
Predictive Maintenance Model based on Asset Administration Shell 

Salvatore Cavalieri a and Marco Giuseppe Salafia b 
University of Catania, Department of Electrical Electronic and Computer Engineering (DIEEI),  

Viale A. Doria, 6, 95125 Catania, Italy 

Keywords: Industry 4.0, Asset Administration Shell, Rami 4.0, Predictive Maintenance, Interoperability. 

Abstract: Maintenance is one of the most important aspects in industrial and production environment. The availability 
of huge amount of data coming from sensors and embedded systems, enabled the realisation of Predictive 
maintenance (PdM). It is an approach that aim to schedule maintenance tasks on the basis of historical data 
before the occurrence of failures, avoiding machine block downs and reducing the costs due to unnecessary 
maintenance actions. The adoption of vendor-specific solutions for predictive maintenance and the 
heterogeneity of technologies adopted in the brownfield for the condition monitoring of machinery reduce the 
flexibility and interoperability required by Industry 4.0. The paper presents a PdM model leveraging on the 
Asset Administration Shell (AAS) introduced in Reference Architecture Model for Industrie 4.0 (RAMI 4.0) 
as a means to enhance interoperability and enabling flexibility and re-configuration of the production against 
a PdM solution. 

1 INTRODUCTION 

Industry 4.0 introduced the application of modern 
Information & Communication Technologies (ICT) 
concepts in industrial contexts to create more flexible 
products and services leading to new business models 
and added value (Liao, 2017; Xu, 2018). This fourth 
industrial revolution features flexible and adaptable 
manufacturing concept to satisfy a market requiring 
an increasing demand of customisation (Panda, 
2018).  

Among the main ICT solutions introduced in the 
Industry 4.0, Industrial Internet of Things (IIoT) 
allows the availability of huge amount of data coming 
from sensors and embedded systems installed in a 
modern plant (Khana, 2019). The Big Data so 
available may be used for several purposes in order to 
improve the performances of the factory. 
Maintenance is of paramount importance since 
avoiding failures is a key requirement in a 
challenging market asking for high efficiency and 
availability. An efficient use of historical data 
collected by IIoT systems consists of predictive 
maintenance (PdM) where maintenance actions are 
scheduled when either a deterioration or a 
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degradation in the performances of the machinery is 
detected by a suitable analysis of historical data. 

Literature presents several PdM solutions 
involving different technologies and approaches, 
from the gathering of data to the prognostics of 
failures. Furthermore, in the context of the fourth 
industrial revolution, lots of different technologies 
and protocols are adopted from the brownfield area 
(i.e. sensors, fieldbuses) to the IT area. The adoption 
of vendor-specific solutions for PdM reduces the 
flexibility and interoperability required by Industry 
4.0. Therefore, the definition of PdM solutions that 
can adapt itself to the variation in the configuration of 
the original production is hard to realise, setting new 
constraints to the flexibility in the smart factory. What 
is required is horizontal integration to hide 
implementation details between devices, regardless 
of both their manufacturer and technologies adopted. 
In this manner, a device can be easily replaced with 
an equivalent one providing the same functionalities. 

In order to satisfy the requirements of 
interoperability and flexibility demanded by industry 
4.0, an approach for the definition of a PdM program 
must address two main objectives: 1) defining generic 
functionalities for the description of a technology-
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independent PdM solution and 2) hiding the 
heterogeneity and complexity of the Operational 
Technology (OT) level. Both the objectives are often 
addressed either separately or partially (Birtel, 2018; 
Lang, 2019; Wollschlaeger, 2015) but, at the best of 
our knowledge, there is no solution facing both 
together. Such objectives are confirmed in Groba et 
al. (Groba, 2007), which analysed the challenges in 
implementing a PdM solution and proposed a PdM 
framework integrating the diversity of different PdM 
techniques. Their framework cope only with 1) but 
they identified that one of the biggest challenges 
consists in describing the shop floor equipment and 
corresponding condition indicators in a uniform 
manner, hence 2). 

The requirements for 2) can be satisfied using the 
concept of the Asset Administration Shell (AAS) 
presented in the Reference Architecture Model for 
Industrie 4.0 (RAMI4.0) (DIN, 2016), which is a 
digital and active representation of an asset, 
containing all its relevant information in a uniform 
and digitalised manner. In particular, in the area of 
production automation, the intention of using AAS 
for future implementation of PdM solutions is 
confirmed in (Platform Industrie 4.0, 2018) where an 
infrastructure consisting of components with uniform 
interfaces is of utmost importance for condition 
monitoring and PdM. 

