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Abstract: The use of computer simulations in motorcycle engineering makes it possible both to reduce designing time 

and costs and to avoid the risks and dangers associated with experiments and tests. The multi-body model for 

computer simulations can be built either by developing a mathematical model of the vehicle or by using 

commercial software for vehicle system dynamics. Even though the first method is more difficult and time-

consuming than the second, maximum flexibility in the description of the features of the model can be 

obtained only by using an analytical model. Moreover, mathematical modelling has a high computation 

efficiency, whereas multi-body software requires a lot of time to carry out simulations. For the reasons above, 

the aim of this work was to develop a mathematical model of a motorcycle. 

1 INTRODUCTION 

The goal of many inventors over the past six centuries 

was to discover a device for fast and easy road 

transport. The invention of motorcycles began after 

the development of bicycles and engines. In fact, the 

first motorcycles were merely bicycles with small 

engines thrust into the frame. Nowadays, as one of the 

world’s most popular means of transport, the 

motorcycle is not the early period monster that was 

made of metal and solid wood; it is rich in variety, 

advanced technology and well-made. Compared with 

other methods of transport, it has unparalleled 

advantages: it is economical, convenient and fast way 

to travel far away (Sharp et al., 2001; Herlihy, 2004) 

During nearly 130 years of development, 

pioneering builders have exhausted their own 

intelligence and have created numerous milestone 

achievements, leaving their name in the history 

books. From the twenties of the 20th century to the 

present, improvements have become the main theme 

of the development of motorcycles (Limebeer et al., 

2002). The modeling and control of a motorcycle are 
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different from the process for a bicycle for three main 

reasons. First of all, the weight of a motorcycle is 

much larger than that of a bicycle; the difference is 

about ten times (Limebeer et al., 2002; Sharp, 1971). 

Secondly, due to the disparate weight, the rider has a 

different role to play during the model building 

process between a motorcycle and a bicycle. Thirdly, 

the speed is also hugely different. In fact, usually, the 

speed of a bicycle can be around 20 km/h whereas a 

modern motorcycle can achieve a top speed of about 

230 km/h. For some sport motorcycles, the speed is 

able to reach even 300 km/h. Under this speed, the 

modeling process should not only consider the normal 

dynamics of the bicycle but should also consider the 

aerodynamics force analysis and the relevant thermal 

phenomena arising during the vehicle motion 

(Farroni et al., 2019). Over the years the theory of 

motorcycle dynamics has been perfected gradually, 

and some scholars have even done experimental 

research based on their own experience (Escalona et 

al., 2018; Sharp et al., 1980; Spierings, 1981). 

The kinematic study of motorcycles is important, 

especially in relation to the effects on their dynamic 

behavior. Therefore, in this paper, in addition to the 
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kinematic study, some simple examples of the 

dynamic behavior of motorcycles are reported in 

order to show how kinematic peculiarities influence 

the directional stability and maneuverability of 

motorcycles (Bruni et al., 2020; Cossalter, 2014; 

Cossalter et al., 2002). Finally, the aim of this work is 

the development of a simple and effective motorcycle 

model easily implementable in control logics on 

board. 

2 KINEMATICS OF 

MOTORCYCLES 

Motorcycles are composed of a great variety of 

mechanical parts, including some complex ones. 

From a strictly kinematic point of view, by 

considering the suspensions to be rigid, a motorcycle 

can be defined as simply a spatial mechanism 

composed of four rigid bodies (Genta, 1997; 

Gillespie, 1996): 

▪ The rear assembly (frame, saddle, tank and mοtοr-

transmission drivetrain group); 

▪ The front assembly (fork, steering head and 

handlebars); 

▪ The front wheel; 

▪ The rear wheel. 

▪ These rigid bodies are connected by three revolute 

joints (the steering axis and the two-wheel axles) 

and are in contact with the ground at two 
 

wheels/ground contact points as shown in Fig. 

1.Each revolute joint inhibits five degrees of 

freedom (DoF) in the spatial mechanism, whereas 

each wheel-ground contact point leaves three DoF 

free (Koenen, 1983; Schwab et al., 2004).  

 

Figure 1: Kinematics representation of a motorcycle 

(Cossalter, 2014). 

Considering the hypothesis of the pure rolling of tires 

on the road to be valid, it is easy to ascertain that each 

wheel, with respect to the fixed road, can only rotate 

around (Farroni et al., 2019; Kooijman et al., 2011): 

▪ The contact point on the wheel plane (forward 

motion); 

▪ The intersection axis of the motorcycle and road 

planes (roll motion); 

▪ The axis passing through the contact point and the 

centre of the wheel (spin). 

