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Abstract: Multi-agent multi-target search problems, where the targets are capable of movement, require sophisticated 
algorithms for near-optimal performance. While there are several algorithms for agent control, comparatively 
less attention has been paid to near-optimal target behaviours. Here, a state-of-the-art algorithm for targets to 
avoid a single agent called TrailMax has been adapted to work within a multiple agents and multiple targets 
framework. The aim of the presented algorithm is to make the targets avoid capture as long as possible, if 
possible until timeout. Empirical analysis is performed on grid-based gaming benchmarks. The results suggest 
that Multiple Pursuers TrailMax reduces the agent success rate by up to 15% as compared to several 
previously used target control algorithms and increases the time until capture in successful runs. 

1 INTRODUCTION 

Search algorithms have been developed and studied 
for a long time. The basic scenario is that of a single 
agent that is tasked with finding a target or goal 
state on a graph within minimal time. Various 
assumptions of this scenario can be relaxed, leading 
to more difficult problems: there can be several 
agents that need to coordinate their search, there can 
be multiple targets, all of which need to be caught, 
and targets can move on the graph over time rather 
than be in a fixed position. 

Many suitable algorithms have been proposed for 
pursuing agents in the domains of video and computer 
games, robotics, warehouses (Li et al., 2020), and 
military and surveillance applications (Panait & 
Luke, 2005). Some of these algorithms are for single 
agent, such as MTS  (Ishida, 1992), D* Lite (Koenig 
& Likhachev, 2002) or RTTES (Undeger & Polat, 
2007) and some are multi-agent, for example, FAR 
(Wang & Botea, 2008), WHCA* (Silver, 2005),  CBS 
(Sharon, Stern, Felner, & Sturtevant, 2015) and 
MAMT (Goldenberg, Kovarsky, Wu, & Schaeffer, 
2003). These algorithms aim to find the shortest path 

                                                                                                 
a  https://orcid.org/0000-0002-1456-542X 
b  https://orcid.org/0000-0002-5139-6565 
c  https://orcid.org/0000-0001-6048-6856 
d  https://orcid.org/0000-0002-4890-5648 

to the target location(s). While the shortest path is 
important, the run time is essential, too, as considered 
by real-time heuristic algorithms (Loh & Prakash, 
2009).  

For scenarios with moving targets, the target 
algorithms also play an essential role in developing 
multi-agent scenarios, but they are less studied. The 
goal of such algorithms is to evade capture as long as 
possible. 

Consider a pursuit and evasion game, where 
agents could be humans or computer controlled. To 
make the game more interesting, intriguing, and 
challenging, the targets need to behave intelligently. 
Therefore, good target algorithms are an essential 
factor of improving the gaming experience. 

Existing target algorithms usually have strategies 
such as maximising the escaping distance (Xie, 
Botea, & Kishimoto, 2017), random movements to a 
selected, unblocked positions in order to evade from 
the capturer (Pellier, Fiorino, & Métivier, 2014) or, in 
a state of the art approach called TrailMax, 
maximising the survival time in the environment 
(Moldenhauer & Sturtevant, 2009).  

Multi-agent path finding (MAPF) problems have 
been analysed in detail in the literature (Sigurdson, 
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Bulitko, Yeoh, Hernández, & Koenig, 2018), and are 
known to be NP-hard (Li et al., 2020). As an example 
of such a problem, in a video game, all non-player 
agents may need to navigate from a starting location 
to the goal location on a conflict free route in a static 
or dynamic environment (Chouhan & Niyogi, 2017).  

Good algorithms for moving targets can make the 
empirical study of MAPF problems more meaningful 
and challenging. So how can we improve on existing 
ones? This paper introduces an algorithm based on 
TrailMax that can be used for multiple moving targets 
to escape from multiple agents in a dynamic 
environment. 

In the remaining parts of this paper, Section 2 
presents the related work. Section 3 describes the new 
approach to the problem. Empirical comparisons are 
described in Section 4, and conclusion is derived in 
Section 5. 