Authors already adopted the concept of AAS to 
abstract the complexity of plant configuration 
(Cavalieri, 2020a). In this paper, an approach for the 
representation of a PdM solution in terms of generic 
and technology-independent functionalities is 
presented, and the AAS issued mainly in brownfield 
to achieve interoperability among devices. 

2 PREDICTIVE MAINTENANCE 

The approach of PdM consist in detecting the type of 
failure on the basis of the current condition of the 
machine, allowing the organisation of maintenance 
operations to prevent catastrophic failures. PdM is 
also referred in literature as Condition-based 
Maintenance (CBM) since uses actual operating 
condition of the equipment and a model defined using 
historical data to predict the future state of the 
machine (Motaghare, 2018). The foundation of 
predictive maintenance is the Condition Monitoring 
(CM) process (Birtel, 2018), where sensors are 
applied in machinery to continuously monitor signals, 
or other appropriate indicators, to assess the health of 
the equipment (Ahmad, 2012). 

Since there are lots of different techniques and 
approaches involved for the realisation of PdM, in 
this section the main parts composing a generic PdM 
approach will be pointed out. A generic CBM 
program can be divided in three main parts: data 
acquisition, data processing, and maintenance 
decision-making (Jardine, 2006). 

2.1 Data Acquisition 

Data acquisition is the first process of the PdM 
program, and it consists of collecting data directly 
from the physical assets that will be used to evaluate 
the relevant health conditions. Sensors are the 
primary source of information here and the kinds of 
data collected vary case by case depending on the 
machine to be maintained and hence on the sensor 
used. Most of the time, old equipment requires the 
additions of new sensors (Strauß, 2018). 

2.2 Data Processing 

Often data collected are subjected to a pre-process 
step where their volume is reduced (i.e. aggregation) 
to pass only the selected and extracted features (i.e. 
feature extraction) (Strauß, 2018) to the forecasting 
and/or decision-making algorithms. The techniques 
adopted to process and analyse data mainly depend 
on both the types of data collected and the algorithms 
used to reveal the condition of the machine. 

2.3 Maintenance Decision-making 

The techniques adopted for maintenance decision-
making in CBM are classified in diagnostics and 
prognostics. The former deals with finding the source 
of a fault, whilst the latter deals with estimating when 
a failure may occur in future. It follows that 
prognostics is preferred than diagnostics because in 
the first case the failure is tried to be prevented whilst 
in the second case the failure already occurred. Since 
prognostics cannot prevent all faults; diagnostics 
techniques are often used as complementary support 
for prognostics. Furthermore, diagnostics results can 
be used as feedback to improve the accuracy of 
prognostics solutions (Jardine, 2006). 

3 ASSET ADMINISTRATION 
SHELL 

Industry 4.0 involves a massive digitalisation process 
where assets in the physical world must be 
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represented in the information world by means of a 
digital and uniquely identifiable counterpart (DIN, 
2016). RAMI4.0 refers to such an entity with the 
name of AAS. The AAS contains all the information 
relevant to a specific asset, its lifecycle, technical 
functionalities and it can also integrate procedures for 
the integration of sensor data and condition 
monitoring (Infosys, 2018). 

The conjunction of an asset with its relevant AAS 
defines the so-called I4.0-Component (DIN, 2016), 
which refers the concept of Cyber-Physical System 
(CPS) in the context of RAMI4.0 (Tantik, 2017). In 
addition, it features an I4.0-compliant 
communication with the other I4.0-Components in 
the value-chain network.  

The AAS is an abstraction means providing a 
common structure for the information relevant to 
different assets and a common way to exchange and 
access such information (Cavalieri, 2020b), enabling 
the cooperation of assets based on different 
technologies and information models. 

3.1 Structure of the AAS 

From a high-level point of view, an AAS is structured 
as depicted in Figure 1. It is composed by a header 
containing all the information relevant to the 
identification of both AAS and asset, and a Body 
containing all the inherent information of the asset in 
the form of properties and functions (also referred as 
operations) (Platform Industrie 4.0, 2016).  

Asset Identification
AAS Identification

...and others

Administration Shell

Header
BodySubmodel 1 e.g. energy efficiency

Property 1.1
Property 1.1.1
Property 1.1.2

Information

Function

Submodel 2 e.g. positioning mode
Property 2.1

Property 2.1.1
Property 2.1.1.1

Information

Function
Property 2.1.1.2 Function

Submodel 3 e.g. CAD model
Property 3.1

Property 3.1.1
Property 3.1.2

Information (CAD)

Information (CAD)

 
Figure 1: Structure of the AAS. 