 

Figure 2: Degrees of Freedom of the schematized motorcycle model. 
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Table 1: List of symbols. 

 

In conclusion, a motorcycle’s number of degrees 

of freedom is equal to three, given that the fifteen DoF 

inhibited by the three revolute joints and the six 

degrees of freedom eliminated by the two wheel-

ground contact points must be subtracted from the 

four rigid bodies’ twenty-four DoF, as summarized in 

Fig. 2 ( Escalona et al., 2012; Lowell et al., 1982). 
These three degrees of freedom may be associated 

with three principal motions (Schwab et al., 2004; Yi 
et al., 2009): 

▪ Forward motion of the motorcycle (represented 

by the rear wheel rotation); 

▪ Roll motion around the straight line which joins 

the tire contact points on the road plane; 

▪ Steering rotation. 

The rider manages all the three major movements, 

according to his personal style and skill: the resulting 

movement of the motorcycle and the corresponding 

trajectory (e.g. a curve) depend on a combination, in 

the time domain, of the three motions related to the 

three degrees of freedom. This generates one 

manoeuvre, among the thousands possible, which 

represents the personal style of the driver. These 

considerations have been formulated assuming that 

the tires move without slippage. However, in reality, 

the tire movement is not just a rolling process. The 

generation of longitudinal forces (driving and braking 

forces) and lateral forces requires some degree of 

slippage in both directions, longitudinally and 

laterally, depending on the road conditions. The 

number of degrees of freedom is therefore seven 

(Dugoff et al., 1969; Pacejka, 2006; Rajput et al., 

2007; Seffen et al., 2001): 

▪ Forward motion of the motorcycle; 

▪ Rolling motion; 

▪ Handlebar rotation; 

▪ Longitudinal slippage of the front wheel 

(braking); 

▪ Longitudinal slippage of the rear wheel (thrust 

or braking); 

Symbol Description Symbol Description 

B 
Rotation matrix between body-fixed refe-

rence frame and Euler-axis reference frame 
Rnz 

Translation of the centre of mass along the 

z-axis 

Cx Longitudinal stiffness of tires T Kinetic energy 

Cα Lateral stiffness of tires Tdi Driving torque input 

Fx Longitudinal force of tires V Potential energy 

Fy Lateral force of tires VF Vehicle forward velocity 

Fz Vertical force of tires Vn Centre of mass velocity 

g Gravity acceleration vr Reference velocity 

 hG Centre of mass height v Acquired velocity 

I Mass moment of inertia tensor xG Centre of mass coordinate along the x-axis 

kd Coefficient for derivative term α Tire sideslip angle 

k𝑖 Coefficient for integral term γ
e
 

Rotational coordinates provided by the 

Euler Angles 

k𝑝 Coefficient for proportional term εx Longitudinal slip ratio of tires 

m Motorcycle mass θ 
Rotation of the centre of mass around the y-

axis 

Q 
Non-conservative force acting on the 

system 
μ

max  
 Maximum friction coefficient 

𝑞𝑗 Generalized coordinate φ 
Rotation of the centre of mass around the z-

axis 

Rc Turn radius ψ 
Rotation of the centre of mass around the x-

axis 

Rnx 
Translation of the centre of mass along the 

x-axis 
Ω Angular yaw rate 

Rny 
Translation of the centre of mass along the 

y-axis 
ωe Angular velocity in the Euler axis-frame 
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▪ Lateral slippage of the front wheel; 

▪ Lateral slippage of the rear wheel. 

This kinematic study refers to a rigid motorcycle, 

without suspensions and with the wheels fitted to 

non-deformable tires, schematized as two toroidal 

solid bodies with circular sections (Leonelli et al., 

2015; Pacejka et al., 1991).  

3 MOTORCYCLE DYNAMIC 

MODEL 

The dynamic model of the motorcycle has been 

derived with the specific goal of a model simple but 

able to capture all the dynamics relevant of two-

wheeled vehicles. For these purposes, this work 

presents a four degrees of freedom model that 

considers rear-wheel driving and the front wheel 

steering; three of those DoF refer to in-plane 

longitudinal, lateral and yaw vehicle body motions 

whereas the last DoF refers to out-plane roll body 

motion. Moreover, in this paper, a velocity tracking 

and stability control for agile manoeuvres using 

steering rotation and rear thrust as control inputs is 

presented (Sakai, 1990). 
The analytical equations of motion are given by 

the Lagrangian approach: the result is a non-linear 
second-order ordinary differential equation (ODE) 
system in four unknowns: roll and yaw angles and the 
centre of mass coordinates in the plane road. The 
model considers both longitudinal and lateral forces 
exerted by the tires and has as inputs the steering 
torque and the rear wheel torque. 