2 RELATED WORK 

This section introduces several existing target 
algorithms in the literature. The following is a brief 
description of each algorithm.  

2.1 Target Algorithms 

Although there is plenty of research in the literature 
emphasising algorithms for pursuing agents, there are 
few studies that are conducted on algorithms for 
mobile targets. A classic example is the A* algorithm, 
which is implemented for many pursuing agent and 
target algorithms (Sigurdson et al., 2018).  

2.1.1 TrailMax 

TrailMax is a strategy-based algorithm that generates 
a path for a target considering the pursuing agent’s 
possible moves, i.e. it efficiently computes possible 
routes by expanding its position nodes and agent’s 
nodes simultaneously (Moldenhauer & Sturtevant, 
2009). The aim of the TrailMax algorithm is to make 
the targets stay longer by maximising the capture 
time. To compute a path, an escape route that 
maximises the intersection point, it checks the best 
cost of the neighbouring states against the pursuer’s 
costs and expands nodes accordingly. The algorithm 
expands nodes that are not yet expanded, not in the 
target’s list and not in the pursuer’s list. The node 
with the best cost is added to the target’s list, which 
would generate the path afterwards.  

It is a state-of-the-art target strategy algorithm that 
performs the best against pursuing agents, aiming to 

make the targets less catchable or more difficult to be 
caught (Xie et al., 2017).  

2.1.2 Minimax 

When used as the target algorithm, it runs an 
adversarial search that alternates moves between the 
agents and the target, where the agent gets closer to 
the target state and the target distances itself from the 
pursuing agent’s state. To make the algorithm faster, 
Minimax is run with alpha-beta pruning search, 
where alpha (α) and beta (β) are constantly updated to 
avoid the exploration of suboptimal branches 
(Bulitko & Sturtevant, 2006). The used depth is 5, i.e., 
the outcomes after at most 5 moves of each party are 
considered. 

2.1.3 Dynamic Abstract Minimax 

Dynamic Abstract Minimax (DAM) is a target 
algorithm that finds a relevant state on the map 
environment and directs the target using Minimax 
with alpha-beta pruning in an abstract space. The 
search starts on the highest level of abstraction, an 
abstract space created from the original space. If there 
is a path, then an escape route is computed using 
PRA* (see Section 2.2). If the target cannot escape 
and there is no available move to avoid the capture on 
the selected abstract space, then the level of 
abstraction is decreased and the whole process repeats 
until the target can successfully run away from being 
caught (Bulitko & Sturtevant, 2006).  The used depth 
is 5. 

2.1.4 Simple Flee 

Simple Flee (SF) is another algorithm that can be used 
by targets to escape from the pursuing agents (Isaza, 
Lu, Bulitko, & Greiner, 2008). The SF algorithm 
works as follows. In the beginning of the search, the 
target identifies some random locations on the map. 
When the target starts moving, it navigates to the 
furthest location away from the pursuers. To disorient 
the pursuing agents, the direction towards the selected 
location changes in every five steps, and if it is the 
furthest location, it keeps moving. The number of 
locations on the map and the number of steps before 
the change are the parameters of the algorithm. 

2.2 Pursuing Algorithm 

This study sets out to develop a new multiple target 
algorithm. Therefore, this part of the section 
introduces only one algorithm for pursuing agents, 
which will be used in the experiments.  
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Partial-Refinement A* (PRA*) is an algorithm 
that reduces the cost of search by generating a path on 
an abstract level of the search space. These abstracted 
spaces (graphs) are built from the grid map. The 
abstract level is selected dynamically. The A* 
algorithm is then used to run a search with sub-goals 
on the abstract graph. The abstract path creates a 
corridor of states in the actual search space, through 
which the optimal path is found .  

This is a widely used approach and its variations 
have been described with different search techniques 
(Sturtevant, Sigurdson, Taylor, & Gibson, 2019).  

