
Neural Machine Translation for Amharic-English Translation 

Andargachew Mekonnen Gezmu1 a, Andreas Nürnberger1 b and Tesfaye Bayu Bati2 c 
1Faculty of Computer Science, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, Magdeburg, Germany 

2Faculty of Informatics, Hawassa University, Hawassa, Ethiopia 

Keywords: Neural Machine Translation, Low-resource Language, Subword. 

Abstract: This paper describes neural machine translation between orthographically and morphologically divergent 
languages. Amharic has a rich morphology; it uses the syllabic Ethiopic script. We used a new transliteration 
technique for Amharic to facilitate vocabulary sharing. To tackle the highly inflectional morphology and to 
make an open vocabulary translation, we used subwords. Furthermore, the research was conducted on low-
data conditions. We used the transformer-based neural machine translation architecture by tuning the 
hyperparameters for low-data conditions. In the automatic evaluation of the strong baseline, word-based, and 
subword-based models trained on a public benchmark dataset, the best subword-based models outperform the 
baseline models by approximately six up to seven BLEU.

1 INTRODUCTION 

High-quality literary machine translation is not yet 
achieved with the current neural machine translation 
(NMT) models. Nonetheless, the models are quite 
useful and proved to be productive at least for tasks 
for which a rough translation is adequate. Good 
examples are information access on the Web and 
computer-aided human translation. 

Despite its usefulness, NMT requires large 
training data to build competitive models. It may 
outperform phrase-based statistical machine 
translation (PBSMT) if the training data are more 
than 500 thousand parallel sentence pairs (Koehn and 
Knowles, 2017; Lample et al., 2018). However, if the 
system architecture is adapted to low-resource 
settings and hyperparameters are tuned for low-data 
conditions, then NMT may outperform PBSMT with 
as few as five thousand sentence pairs (Sennrich and 
Zhang, 2019). 

In machine translation, we should also pay 
attention to the morphology of languages. Amharic, a 
Semitic language and lingua franca in Ethiopia, is one 
of the languages that have highly inflectional 
morphology. In Amharic, an orthographic word may 
represent a phrase, clause, or sentence. For example, 
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the word እስኪያብራራላቸው /ɨskiyabraralacəw/ meaning 
“until he explains it to them” is a clause. This word 
does not appear even once in the 24 million tokens 
Contemporary Amharic Corpus 1  (Gezmu et al., 
2018). Yet its constituent stem and affixes – እስክ/ɨsk/-
ይ/y/-አብራራ/abrara/-ል/l/-አቸው/acəw/ – appear several 
times in the corpus being part of other words. Here 
the lexical word is አብራራ /abrara/; the other 
grammatical words are attached to the lexical word. 
The alignment of Amharic words to English often 
appears to be one-to-many. Thus, the vocabulary of 
the language is too large for NMT. For open 
vocabulary NMT, using subword units has a vital 
role. 

Moreover, as seen in the above example, the 
boundaries of morphemes are more easily identified 
in the transliteration than in the original script. Any 
word segmentation technique can take advantage of 
the Amharic transliteration. The transliteration also 
helps for sharing vocabulary with English especially 
loan words and named entities. 

Therefore, in this research, we deal with a case of 
NMT between distant languages, Amharic and 
English, with regard to their orthography and 
morphology. It also deals with NMT in low-resource 
conditions. 

1  Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-
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2 TRANSLITERATION 

Amharic uses the Ethiopic writing system. Even 
though Ethiopic shares some features of abugida, the 
Unicode Consortium (2020) considers it as “simple 
syllabary”. The ancient Ethiopian Semitic language, 
Ge’ez, originally uses the writing system. Ge’ez is 
now extinct and used only for Liturgy. 

Each character of the Ethiopic writing system is 
formed by systematic integration of a consonant and 
vowel (e.g., መ /mə/ and ሙ /mu/). Sometimes 
consonants and vowels can be written as bare 
consonants (e.g., ም /m/ and ን /n/) or bare vowels (e.g., 
አ /a/ in አለም /aləm/). In addition to the characters in the 
basic script set, some characters represent labialized 
variants of consonants followed by particular vowels. 

There are also some homophonic characters in the 
writing system (e.g., ሰ and ሠ represent /sə/ sound). 
Originally, these characters had distinct sounds but 
were lost in Amharic (Aklilu, 2004); they are the 
source of many cognates. For instance, ሰም and ሠም are 
transliterated as /səm/ meaning “wax”. In modern use, 
the homophonic characters are used interchangeably. 
For consistent spelling, the Ethiopian Languages 
Academy proposed a spelling reform (Aklilu, 2004). 
According to the reform, homophonic characters, 
being redundant, should be reduced to their standard 
forms. For example, instead of ሠ /sə/ the character ሰ 
/sə/ should be used. Also, some labiovelars are 
substituted by their closest counterparts in the basic 
script set (e.g., ቍ by ቁ /qu/). 