The motorcycle model’s assumptions are: 
 

{𝑞𝑗} = {Rnx Rny Rnz ψ θ φ} (1) 

 
The translational coordinates are the translation of 

the centre of mass measured parallel to the axes of the 
ground reference frame, whereas the rotational 
coordinates are provided by the Euler angles: 

 

{γ
e
} = {

ψ

θ

φ
} (2) 

The angular velocity in the Euler-axis frame as 
already stated is simply the time derivative of the 
Euler angles: 

 

{ωe} = 
d

dt
{γ

e
} (3) 

 

Using the Lagrange equation, the motion equation 
can be obtained as: 

 

d

dt

∂L(q
j
,q̇

j
)

∂q
j̇

−
∂L(q

j
,q̇

j
)

∂q
j

= Q
qj

 (4) 

 
where L(q

j
,q̇

j
) = T(q

j
,q̇

j
) − V(q

j
)  is the 

Lagrangian function. 
T=T(q

j
,q̇

j
)  is the kinetic energy expressed in 

terms of generalized coordinates q̇
j
 and it is given by: 

 

T=
1

2
{Vn}Tm{Vn} + 

1

2
{𝜔𝑒}T[B]T[I]{𝜔𝑒}[B] (5) 

 

Applying Lagrange’s equation, the equation of 
motion of the model are: 

 

m[ẍ + hG cos θ sin ψ θ̈ − (xG sin ψ 

− hG sin θ cos ψ)ψ̈− (xG cos ψ 

+ hG sin θ sin ψ) ψ̇2+ hG sin θ cos ψ θ̇
2
 

+ 2hG cos θ cos ψ θ̇ψ̇]= Q
x
 

(6) 

 

m[y ̈− hG cos θ sin ψ θ̈ + (xG cos ψ 

+ hG sin θ sin ψ)ψ ̈ − (xG sin ψ 

−  hG sin θ cos ψ)ψ̇2+ hG sin θ cos ψ θ̇
2
 

+ 2hG cos θ sin ψ θ̇ψ̇] = Q
y
 

(7) 

 

ψ̈[(Iyy+ mhG
2 ) sin

2
θ  + mxG

2  

−(Iyy−Izz) cos2 θ] + (Ixz cos θ 

− hGmxG cos θ)θ̈  + m(xG cos ψ 

 hG sin θ sin ψ)ÿ−m(xG sin ψ 

hGm sin θ cos ψ)ẍ+(hGmxG−Ixz) sin θ θ̇
2
 

+[hG
2

m +(Iyy−Izz)] sin 2θ θ̇ψ̇= Q
ψ
 

(8) 

 

(Ixx+mhG
2 )θ̈ + (Ixz cos θ− hGmxG cos θ)ψ̈ 

+ mhG cos θ (sin ψ ẍ− cos ψ ÿ) 

−
ψ̇2 sin 2θ

2
(Iyy−Izz+ hG

2
m)− hGmg sin θ =Q

θ
 

(9) 

The mathematical model presented is a non-linear 
Ordinary Differential Equation system which 
depends on the front and rear lateral forces and on the 
longitudinal. 

To model the tire behaviour, it is possible to use 
physical models, divided into: 

▪ physical-analytical model: which are physical 

models based on measurable physical 

quantities that have a closed-form solution, as 

described in (Romano et al., 2019); 