3 PROPOSED APPROACH 

In the following section, a new target algorithm is 
described. First, the motivation will be given for the 
algorithm. The pseudo code (see Figure 1) provides 
more details. 

When the problem was described in Section 1, it 
was stated that a smart target algorithm is very useful 
to have. In the simple scenarios where one agent 
pursues a target, the target would know from which 
agent it needs to escape, as there is only one. Some of 
the strategies to run away from the agent have been 
discussed in the previous sections. But if we consider 
a situation where multiple targets need to escape from 
the current state and move to the safest destination in 
the dynamic environment, how would targets know 
which agent they need to avoid for a successful run? 

Although the TrailMax algorithm, as introduced 
in Section 2.1.1, is the state-of-the-art algorithm, it 
has been designed to work with only one agent, 
meaning a target does not have any strategy to escape 
from one pursuer and avoid another approaching 
pursuer at the same time. 

For this particular reason, a target algorithm that 
would be able to identify approaching multiple agents 
and escape from all pursuers, a novel algorithm, 
called Multiple Pursuers TrailMax (MPTM), is 
developed. 

The MPTM algorithm uses a similar methodology 
as TrailMax but enhanced for MAPF problems. There 
are two important reasons for implementing MPTM 
algorithm in MAPF problems. First, it can identify the 
state location of other targets and collaborate with 
them. Second, it can ensure the escape not only from 
one pursuing agent, but from any approaching 
evading agents. Here the focus is on the second issue. 

The pseudo code for the MPTM algorithm is 
depicted in Figure 1. First, the current locations of all 
pursuers and targets need to be initialised. The next 
step is to sort all players according to their role and 

insert into the relevant lists, all pursuers to the 
pursuer_node_list and a target to the 
target_node_list. At this point all players will have a 
cumulative cost of zero. To make it easier to follow 
the code, each movement cost will be equal to one, 
unless it is in wait action, then it is zero. This is with 
an assumption that there is no octile distance. 

Since this is the target algorithm, it starts first to 
check if there are any target nodes in the 
target_node_list. Then, it finds the best cumulative 
cost c, the highest value, for target and pursuer at line 
7 and 8. If the ct is lower or equal to the cₐ, then the 
target expands its nodes. The expansion of nodes is 
computed simultaneously for target and pursuing 
agents. During the expansion of nodes, each side 
marks nodes as visited and insert into the closed lists, 
line 12 and 20.  

The main part of this algorithm are the lines in 
between 13-22, where each pursuer loops through its 
state and expands its nodes independently from other 
pursuers. The closed nodes list for the target is 
reversed to identify the route. This expansion goes to 
the point where one of the pursuing agents occupies 
the node of the target. 

 
Figure 1: Pseudo code for the MPTM algorithm. 
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For multiple targets, the algorithm is run on each 
target, and normally, each will get a different 
outcome based on their location. The result will be the 
same if they are all in the same state. Even if the 
starting position is different, the targets could join 
their path if that is the optimal option.  

4 EMPIRICAL EVALUATION 

In this section the empirical results will be presented 
to demonstrate the efficiency of the proposed 
algorithm. First, the experimental setup will be 
described, then, performance results of the MPTM 
algorithm described in Section 3 will be reported.  

4.1 Experimental Setup 

For better comparability, standardised grid-based 
maps from the commercial game industry are used as 
a benchmark (Stern et al., 2019). The environments 
used are four maps from Baldur’s Gate video game as 
shown in Table 1. Within the experiments, these maps 
are used with a four-connected grid and impassable 
obstacles. Figure 2 displays a sample map used for the 
experiments, where black coloured spaces are the 
obstacles, and the white space is a traversable area. 
The maps were chosen based on the presence of 
obstacles and difficulty of navigation. The movement 
directions could be up, down, left and right with a cost 
of one each. That said, the approach should work with 
different moving costs as well. 