Properties are defined as classified and mutually 
independent characteristics of systems that can be 
associated with values (Kampert, 2012). Functions, 
instead, are capabilities and actions that an asset 
performs. Properties and functions are collected 
under so-called sub models, each of which describe a 

specific aspect relevant to an asset, like energy 
efficiency, positioning, documentation, drilling, 
maintenance, among others. 

In November 2019, the initiative Platform 
Industrie 4.0 released an AAS metamodel specifying 
how structure the information inside the AAS. In 
(Platform Industrie 4.0, 2019) the AAS metamodel is 
presented as a UML class diagram, defining all the 
“building blocks” that must be used to structure 
internally the AASs of every possible asset. 

Since the same entities of the metamodel may be 
used to define elements representing different 
concepts (e.g. modelling “height” or “rotation speed” 
as properties), such entities must be semantically 
annotated. Sub models, properties or functions 
composing an AAS contains a special attribute, 
named semanticId, pointing to a semantic definition 
contained in an external semantic repository. The 
term “semantic repository” identifies any sort of 
database or catalogue where the semantic definitions 
reside, like IEC Common Data Dictionary (CDD) or 
eCl@ss. 

AAS is important also to realise of one of the 
main features that an I4.0 Component provides, 
which is “nestability” as discussed in (Kagermann, 
2013). In fact, the AAS of a composite component 
reflects the composition relationship referencing the 
ASSs of its components. 

3.2 AAS Interface 

The AAS is a software entity providing its internal 
information to the external world by means of a 
standardised API. Internal information is structured 
according to the AAS metamodel, as discussed 
previously. The API of an AAS provides a CRUD-
oriented interface, thus data are accessible by a 
communication network so that an external client can 
either retrieve or manage the data of interest making 
simple requests to the relevant AAS. 

In general, RAMI 4.0 do not put any constraints 
about the location of an AAS: it may be embedded 
directly on a smart device or deployed in a completely 
different location, even though a connection with the 
asset may be maintained. 

4 PROPOSAL OF A PREDICTIVE 
MAINTENANCE MODEL 

The model presented in this paper realises a novel 
approach for the definition of a PdM solution in the 
context of the fourth industrial revolution. Such an 
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approach is based on the concept of the so-called 
Logical Block (LB). A LB is a modular element that 
groups functionalities relevant to a specific aspect of 
the PdM. The entire set of the functionalities of a LB 
generalises specific operations for the PdM process, 
regardless of how such operations are actually 
implemented. LBs and their functionalities are meant 
to be modular and cooperating elements in order to 
describe a PdM solution (entirely or part of it) in a 
generic manner without considering implementation 
details. Describing a device in terms of its LB 
functionalities permits the definition of a role for that 
device. Such role identifies a sort of equivalence class 
between all the devices implementing the same 
functionalities. Therefore, this makes the replacement 
of a device with an equivalent one seamless from the 
point of view of the PdM program, without any 
disruptive effect on it. 

Authors decided to use the concept of AAS and 
I4.0 Component to cope with the problem of 
heterogeneity of technologies present at OT level, as 
discussed in the previous sections. The structure of 
the AAS allows the realisation of LBs and their 
functionalities as will be discussed further. The 
common interfaces and the semantically enriched 
information exposed by the AAS make this last the 
foundation of the PdM model here presented. In fact, 
AAS achieves interoperability creating a sort of 
abstraction layer at the lowest level of the production 
infrastructure and thus allows a PdM program to be 
adapted to production reconfiguration. 

The PdM model will be presented following a 
bottom-up approach, starting with the description of 
the most fine-grained elements and ending with the 
high-level view of the model highlighting the 
interactions between its components. 

4.1 Logical Blocks for PdM 

As said before, a Logical Block abstracts all the 
functionalities required for the PdM process, thus 
generalises and modularises the description of the 
PdM solution. In this way, the implementation of 
same functionalities and operations can be done using 
different technologies and approaches but exposed 
with a uniform interface. The LBs here presented 
have been defined considering the common aspects of 
the state of the art of PdM. Figure 2 points out the LBs 
described in the following subsections. 

4.1.1 Data Acquisition 

This LB provides all the functionalities required to 
access data coming from sensors or devices. It 

involves functions like the conversion of the output 
of a transducer to a digital parameter representing the 
physical quantity. Such digital values may be 
enhanced with more quality parameters, like 
calibration or timestamp. 