▪ physical-numerical model: which are physical 

models that have not a closed-form solution. In 

this case, equations that regulate the 

phenomenon are very complex and cannot be 

solved analytically so that the problem is 

solved by using a computer and therefore the 

equation resolution is numerical. 
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Otherwise, it is possible to use interpolative 
empirical models, based on experimentation but 
which do not have a clear physical connotation. This 
model approximates a series of data obtained 
experimentally and generates a functional that 
interpolates and fits these data. A well-known 
empirical model is the Magic Formula (Dugoff et al., 
1969; Hans B. Pacejka, 2006). This model provides 
an excellent fit for tire effort curves, which makes it 
more suitable for vehicle motion simulations. But at 
the same time, it provides a poor insight into tire 
behaviour. On one hand, empirical models rely on 
experimental measures to make the simulation more 
accurate, and on the other hand, physical models rely 
on physics to give more insight about tire behaviour. 
In regards to the calculation of the forces at the 
tire/road interface, complex multiscale friction 
models (Genovese et al., 2019) are based  on the 
knowledge of the road surface and of the viscoelastic 
properties of tire tread (Genovese et al., 2020). Here, 
the Dugoff physical model to describe the friction 
forces between the tire/road interface is adopted. 
With a simple form, the Dugoff tire model can 
calculate the longitudinal and lateral tire force under 
pure longitudinal slip, pure side slip and combinate 
longitudinal-side slip situation. Dugoff developed an 
analytic model based on the classical analysis of Fiala 
(Sakai, 1990). Dugoff in his model assumed a 
constant friction coefficient and a constant vertical 
load distribution. These assumptions give: 
 

Fx=Cx

εx

1+εx

f(λ) (10) 

Fy=Cα

tan α

1+εx

f(λ) (11) 

 
In particular, λ and the function f(λ) are described as: 
 

λ=
μ

max  
Fz(1+εx)

2√(Cxεx)2+(Cα tan α)2
 (12) 

 

f(λ)= {
(2−λ)λ  λ<1

     1        λ≥1
 (13) 

4 PROPORTIONAL INTEGRAL 

DERIVATIVE LONGITUDINAL 

CONTROLLER FOR SPEED 

REGULATION 

The input variables of the motorcycle model are the 

steering angle and the driving torque at the rear 

wheel. The steering angle assigned during the 

simulation process, derives from experimental 

acquisitions, whereas the driving torque input to 

assign at the rear wheel has been evaluated through 

the implementation of a Proportional-Integral-

Derivative (PID) controller, on the longitudinal 

velocity.  

The PID controller is a closed-loop control 

system. It requires a sensor that is able to measure the 

controlled variable and sends the corresponding 

information to the controller. The controller receives 

as input the error made on the controlled variable, i.e. 

between the velocity signal and the target velocity; 

based on that error and using a proper control law 

evaluates the control signal to be sent to the actuator 

that applies the control force on the system in such a 

way the controlled variable follows the reference. 

The PID controller generates an output that is 

given by the summation of three different contribute 

that are respectively proportional to the error between 

the reference signal and the output signal, to its 

derivative and to its integral over time. 
Therefore, the driving torque input assumes the 

following form: 

Tdi=kp(vr(t)−v(t))+kd(v̇r(t)−v̇(t)) 

+ki ∫ (vr(t)−v(t))dt
t

0

 
(14) 

 

Figure 3: Closed loop control system - block diagram. 
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5 ROLL ANGLE STABILIZATION 

Motorcycle is an unstable system that is kept in the 

stable zone by its rider that acts as a feedback 

controller acting on throttle, brake, steer, roll and by 

moving himself on the seat influencing the centre of 

gravity position, so the forces and the torques acting. 

Reproducing the driver's behaviour with a math 

model has always been very tricky since there are 

many variables that must be taken into consideration. 

Furthermore, there is no optimal strategy to adopt due 

to the fact that it depends on parameters related to the 

riding style of a specific riders. 

Defining an optimal strategy for the roll motion 

control is a hard and complex thing. The usual 

approach is to balance the bike and to put it in the 

stable zone at the beginning; then, once it is stable, 

the body movement is controlled to exploit the best 

grip and speed. Many difficulties figure out on that 

strategy, for example, the body cannot be considered 

as a point mass but should at least be schematized like 

a solid with homogeneously distributed weight. Since 

this control part requires a lot of time to be tuned and 

to be simulated, the approach used here starts from 

the ideal roll angle. 

The motorcycle, in steady turning, is subject to 

both a restoring moment, generated by the centrifugal 

force that tends to return the motorcycle to a vertical 

position, and to a tilting moment, generated by the 

weight force, that tends to increase the motorcycle’s 

inclination or roll angle. 

The following simplifying hypotheses have been 

introduced: 

▪ the motorcycle runs along a turn of constant 

radius at constant velocity (steady-state 

conditions); 

▪ the gyroscopic effect is negligible.  

Considering the cross-section thickness of the tires to 

be zero, the moments equilibrium allows to derive the 

roll angle φ in terms of the forward velocity VF and 

the radius of the turn Rc (measured from the centre of 

gravity to the turning axis): 
 

φ =  tan-1 (
RcΩ

2

g
) = tan-1 (

VF
2

gRc

) (15) 

 

Where Ω  indicates the angular yaw rate, while 

V = ΩRc indicates the vehicle forward velocity. 
In equilibrium conditions, the resultant of 

centrifugal and weight forces passes through the line 
joining the contact points of the tires on the road 
plane. This line lies in the motorcycle plane if the 
wheels have zero thickness and the steering angle is 
very small. 