 
Figure 2: The experimented sample map (AR0607SR) used 
in the Baldur’s Gate video game.  

 

Table 1: The name of testbeds for the experiments with their 
height and width sizes. 

Map names Height x Width 
AR0607SR 54x60 
AR0514SR 64x64 
AR0313SR 64x60 
AR0417SR 54x52 

The scenario chosen for the first tests is to have two 
targets and twice the number of pursuing agents. The 
second set of tests has the number of targets increased 
by one. The last configuration increases pursuing 
agent number to six versus three targets. All players 
are placed at different pre-selected random locations 
on each map. Altogether there were five different sets 
of starting positions. Only the first set has all pursuers 
in the same location and all targets in the same 
location, and targets are positioned in far distance 
from pursuers. This helps to analyse the behaviour of 
the algorithms.  

Each configuration runs 30 times. The 
implementation of the simulation (Isaza et al., 2008) 
is developed using C++. The simulation was 
developed for a single target scenario and it was 
modified so that the tasks with multiple targets and 
assignment strategy for pursuing agents could be 
tested.  The results were obtained using a Linux 
machine on Intel Core i7 with 1.9 GHz CPU and 
RAM with 40 GB. 

4.2 Experimental Results 

The section below reports the results from the 
experiments. Performance analysis is conducted with 
respect to two key indicators; (i) the number of steps 
taken for each target algorithm before being caught 
and (ii) its success rate. Both of the measurements are 
averaged considering all targets. 

During the experiments, some pursuers could 
catch one target but miss the second one, and because 
the search is not finished yet, the chase continues. 
Success is achieved when both targets are caught, and 
the number of steps until all targets have been caught 
is recorded. 

4.2.1 Pathfinding Cost 

To evaluate the MPTM algorithm the comparison 
with SF and Minimax is displayed in Table 2. This 
measures the performance in terms of number of steps 
for all targets. The numbers indicate the means of 
steps by target algorithms per map.   

It is seen from Table 2 that the proposed target 
algorithm offers much longer stay on the maps. This  
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Table 2: The average number of steps for each target 
algorithm per map for each set of configurations. Larger 
number is better as it avoids the capture from the pursuing 
agents.   

 SF Minimax MPTM 
 4 pursuers versus 2 targets 

 AR0607SR 66.59 139.01 206.83 
AR0514SR 46.55 62.04 142.82 
AR0313SR 57.61 116.07 317.66 
AR0417SR 46.32 173.16 260.52 

 4 pursuers versus 3 targets 
 AR0607SR 78.21 181.06 331.61 
AR0514SR 61.68 87.09 153.13 
AR0313SR 65.99 139.84 344.91 
AR0417SR 50.81 178.42 228.92 

 6 pursuers versus 3 targets 
 AR0607SR 72.76 137.85 325.59 
AR0514SR 66.59 85.33 88.55 
AR0313SR 62.45 133.57 237.05 
AR0417SR 47.82 171.07 197.83 

indicates that it avoids capture and demonstrates 
smarter decisions. The higher number is better.  

In the scenario, when the target number increases 
to three versus four pursuing agents, usually the 
targets manage to avoid capture longer in comparison 
with the first set of tests. In the cases where the 
number of pursuing agents are increased to six, 6 
pursuers versus 3 targets, this predominance gives 
greater advantage to the pursuers and makes it 
difficult for targets to escape. Therefore, targets might 
get caught quicker. 

The evidence shows that the new MPTM 
algorithm outperforms SF and Minimax algorithms in 
number of steps in all test configurations. 

4.2.2 Success Rate 

Success for the agents is achieved when a pursuing 
agent gets to the position of the target. In the multi-
target scenarios, success is achieved when all targets 
have been captured. For the target(s), success is the 
absence of agent success. The success of the target 
algorithm is shown in Figure 3. There are three 
different graphs based on the number of players that 
are set for each test configuration. 