Data Acquisition
- Get measured values
- Convert analog value
- Set measure unit
- Set sensitivity
- ...

Aggregation
- Calculate mean, rms, etc
- Interpolate values
- Set aggregation params 
- ...

Data Manipulation
- Filter values
- Apply FFT
- Remove noise
- Transform values
- ...

Schedule
- Set maintenance task
- Get task information
- Get maintenance history 
- ...

Status
- Set operating mode
- Set maintenance mode
- Get status log
- ...

Configuration
- Set LBs parameters
- Call LB's operations
- Save/load configurations
- ...

Prediction Model
- Manage model
- Train model (AI) 
- Get forecasts
- Set model parameters
- ...

Maintenance 
Decision-making
- Set decision algorithm
- Create maintenance task 
- Commit technician
- Get decisions history
- ...

 
Figure 2: The LBs implementing generic functionalities 
related to PdM aspects. 

4.1.2 Data Manipulation 

This LB defines all the operations that perform 
analysis on signals and computes meaningful 
descriptors from raw measures, which usually come 
from the LB Data Acquisition (DA). It also performs 
transformations on signals, like filtering or errors 
correction, and applies algorithms for features 
extraction. 

4.1.3 Configuration 

This LB provides an interface exposing parameters 
and management functions for the configuration of 
other data-processing LBs. For instance, some 
configurations for the block DA may include the 
relative position of transducers, monitoring polling 
rates and calibration parameters, among others. Of 
course, parameters and functionalities of LB 
Configuration may be strictly dependant from the 
implementation of the other LBs. For instance, 
considering a block DA implemented using OPC UA 
(IEC 62541) and the Subscription mechanism for data 
retrieval, a LB Configuration may be used to 
configure parameters relevant to the publishing 
interval or sampling interval. 
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4.1.4 Aggregation 

This LB contains all the functionalities required for 
data aggregation of all the different data coming from 
monitored devices. Such a block may include 
mechanisms of Sensor Data Fusion when, for 
example, the data monitored from a complex device 
come from sub-devices or sensors composing it. This 
perfectly fits with the concept of AAS because it 
allows the representation of complex devices by 
means of composition of the AASs of their sub-
devices. In these terms, for instance, the Aggregation 
block implemented in the AAS of a composite device 
uses data coming from the DM or DA blocks 
contained in the AASs of the component devices. 
Furthermore, input data of an Aggregation LB may 
come from other Aggregation blocks, hence realising 
an aggregation hierarchy, which is required to 
manage the large amounts of data coming from 
sensors. 

4.1.5 Prediction Model 

All the functionalities and facilities needed for the 
diagnostics and prognostics of the monitored 
machinery are implemented in this LB. For instance, 
this LB may consist of a neural network-based model 
or decision tree-model. When it is possible, the 
models here provided are trained using historical data 
of both conditions and faults of machines, eventually 
manipulated using the outputs of the other LBs 
discussed previously. Furthermore, the models may 
be constantly trained using data gathered in real time 
from AASs or forecast errors may be used to improve 
the accuracy of the model. It is worth noting that 
technical personnel working on data analysis and the 
tools they use are considered also entities 
implementing functionalities of the block Prediction 
Model. 

4.1.6 Maintenance Decision-making 

This LB involves all the functionalities required to 
process the data coming from the block Prediction 
Model to schedule appropriate maintenance actions 
for the monitored machine. Therefore, this block 
involves the facilities to schedule maintenance tasks, 
to commit eventually the available technicians for the 
maintenance, and to change the operational state of 
the machine (i.e. changing the operational state from 
“working” to “maintenance”). All these kinds of 
operations change information in the proper AAS sub 
model of the relevant devices.  

In general, most of the functionality provided by 
a Computer Maintenance Management System may 

be considered part of the Maintenance Decision-
making block. It is worth noting that the output of this 
LB may be used as a feedback for the Prediction 
Model block to adjust the accuracy of the model 
adopted or check its correctness. 

4.1.7 Schedule 

This LB collects all the facilities to manage the 
information relevant to the maintenance tasks. For 
instance, some information may include the date and 
the duration of the maintenance task and the operator 
assigned to it. This LB also includes the history of 
maintenance operations as it can give an estimation 
about the condition of the machine to consider or, in 
the worst case, whether a replacement with a new one 
occurred. 