There is no case difference in Amharic. Unlike 
other Semitic languages, such as Arabic and Hebrew, 
it is written from left to right and its orthography is 
nearly phonetic (Cowley, 1967). 

There is no standard transliteration for Amharic. 
In line with its unique features and the reform of the 
writing system, we used a new transliteration scheme, 
Amharic transliteration for machine translation 
(AT4MT). To make it useful for machine translation, 
our objective was to transliterate Amharic loan words 
and named entities as close as the spelling of English 
words. In doing so, we had to consider the restoration 
of the original spelling to make it invertible. The 
algorithm follows a rule-based approach2. It is similar 
to the one shown in Algorithm 1 for converting an 
Ethiopic numeral into an Arabic numeral. It maps 
Ethiopic characters to their phonemic representations 
in Latin-based characters. Table 1 demonstrates the 
transliterations of some Amharic words. 

 
2 The implementation is available at: 
https://github.com/andmek/AT4MT 

Table 1: Sample transliterations of Amharic words. 

Amharic AT4MT English
ሆስፒታል hospital hospital
አንጌላ angela Angela
ማስክ mask mask
ኢራን iran Iran
ኢራቅ iraq Iraq
እስራኤል ɨsrael Israel
ራዲዮ radiyo radio

 
Though in the modern-day Amharic writings 

Ethiopic numerals tend to be replaced by Arabic 
numerals, still they are in use. Like Roman numerals, 
the Ethiopic number system does not use zero or 
digital-positional notation. A number is represented 
by a sequence of powers of 100, each preceded by a 
coefficient equivalent to 2 through 99. For example, 
the number 345 is represented by 3*1001 + (40 + 
5)*1000 = 3 100 40 5 = şƃŽƉ. Algorithm 1 converts 
an Ethiopic numeral into an Arabic numeral. 

Algorithm 1: An algorithm that converts an Ethiopic 
numeral into an Arabic numeral. 

ethiopic_arabic_table = { ፩:1, ፪:2, ፫:3, ፬:4, ፭:5, ፮:6, 
፯:7, ፰:8, ፱:9, ፲:10, ፳:20, ፴:30, ፵:40, ፶:50, 
፷:60, ፸:70, ፹:80, ፺:90, ፻:100, ፼:10000 } 

FUNCTION ethiopicnum2arabicnum(number): 
    IF LENGTH(number) == 1: 
        RETURN ethiopic_arabic_table[number] 
    result = 0 
    FOR digit IN number: 
        IF (digit == ፻) OR (digit == ፼): 
            result = result * 100 
        ELSE: 
            result = result + ethiopic_arabic_table[digit] 
  RETURN result 

 
Transliteration of Amharic punctuation is a 

straightforward process. Word boundary is 
traditionally indicated by a colon like character (“፡”); 
in modern use, a white word space is becoming 
common. The end of sentence marker is a double-
colon like character (“።”) and is transliterated as a 
period “.”. A comma, semicolon, colon, hyphen, and 
question mark are “፣”, “፤”, “፥”, “፦”, and “፧” or “?”, 
respectively; they have transliterated accordingly. 

 

Neural Machine Translation for Amharic-English Translation

527



3 NMT SYSTEM 

While Recurrent Neural Network (RNN) based 
architectures (Sutskever et al., 2014; Bahdanau et al., 
2014) have been used for NMT to obtain good results, 
the transformer-based ones are even enjoying better 
success (Vaswani et al., 2017). The transformer-
based NMT system uses stacked layers to compute 
representations of its input and output without using 
RNNs. It uses a stack of identical, self-attention, and 
fully connected layers for both the encoder and 
decoder. Each layer has sub-layers. The first sub-
layer is a multi-head self-attention mechanism and the 
second is a simple feed-forward network. In addition 
to the two sub-layers, as in each encoder layer, the 
decoder uses a third sub-layer, which performs multi-
head attention over the output of the encoder stack. 

Because of the long training times of NMT 
models, we followed best practices of prior research 
in low-resource settings instead of working with all 
possible architectures and hyperparameters. In RNN 
based NMT systems, there are mixed opinions on the 
size of training batch sizes in low-data conditions. 
While Morishita et al. (2017) and Neishi et al. (2017) 
are using large batch sizes, Sennrich and Zhang 
(2019) recommend small batch sizes. There is also a 
trend to use smaller and fewer layers (Nguyen and 
Chiang, 2018). 

Table 2: Differences between transformer-tiny, 
transformer-small, and transformer-large; where TT is 
transformer-tiny, TS is transformer-small, and TL is 
transformer-large. 