From these graphs in Figure 3, the SF algorithm 
performs the worst, and it always gets caught by 
pursuing agents. Minimax shows better results in 
comparison with SF, although it has the cases where 
it gets caught 100%.  Minimax is slightly worse than 
the MPTM algorithm on the AR0514SR map (4 vs 2) 
and on the AR0417SR map (4 vs 3) but performs 
better and escape longer only on one occasion, the 
AR0417SR map (6 vs 3). It is possible to say, the 

MPTM algorithm performs better than Minimax in 
most of the configurations and displays excellent 
results in some of these, but on the AR0417SR map 
with six pursuers and three targets, it performs 
approximately equal to Minimax. 

The behaviour of the MPTM algorithm is better 
on the maps that have obstacles that could be 
navigated around, for example the map illustrated in 
Figure 2. These types of maps may be suitable for 
adaptive target algorithms as they offer opportunities 
for escape but may be difficult for the pursuing agent 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3: The performance rate of success for SF, Minimax 
and MPTM target algorithms, lower is better. (a) displays 
the results for 4 pursuers versus 2 targets, (b) is for 4 
pursuers versus 3 targets and (c) is for 6 pursuers versus 3 
targets. 
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algorithms if they do not have strategies such as the 
trap strategy (John, Prakash, & Chaudhari, 2008). The 
maps AR0514SR and AR0417SR have dead-ends or  
blind alleys and thus make it more difficult to find an 
escape route, leading to lower target performance on 
these maps. 

The results clearly show that the new target 
algorithm, MPTM, performs far better in all of these 
simulations on the gaming maps used for 
benchmarking. 

With the better algorithms, pursuing agents 
sometimes fail to catch the targets although these are 
outnumbered. They might catch one target but fail to 
catch the other, or keep following the target, or end in 
a deadlock until timeout. 

The result of this study indicates that the MPTM 
algorithm exceeds expectations and, on average over 
all maps, shows a success rate 9% and 15% better 
then Minimax and SF, respectively. 

5 CONCLUSION AND FUTURE 
WORK 

The aim of this paper was to develop and study a 
target algorithm in MAPF problems. There have been 
many interesting studies done on search algorithms 
and among of them are solutions to the MAPF 
frameworks. Only several studies have been 
conducted on target algorithms, especially in the area 
where there are multiple targets.  

The investigation shows that TrailMax is a 
successful algorithm for control of targets if extended 
for dealing with multiple agents. This study proposes 
amendments, first time, to TrailMax strategy 
algorithm as a state-of-the-art approach modifying 
and enhancing its scope to meet the criteria for 
multiple targets in the dynamic environment. 

This new MPTM algorithm is applicable to 
moving targets and the success of having a smart 
method makes fast pursuing search algorithms to 
timeout. The results of this study demonstrate that the 
target algorithms are equally important in comparison 
to pursuer algorithms, and that makes the search more 
challenging and interesting. 

Future studies should also look at computation 
time and how it could be improved. A more 
systematic approach would also study how the 
algorithm behaves on different testbeds and with 
different agent configurations, including those with a 
larger number of players. The comparison with other 
pursuing multi-agent algorithms would be useful.  

REFERENCES 

Bulitko, V., & Sturtevant, N. (2006). State abstraction for 
real-time moving target pursuit: A pilot study. 
Proceedings of AAAI Workshop on Learning for 
Search, WS-06-11. pp. 72-79.  

Chouhan, S. S., & Niyogi, R. (2017). DiMPP: A complete 
distributed algorithm for multi-agent path planning. 
Journal of Experimental & Theoretical Artificial 
Intelligence, 29(6), 1129-1148.  

Goldenberg, M., Kovarsky, A., Wu, X., & Schaeffer, J. 
(2003). Multiple agents moving target search. IJCAI 
International Joint Conference on Artificial 
Intelligence, pp. 1536-1538.  

