
Neural Machine Translation for Amharic-English Translation

Andargachew Mekonnen Gezmu1 a, Andreas Nürnberger1 b and Tesfaye Bayu Bati2 c
1Faculty of Computer Science, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, Magdeburg, Germany

2Faculty of Informatics, Hawassa University, Hawassa, Ethiopia

Keywords: Neural Machine Translation, Low-resource Language, Subword.

Abstract: This paper describes neural machine translation between orthographically and morphologically divergent
languages. Amharic has a rich morphology; it uses the syllabic Ethiopic script. We used a new transliteration
technique for Amharic to facilitate vocabulary sharing. To tackle the highly inflectional morphology and to
make an open vocabulary translation, we used subwords. Furthermore, the research was conducted on low-
data conditions. We used the transformer-based neural machine translation architecture by tuning the
hyperparameters for low-data conditions. In the automatic evaluation of the strong baseline, word-based, and
subword-based models trained on a public benchmark dataset, the best subword-based models outperform the
baseline models by approximately six up to seven BLEU.

1 INTRODUCTION

High-quality literary machine translation is not yet
achieved with the current neural machine translation
(NMT) models. Nonetheless, the models are quite
useful and proved to be productive at least for tasks
for which a rough translation is adequate. Good
examples are information access on the Web and
computer-aided human translation.

Despite its usefulness, NMT requires large
training data to build competitive models. It may
outperform phrase-based statistical machine
translation (PBSMT) if the training data are more
than 500 thousand parallel sentence pairs (Koehn and
Knowles, 2017; Lample et al., 2018). However, if the
system architecture is adapted to low-resource
settings and hyperparameters are tuned for low-data
conditions, then NMT may outperform PBSMT with
as few as five thousand sentence pairs (Sennrich and
Zhang, 2019).

In machine translation, we should also pay
attention to the morphology of languages. Amharic, a
Semitic language and lingua franca in Ethiopia, is one
of the languages that have highly inflectional
morphology. In Amharic, an orthographic word may
represent a phrase, clause, or sentence. For example,

a https://orcid.org/0000-0002-3424-755X
b https://orcid.org/0000-0003-4311-0624
c https://orcid.org/0000-0001-9042-7996

the word እስኪያብራራላቸው /ɨskiyabraralacəw/ meaning
“until he explains it to them” is a clause. This word
does not appear even once in the 24 million tokens
Contemporary Amharic Corpus 1 (Gezmu et al.,
2018). Yet its constituent stem and affixes – እስክ/ɨsk/-
ይ/y/-አብራራ/abrara/-ል/l/-አቸው/acəw/ – appear several
times in the corpus being part of other words. Here
the lexical word is አብራራ /abrara/; the other
grammatical words are attached to the lexical word.
The alignment of Amharic words to English often
appears to be one-to-many. Thus, the vocabulary of
the language is too large for NMT. For open
vocabulary NMT, using subword units has a vital
role.

Moreover, as seen in the above example, the
boundaries of morphemes are more easily identified
in the transliteration than in the original script. Any
word segmentation technique can take advantage of
the Amharic transliteration. The transliteration also
helps for sharing vocabulary with English especially
loan words and named entities.

Therefore, in this research, we deal with a case of
NMT between distant languages, Amharic and
English, with regard to their orthography and
morphology. It also deals with NMT in low-resource
conditions.

1 Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-
144

526
Gezmu, A., Nürnberger, A. and Bati, T.
Neural Machine Translation for Amharic-English Translation.
DOI: 10.5220/0010383905260532
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 526-532
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 TRANSLITERATION

Amharic uses the Ethiopic writing system. Even
though Ethiopic shares some features of abugida, the
Unicode Consortium (2020) considers it as “simple
syllabary”. The ancient Ethiopian Semitic language,
Ge’ez, originally uses the writing system. Ge’ez is
now extinct and used only for Liturgy.

Each character of the Ethiopic writing system is
formed by systematic integration of a consonant and
vowel (e.g., መ /mə/ and ሙ /mu/). Sometimes
consonants and vowels can be written as bare
consonants (e.g., ም /m/ and ን /n/) or bare vowels (e.g.,
አ /a/ in አለም /aləm/). In addition to the characters in the
basic script set, some characters represent labialized
variants of consonants followed by particular vowels.

There are also some homophonic characters in the
writing system (e.g., ሰ and ሠ represent /sə/ sound).
Originally, these characters had distinct sounds but
were lost in Amharic (Aklilu, 2004); they are the
source of many cognates. For instance, ሰም and ሠም are
transliterated as /səm/ meaning “wax”. In modern use,
the homophonic characters are used interchangeably.
For consistent spelling, the Ethiopian Languages
Academy proposed a spelling reform (Aklilu, 2004).
According to the reform, homophonic characters,
being redundant, should be reduced to their standard
forms. For example, instead of ሠ /sə/ the character ሰ
/sə/ should be used. Also, some labiovelars are
substituted by their closest counterparts in the basic
script set (e.g., ቍ by ቁ /qu/).

There is no case difference in Amharic. Unlike
other Semitic languages, such as Arabic and Hebrew,
it is written from left to right and its orthography is
nearly phonetic (Cowley, 1967).

There is no standard transliteration for Amharic.
In line with its unique features and the reform of the
writing system, we used a new transliteration scheme,
Amharic transliteration for machine translation
(AT4MT). To make it useful for machine translation,
our objective was to transliterate Amharic loan words
and named entities as close as the spelling of English
words. In doing so, we had to consider the restoration
of the original spelling to make it invertible. The
algorithm follows a rule-based approach2. It is similar
to the one shown in Algorithm 1 for converting an
Ethiopic numeral into an Arabic numeral. It maps
Ethiopic characters to their phonemic representations
in Latin-based characters. Table 1 demonstrates the
transliterations of some Amharic words.