Hyperparameter TT TS TL
Batch size 1024 4096 1024
No. of heads 4 4 8
No. of hidden layers 2 2 6
Filter size 512 512 2048
Hidden size 128 128 512
Learning rate constant 2.0 2.0 0.1
Warmup steps 8000 8000 16000

 
Therefore, we used three different 

hyperparameter set: transformer-large, transformer-
small, and transformer-tiny. All systems use Adam 
optimizer (Kingma and Ba, 2014), dropout 
(Srivastava et al., 2014) rate of 0.1, and label 
smoothing (Szegedy et al., 2016) of value 0.1. Table 
2 details the differences between the three systems. 
Transformer-small and transformer-tiny differ only in 
training batch sizes. Training batch sizes are given in 
terms of source and target language tokens. 

4 PBSMT BASELINE 

Our PBSMT baseline system had settings that were 
typically used by Ding et al. (2016), Williams et al. 
(2016), and Sennrich and Zhang (2019). We used the 
Moses (Koehn et al., 2007) toolkit to train PBSMT 
models. For word alignment, we used GIZA++ (Och 
and Ney, 2003) and the grow-diag-final-and heuristic 
for symmetrization. We used the phrase-based 
reordering model (Koehn et al., 2003) with three 
different orientations: monotone, swap, and 
discontinuous in both backward and forward 
directions, being conditioned on both the source and 
target languages. We removed sentence pairs with 
extreme length ratios and sentences longer than 
eighty tokens. 

We used five-gram language models smoothed 
with the modified Kneser-Ney (Kneser and Ney, 
1995). KenLM (Heafield, 2011) language modeling 
toolkit was engaged for this purpose. We have not 
used extra big monolingual corpora for language 
models. They are no longer the exclusive advantages 
of PBSMT as NMT can also be benefited from them 
(Sennrich and Zhang, 2019). 

The feature weights were tuned using MERT 
(Och, 2003). We also used k-best batch MIRA for 
tuning (Cherry and Foster, 2012) by selecting the 
highest-scoring development run with a return-best-
dev setting. 

In decoding, we applied cube pruning (Huang and 
Chiang, 2007), Minimum Bayes Risk decoding 
(Kumar and Byrne, 2004), a distortion limit of six, 
and the monotone-at-punctuation (do not reorder over 
punctuation) heuristic (Koehn and Haddow, 2009). 

5 EXPERIMENTS 

We carried out the experiments in three scenarios. In 
the first scenario, we evaluated the performance of 
our three systems: transformer-tiny, transformer-
small, and transformer-large. Then we evaluated our 
transliteration technique in the second scenario. 
Finally, we made a comparison of word-based and 
subword-based models in the third scenario. For the 
last two scenarios, we employed the best performing 
system in the first scenario. The same datasets were 
used in all scenarios; preprocessing, training, and 
evaluation steps were also similar. 
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5.1 Datasets 

We trained our models on the public benchmark 
dataset, Amharic-English parallel corpus3, consisting 
of 140 thousand sentence pairs. The development and 
test sets have 2864 and 2500 sentence pairs. 

5.2 Preprocessing 

All the Amharic datasets were transliterated with 
AT4MT; they were tokenized with an in-house 
tokenizer. The English data sets were tokenized with 
Moses’ script (Koehn et al., 2007). 

For word-based models, we used a shared 
vocabulary of the top 44000 most frequent tokens. 
For subword-based models, we used word-piece (Wu 
et al., 2016), byte pair encoding (BPE) (Sennrich et 
al., 2016), and unigram language model (ULM) 
(Kudo, 2018). For all techniques, the segmentation 
models were built using the training datasets of both 
languages separately. We used the word-piece 
implementation in Google’s Tensor2Tensor library 
(Vaswani et al., 2018); we used the BPE and ULM 
implementations in Google’s sentence-piece library 
(Kudo and Richardson, 2018). In this 
implementation, we provide the desired vocabulary 
size for BPE instead of the number of merge 
operations as in its original implementation. To make 
a comparison among the segmentation schemes, 
tokens were segmented into 32000 subword 
vocabularies using word-piece, BPE, or ULM. 

5.3 Training and Decoding 

We trained each NMT model for 250 thousand steps. 
For decoding (inference), we used a single model 
obtained by averaging the last twelve checkpoints. 
Following Wu et al. (2016), we used a beam search 
with a beam size of four and a length penalty of 0.6. 

5.4 Evaluation 

Eventually, translation outputs of the test sets were 
detokenized and evaluated with a case-sensitive 
BLEU metric (Papineni et al., 2002). For consistency, 
we used Post’s (2018) implementation of the metric, 
sacreBLEU4. To compensate for the limitations of 
BLEU (Callison-Burch et al., 2006; Reiter, 2018), we 
also used BEER (Stanojevic and Sima’an, 2014) and 
CharacTER (Wang et al., 2016) metrics. The 

 
3 Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-
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Amharic outputs were not back transliterated to use 
these automatic metrics effectively. 