 

Figure 4: Steady turning: roll angle equipped with zero 

thickness tires (Cossalter, 2014). 

In this work, therefore, to implement a control 

system that allowed the roll angle stabilization for the 

roll angle, the ideal roll angle is used as an input of 

the model to ensure stability. The rider presence is 

neglected, so no movement outside the plane of the 

motorcycle is considered, but it has been assumed that 

the rider rigidly attached to the saddle and always 

remains in the plane of symmetry of the motorcycle. 

Because of this assumption, the roll angle acquired by 

experimental measures and the one derived by 

imposing the steady turning conditions differ a bit 

from each other. 

6 RESULTS 

The data obtained from the model have been 

compared with those obtained from the experimental 

acquisitions given by a high-performance motorcycle 

manufacturing company; the industrial partner also 

provide all the information necessary to parametrize 

the model properly. The results have been then 

normalized for reasons of confidentiality.  

The model inputs are the steer angle and the rear 

torque that were evaluated by the PID controller that, 

on the error between the target velocity and the 

measured velocity, applied a driving torque to the rear 

wheel of the motorcycle. For this reason, the profile 

velocity that is obtained is quite close to the velocity 

acquired experimentally, as illustrated in Fig. 5. 
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Figure 5: Velocity profile comparison. 

It can be noticed that the roll angle of the model 

is globally greater than that acquired experimentally 

as expected since the rider is considered to be rigidly 

attached to the saddle and can’t move his entire 

bodies to the interior of the turn to reduce the roll 

angle of the motorcycle. 

 

Figure 6: Roll angle comparison. 

Moreover, there is a good match on the 

longitudinal force at the rear wheel and on the 

longitudinal acceleration between the model and the 

acquired data as shown in Fig. 7 and Fig. 8. 

 

Figure 7: Longitudinal force comparison. 

As it is possible to see in those figures, the model 

replies longitudinal force and acceleration correctly 

in all the dynamic conditions, except for the high 

acceleration zones; this is mainly due to the 

simplification introduced in the motorcycle 

schematization and parametrization. 

 

Figure 8: Longitudinal acceleration comparison. 

7 CONCLUSIONS 

In the present work, the mathematical model of a 

motorcycle with four degrees of freedom has been 

presented. The study has been carried out under the 

hypotheses of considering the front wheel steering 

and the rear wheel driving and braking. Any motion 

of the rider has been neglected, therefore the roll 

angle assigned during the simulation is equal to the 

ideal roll angle evaluated for the steady-state 

conditions. To simulate the behaviour of a driver who 

tries to reach a certain velocity has been implemented 

a proportional-integral-derivative controller PID 

which according to the error between the target 

velocity and the measured velocity apply a driving 

torque to the rear wheel of the motorcycle. For tire 

modelling, a physical model to describe the friction 

forces between the tire/road interface has been 

adopted, which is the Dugoff tire model. 

The comparison has shown good reliability of the 

proposed model especially for what concerns the 

longitudinal dynamics, although have been found 

some differences between the lateral forces due to the 

basic hypotheses for the model of considering the 

ideal roll angle and to neglect any dynamic due to the 

rider behaviour. 

The availability of non-linear equations 

represents an advantage with respect to the classical 

Jacobian linearization approach commonly used in 

literature. The model can be employed with an 

advanced non-linear model-based control system 
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design and it can also be easily implemented on board 

thanks to its simplicity and robustness. 

Further developments may consist in the 

realization of a more complex motorcycle model, 

considering it as a multi-body system of four bodies: 

the front and rear wheels, the rear assembly 

(including frame, engine and fuel tank), the front 

assembly (including steering column, handle-bar, and 

front fork). Moreover, a suspension system at the 

front and at the rear could also be considered; in this 

way, it could be analyzed the degrees of freedom of 

the motorcycle in the longitudinal plane such as the 

pitch motion and the vertical displacement.  

The model developed could also be completed 

with a rider leaning model for the roll stabilization. In 

particular, it could be implemented a rider control in 

which the rider tries to stabilize the motorcycle by 

inclining left and right his upper body in such a way 

to not consider the roll angle fixed to its steady-state 

value, in order to have a better description of 

transverse dynamics. 
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