negative 
effects during successive intense rainfalls, and 
unnecessary lateral spills may result in exceeding the 
allowed discharge in surrounding rural channels. 
Such improvements could be achieved by integrating 
real-time execution of the hydraulic model, 
performing simulations based on forecasted variables 
and different sets of threshold levels and gate 
openings: optimization algorithms will eventually 
determine the best combination to face the incoming 
events. Finally, when a considerable amount of 
available data will allow to accurately understand and 
model all the hydraulic processes, the VF gates could 
be provided with automated actuators in order to 
implement a Real Time Control System. 

5 CONCLUSIONS 

The case study presented in this paper illustrates a 
smart infrastructure project, specifically the design of 
a DSS platform able to provide real-time monitoring, 
weather nowcasting and forecasts on the status of 
some key variables, in the context of managing a 
medium-size city wastewater treatment plant. With 
respect to the state of the art, a simplified approach 
for modelling hydraulic variables based on Artificial 
Neural Networks is proposed.  

Data are acquired with a 10-minute frequency 
from a network of sensors and are stored in a single 
database that hosts heterogeneous variables, some of 
which are used to perform run-time analyses using 
ANNs. These are trained based on past events and can 
be updated as more data become available. The 
update procedure can be performed “offline”, this 
being an important feature of the system design as, 
once implemented and calibrated under certain 
assumptions, it would be possible to improve the 
performance and/or adapt the algorithms to different 
conditions without any substantial revision of the 
software architecture. Moreover, an automated 
update procedure can be foreseen in future 
improvements of the proposed system: a script 
reading the database with an imposed frequency – e.g. 
twice a year – could then process the new acquired 
data, add them to the training dataset and perform 
again the training procedure, replacing the matrices if 
better results are gained.  

The DSS was implemented to provide support for 
a WWTP with the twofold objective of monitoring 
the inlet flow to the plant and reducing the chance of 
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overflow during severe rainfall events. The system 
management is further aided by forecasts shown in 
the plot window, which provide additional 
information about the forthcoming behaviour of key 
variables, as predicted by ANNs. 

When dealing with Smart City projects, several 
challenges arise. It is important to lower the design 
and operational costs to increase the probability of 
implementation. The handling of heterogeneous data 
from multiple sources, the analysis of Big Data and 
security-related issues are also to be considered (Silva 
et al., 2018). The proposed approach, fulfilling these 
requirements, is a valuable step in guaranteeing safety 
in a Smart City context and can be in principle 
replicated and applied in all those settings where 
measurements from different sensors over large areas, 
meteorological data, and in general any quantitative 
information needs to be processed to provide 
synthetic outputs for the final user.  
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