4.1.8 Status 

This LB maintains the information about the status of 
the machine. In particular, it explicitly shows when 
the machine is in operating mode or in maintenance 
mode. This information may be useful to check the 
general status of the plant or to label eventual data still 
being collected from the machine even during a 
maintenance operation. 

4.2 AAS Sub Model for PdM 

LBs can be realised following different standards or 
guidelines; for instance, functionalities for condition 
monitoring of machines may be based on standard 
like VDMA 24582 or ISO 17359. 

In this paper it has been assumed that I4.0-
Components implement all the functionalities of their 
LBs inside specific sub models. Such functionalities 
are implemented inside the sub models as properties 
and operations, both semantically annotated. The 
main idea in Industry 4.0 is having a standardised sub 
model definition for every relevant aspect of an asset 
but, up to now, no standardised sub model definition 
has been released. The model here proposed involves 
the definition of new AAS sub models containing 
well-known LB functionalities, so that some of the 
steps of the PdM process may implemented in a 
common and standardised manner inside I4.0-
Components. Furthermore, since AAS allows for 
composition, functionalities in sub model may be 
represented as composition of functionalities of the 
AASs of sub-devices or logically underlying devices. 
For instance, configuration functionalities of a high-
level device may be represented as a composition of 
several configuration functionalities of underlying 
devices. 
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The two sub models presented and discussed in 
the following cover all the functionalities required for 
the condition monitoring and for the scheduling of 
maintenance operations of a device; they are named 
“Condition Monitoring” and “Maintenance”, 
respectively. Figure 3 shows the LBs implemented 
internally by the two sub models highlighting the 
relationships between them. 

Submodel: Condition 
Monitoring

Submodel: Maintenance

Data 
Acquisition Configuration

Data 
manipulation

Schedule Status

Aggregation

 
Figure 3: Sub model definition for Condition Monitoring 
and Maintenance and the LBs they implement. 

As shown in figure, the sub model Condition 
Monitoring implements the LBs Data Acquisition 
(DA), Data Manipulation (DM), Configuration and 
Aggregation. The presence of the depicted LBs in the 
sub model is not mandatory. Whether a LB is 
implemented or not depends on the specific case in 
examination. For instance, a smart sensor may not 
implement the functionalities of the block 
Aggregation inside its AAS, whereas for an industrial 
gateway is quite common implementing aggregation 
functionalities. All the LBs in the Condition 
Monitoring sub model may interact to each other, as 
depicted in figure by means of dotted arrows. Such 
interactions represent data flows, events dispatching, 
function calls or parameter settings. 

The sub model Maintenance implements the 
functionalities of the block Schedule and Status. In 
general, the scope of this sub model involves 
everything concerning the maintenance tasks and 
operational condition of the device. 

The blocks Prediction Model and Maintenance 
Actions are not considered inside the sub models 
definitions here provided because such high-level 
functionalities with high-demanding computational 
requirements may not be easily implemented in I4.0-
Components at OT level. It is worth noting that this 
assumption is not a limitation, because an AAS of a 

high-specialised tool may implement, if the solution 
requires so, the Prediction Model functionalities 
inside a well-known sub model. 

4.3 Description of the PdM Model 

From a high-level point of view, the PdM model is 
divided in two main parts: Operational Infrastructure 
(OI) and Prognostics & Maintenance Management 
Infrastructure (PMMI). The former encompasses all 
the elements of the plant which are part of the PdM 
solution and involved in the data collection and data 
manipulation processes required for prognostics. 
Examples of such elements are the machines to be 
maintained, industrial gateways, industrial PCs, but 
even high-level tools like MES and ERP may be 
considered being part of OI. The latter, instead, 
encompasses all the elements of the PdM solution 
using data coming from OI to forecast machine 
failures and schedule maintenance actions. Examples 
of such elements may be AI models (e.g. Recurrent 
Neural Network), tools for data analysis and software 
for the maintenance management.  

The structure of the PdM model is depicted in 
Figure 4 highlighting the relationship between 
components and the data streams from low-level 
devices to the PMMI elements for the decision-
making task, depicted by red arrows. Furthermore, 
the figure shows how the topmost components 
interact with the maintained devices to set their 
operational status and commit maintenance tasks. 
This procedure is depicted with green arrows. 