6 RESULTS 

Tables 3 and 4 show the performance results of the 
three systems with BLEU, BEER, and CharacTER 
metrics in English-to-Amharic and Amharic-to-
English translations. In this scenario, only the word-
piece technique was used for word segmentation. The 
transformer-tiny model is the least performing model. 
The only difference between transformer-small and 
transformer-tiny is their training batch sizes. By just 
increasing the training batch size from 1024 to 4096, 
we gained more than one BLEU score for both 
English-to-Amharic and Amharic-to-English 
translations. BEER and CharacTER scores also 
reflect similar improvements. Unlike BLEU and 
BEER, the smaller the CharacTER score, the better. 
Transformer-large outperforms both systems. 

Table 3: Performance results of transformer-tiny, 
transformer-small, and transformer-large in English-to-
Amharic translation. 

NMT System BLEU BEER CharacTER
Transformer-tiny 17.8 0.485 0.639
Transformer-small 18.9 0.498 0.614
Transformer-large 26.7 0.552 0.523

Table 4: Performance results of transformer-tiny, 
transformer-small, and transformer-large in Amharic-to-
English translation. 

NMT System BLEU BEER CharacTER
Transformer-tiny 24.0 0.523 0.629
Transformer-small 25.4 0.530 0.614
Transformer-large 32.2 0.570 0.539

 
In this case of low-data condition, using smaller 

and fewer layers are not beneficial for transformer-
based systems; smaller batch sizes are not useful 
either. 

Since the transformer-large is the best performing 
system, we have used it to evaluate word-based and 
subword-based models. Tables 5 and 6 show the 
performance results of the word-based and subword-
based models. All subword-based models outperform 
word-based ones by approximately three up to four 
BLEU. In table 5, in the English-to-Amharic 
translation, the word-piece technique has the best 
performance; BPE and ULM have almost equivalent 

4 Signature BLEU+case.mixed+numrefs.1+smooth.exp+ 
tok.13a+version.1.4.9 
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performances. Besides, a better result was achieved 
when transliteration is applied to Amharic data. In 
table 6, in Amharic-to-English translation, the ULM 
technique has the best performance; word-piece and 
BPE have comparable performances. 

Table 5: Performance results of word-based NMT, 
subword-based NMT, and PBSMT baseline models in 
English-to-Amharic translation. 

NMT Model BLEU BEER CharacTER
Word-based 23.0 0.510 0.592
BPE 25.7 0.547 0.525
ULM 25.6 0.548 0.524
Word-piece 26.7 0.552 0.523
Word-piece-no-
transliteration 26.0 0.546 0.528 

PBSMT-MERT 20.2 0.502 0.646
PBSMT-MIRA 19.4 0.485 0.702

Table 6: Performance results of word-based NMT, 
subword-based NMT, and PBSMT baseline models in 
Amharic-to-English translation. 

NMT Model BLEU BEER CharacTER
Word-based 29.1 0.537 0.592
BPE 32.7 0.571 0.534
ULM 33.2 0.578 0.527
Word-piece 32.2 0.570 0.539
PBSMT-MERT 25.8 0.508 0.633
PBSMT-MIRA 23.3 0.497 0.701

 
For the baseline PBSMT models, better scores 

were achieved when feature weights were tuned using 
MERT than MIRA. Thus, we took PBSMT-MERT as 
our strong baseline. The best subword-based models 
outperform the baseline models by approximately six 
up to seven BLEU. 

7 CONCLUSIONS 

We conducted Amharic-English NMT with complex 
morphology in low-resource conditions. Amharic has 
a rich morphology and uses the Ethiopic script. We 
used a new transliteration method that is useful for 
machine translation. To tackle the complex 
morphology and to make an open vocabulary 
translation, we used subwords. To segment words 
into subwords, we used word-piece, BPE, and ULM. 
Furthermore, based on the best practices of prior 
research in this line of work, we conducted NMT in 
low-data conditions. Thus, we used the transformer-
based NMT architecture by tuning the hyper-
parameters for low-data conditions. In this case of 
low-data condition, using smaller and fewer layers 

hurts the performance of the transformer-based 
system; smaller batch sizes are not beneficial either. 
In the evaluation of word-based and subword-based 
models trained on a benchmark dataset, all subword-
based models outperform word-based ones by 
approximately three up to four BLEU. Moreover, the 
best subword-based models outperform the baseline 
models by approximately six up to seven BLEU. 

We urge on using the universal transformer-based 
architecture (Dehghani et al., 2019), auxiliary data 
like monolingual corpora, and other word 
segmentation techniques for further research. We also 
recommend a study on the syntactic divergence of the 
languages. 
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