Isaza, A., Lu, J., Bulitko, V., & Greiner, R. (2008). A cover-
based approach to multi-agent moving target pursuit. 
Proceedings of the 4th Artificial Intelligence and 
Interactive Digital Entertainment Conference, AIIDE 
2008, pp. 54-59.  

Ishida, T. (1992). Moving target search with intelligence. 
Proceedings Tenth National Conference on Artificial 
Intelligence, pp. 525-532.  

John, T. C. H., Prakash, E. C., & Chaudhari, N. S. (2008). 
Strategic team AI path plans: Probabilistic pathfinding. 
International Journal of Computer Games Technology, 
2008, 1-6.  

Koenig, S., & Likhachev, M. (2002). D* lite. Proceedings 
of the National Conference on Artificial Intelligence, 
pp. 476-483.  

Li, J., Gange, G., Harabor, D., Stuckey, P. J., Ma, H., & 
Koenig, S. (2020). New techniques for pairwise 
symmetry breaking in multi-agent path finding. 
Proceedings International Conference on Automated 
Planning and Scheduling, pp. 193-201.  

Loh, P. K. K., & Prakash, E. C. (2009). Novel moving target 
search algorithms for computer gaming. Computers in 
Entertainment, 7(2), 27:1-27:16.  

Moldenhauer, C., & Sturtevant, N. R. (2009). Evaluating 
strategies for running from the cops. IJCAI 
International Joint Conference on Artificial 
Intelligence, pp. 584-589.  

Panait, L., & Luke, S. (2005). Cooperative multi-agent 
learning: The state of the art. Autonomous Agents and 
Multi-Agent Systems, 11(3), 387-434.  

Pellier, D., Fiorino, H., & Métivier, M. (2014). Planning 
when goals change: A moving target search approach. 
12th International Conference on Advances in 
Practical Applications of Heterogeneous Multi-Agent 
Systems: The PAAMS Collection, 8473. pp. 231-243.  

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. 
(2015). Conflict-based search for optimal multi- agent 
pathfinding. Artificial Intelligence, 219, 40-66.  

Sigurdson, D., Bulitko, V., Yeoh, W., Hernández, C., & 
Koenig, S. (2018). Multi-agent pathfinding with real-
time heuristic search. Paper presented at the 14th IEEE 
Conference on Computational Intelligence and Games 
(CIG), 2018-August. pp. 1-8.  

Silver, D. (2005). Cooperative pathfinding. Proceedings of 
the First AAAI Conference on Artificial Intelligence 

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

442



and Interactive Digital Entertainment (AIIDE'05), 
Marina del Rey, California. pp. 117-122.  

Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., 
Walker, T. T., et al. (2019). Multi-agent pathfinding: 
Definitions, variants, and benchmarks. Paper presented 
at the Proceedings of the 12th International Symposium 
on Combinatorial Search, SoCS 2019, pp. 151-158.  

Sturtevant, N. R., Sigurdson, D., Taylor, B., & Gibson, T. 
(2019). Pathfinding and abstraction with dynamic 
terrain costs. Paper presented at the Proceedings of the 
15th AAAI Conference on Artificial Intelligence and 
Interactive Digital Entertainment, AIIDE 2019, pp. 80-
86.  

Undeger, C., & Polat, F. (2007). RTTES: Real-time search 
in dynamic environments. Applied Intelligence, 27(2), 
113-129.  

Wang, K. -. C., & Botea, A. (2008). Fast and memory-
efficient multi-agent pathfinding. ICAPS 2008 - 
Proceedings of the 18th International Conference on 
Automated Planning and Scheduling, pp. 380-387.  

Xie, F., Botea, A., & Kishimoto, A. (2017). A scalable 
approach to chasing multiple moving targets with 
multiple agents. Proceedings of the 26th International 
Joint Conference on Artificial Intelligence, Melbourne, 
Australia. 0. pp. 4470-4476.  

 

Multiple Pursuers TrailMax Algorithm for Dynamic Environments

443