As shown in figure, OI consists of I4.0-
Components providing both data for the condition 
monitoring (e.g. production machinery that will 
require maintenance, sensors) and operations for data 
manipulation required from the first steps of the PdM 
process (e.g. Smart Device, Industrial PC, Gateway). 
In general, what belongs to Operational Technology 
(OT) is considered part of the OI. Therefore, devices 
like sensors, actuators, machinery, but also PLC, 
SCADA, DCS, may be considered part of OI, but also 
Information Technology (IT) elements like databases, 
industrial PCs, or edge devices like gateways. The 
presence of AAS is mandatory for the devices at the 
lowest levels of the infrastructure because such 
devices features a high degree of heterogeneity in the 
technologies and data representation adopted. 
Therefore, the AAS realises the abstraction layer 
needed to achieve interoperability at that level. The 
only requirement in the PdM model is that every PdM 
component that need to interact with an I4.0-
Component need to communicate with the AAS API 
and thus understand its semantics. 
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Figure 4: AAS-based PdM model for predictive 
maintenance. 

PMMI consists of IT elements and software 
components providing all the functionalities needed 
for data analysis, failures prediction, and scheduling 
of the maintenance tasks. The nature of such 
components is not specified but they are described 
only in terms of the functionalities they provide (i.e., 
their LBs). Such functionalities may be implemented 
on devices of the Information Technology (IT) 
infrastructure and/or in Cloud (in case of Cloud-based 
PdM). For this reason, it makes no sense speaking of 
“devices” because at this level what really matters are 
functionalities, and their implementation strictly 
depends on the solution adopted for PdM. For 
instance, the prediction functionalities defined for 
PMMI may be implemented either by a Recurrent 
Neural Network (Artificial Intelligence-based 
solution) or by a physical operator consulting a visual 
tool for data analysis; even if the former is a software 
component and the latter is a human being, both of 
them are considered entities of the PMMI because 
realises the same functionalities but in different ways. 
Since entities implementing functionalities in PMMI 
interact and use data coming from OI entities, it 
follows that they must understand the AAS API and 
data of the OI entities. 

The differentiation between Device and 
Aggregator depicted in figure is not formal and is 
used just to clarify which role an entity plays in the 
OI. The role an entity plays depends on the LB it 
implements. For instance, AAS Device in Figure 4 
identifies the role of a generic Device that provides 
condition monitoring features to evaluate is health 

condition and eventually schedule maintenance tasks. 
AAS Aggregator, instead, identifies the role of a 
device that is not a direct subject of the maintenance 
process but required for it. In particular, the LBs it 
implements suggest that the role of AAS Aggregator 
is that of collecting data coming from different 
underling devices with the role of “Devices” and do 
some sort of manipulation (e.g. data aggregation, 
sensor data fusion) before sending them to other 
entities. 

The role of an entity can be discriminated just 
looking at the LBs and the relevant functionalities it 
implements. This aspect of the proposed PdM model 
allows the definition of a sort of equivalence classes 
for PdM components because such roles are defined 
in terms of collection of generic PdM functionalities. 
The possibility of describing roles for components of 
a PdM solution gives the great advantage of 
seamlessly replace a device with another device of the 
same role during a re-configuration in the production, 
without affecting the PdM program. 

5 CONCLUSIONS 

PdM solutions can be adapted to production re-
configuration if satisfy two main requirements: a 
model to describe the solution in terms of generic 
functionalities not depending from the approach used 
to realise PdM and an abstraction mechanism for all 
the different technologies adopted for the PdM 
implementation. This paper proposes a PdM model 
defining a new approach to satisfy both, whose 
advantages rely on both the concept of LB and AAS. 
The former is a conceptual group of functionalities 
related to the same aspect of a PdM solution and 
allows the definition of roles for the components of 
the maintenance program, which enable both easy 
replacement and changings in the PdM solution in a 
seamless manner. The latter, instead, provides an 
abstraction layer for the heterogeneity of devices and 
technologies adopted (especially in the brownfield) 
improving the degree of integration between PdM 
components and a common structure to the 
information and operation featured by devices. 

As discussed in the paper, the structure of the 
AAS perfectly fits for the realisation of LB 
functionalities using semantically annotated 
properties and functions inside sub models. Both the 
LBs and AASs adopted in the PdM model here 
presented allow the definition of maintenance 
programs in a way that improves the level of 
flexibility in production. PdM solutions based on 
different approaches to PdM may be represented 
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according the proposed model: all the relevant part of 
the solution may be described in terms of generic LB 
functionalities, defining the roles that such PdM 
components play in the whole PdM solution. 
Generalisation dictated by the model allows easy 
reconfiguration and extensibility of the production 
systems, increasing the integration of all the different 
parts of a PdM solution. 
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