2 The implementation is available at:
https://github.com/andmek/AT4MT

Table 1: Sample transliterations of Amharic words.

Amharic AT4MT English
ሆስፒታል hospital hospital
አንጌላ angela Angela
ማስክ mask mask
ኢራን iran Iran
ኢራቅ iraq Iraq
እስራኤል ɨsrael Israel
ራዲዮ radiyo radio

Though in the modern-day Amharic writings

Ethiopic numerals tend to be replaced by Arabic
numerals, still they are in use. Like Roman numerals,
the Ethiopic number system does not use zero or
digital-positional notation. A number is represented
by a sequence of powers of 100, each preceded by a
coefficient equivalent to 2 through 99. For example,
the number 345 is represented by 3*1001 + (40 +
5)*1000 = 3 100 40 5 = şƃŽƉ. Algorithm 1 converts
an Ethiopic numeral into an Arabic numeral.

Algorithm 1: An algorithm that converts an Ethiopic
numeral into an Arabic numeral.

ethiopic_arabic_table = { ፩:1, ፪:2, ፫:3, ፬:4, ፭:5, ፮:6,
፯:7, ፰:8, ፱:9, ፲:10, ፳:20, ፴:30, ፵:40, ፶:50,
፷:60, ፸:70, ፹:80, ፺:90, ፻:100, ፼:10000 }

FUNCTION ethiopicnum2arabicnum(number):
 IF LENGTH(number) == 1:
 RETURN ethiopic_arabic_table[number]
 result = 0
 FOR digit IN number:
 IF (digit == ፻) OR (digit == ፼):
 result = result * 100
 ELSE:
 result = result + ethiopic_arabic_table[digit]
 RETURN result

Transliteration of Amharic punctuation is a

straightforward process. Word boundary is
traditionally indicated by a colon like character (“፡”);
in modern use, a white word space is becoming
common. The end of sentence marker is a double-
colon like character (“።”) and is transliterated as a
period “.”. A comma, semicolon, colon, hyphen, and
question mark are “፣”, “፤”, “፥”, “፦”, and “፧” or “?”,
respectively; they have transliterated accordingly.

Neural Machine Translation for Amharic-English Translation

527

3 NMT SYSTEM

While Recurrent Neural Network (RNN) based
architectures (Sutskever et al., 2014; Bahdanau et al.,
2014) have been used for NMT to obtain good results,
the transformer-based ones are even enjoying better
success (Vaswani et al., 2017). The transformer-
based NMT system uses stacked layers to compute
representations of its input and output without using
RNNs. It uses a stack of identical, self-attention, and
fully connected layers for both the encoder and
decoder. Each layer has sub-layers. The first sub-
layer is a multi-head self-attention mechanism and the
second is a simple feed-forward network. In addition
to the two sub-layers, as in each encoder layer, the
decoder uses a third sub-layer, which performs multi-
head attention over the output of the encoder stack.

Because of the long training times of NMT
models, we followed best practices of prior research
in low-resource settings instead of working with all
possible architectures and hyperparameters. In RNN
based NMT systems, there are mixed opinions on the
size of training batch sizes in low-data conditions.
While Morishita et al. (2017) and Neishi et al. (2017)
are using large batch sizes, Sennrich and Zhang
(2019) recommend small batch sizes. There is also a
trend to use smaller and fewer layers (Nguyen and
Chiang, 2018).

Table 2: Differences between transformer-tiny,
transformer-small, and transformer-large; where TT is
transformer-tiny, TS is transformer-small, and TL is
transformer-large.

Hyperparameter TT TS TL
Batch size 1024 4096 1024
No. of heads 4 4 8
No. of hidden layers 2 2 6
Filter size 512 512 2048
Hidden size 128 128 512
Learning rate constant 2.0 2.0 0.1
Warmup steps 8000 8000 16000

Therefore, we used three different

hyperparameter set: transformer-large, transformer-
small, and transformer-tiny. All systems use Adam
optimizer (Kingma and Ba, 2014), dropout
(Srivastava et al., 2014) rate of 0.1, and label
smoothing (Szegedy et al., 2016) of value 0.1. Table
2 details the differences between the three systems.
Transformer-small and transformer-tiny differ only in
training batch sizes. Training batch sizes are given in
terms of source and target language tokens.

4 PBSMT BASELINE

Our PBSMT baseline system had settings that were
typically used by Ding et al. (2016), Williams et al.
(2016), and Sennrich and Zhang (2019). We used the
Moses (Koehn et al., 2007) toolkit to train PBSMT
models. For word alignment, we used GIZA++ (Och
and Ney, 2003) and the grow-diag-final-and heuristic
for symmetrization. We used the phrase-based
reordering model (Koehn et al., 2003) with three
different orientations: monotone, swap, and
discontinuous in both backward and forward
directions, being conditioned on both the source and
target languages. We removed sentence pairs with
extreme length ratios and sentences longer than
eighty tokens.

We used five-gram language models smoothed
with the modified Kneser-Ney (Kneser and Ney,
1995). KenLM (Heafield, 2011) language modeling
toolkit was engaged for this purpose. We have not
used extra big monolingual corpora for language
models. They are no longer the exclusive advantages
of PBSMT as NMT can also be benefited from them
(Sennrich and Zhang, 2019).

The feature weights were tuned using MERT
(Och, 2003). We also used k-best batch MIRA for
tuning (Cherry and Foster, 2012) by selecting the
highest-scoring development run with a return-best-
dev setting.

In decoding, we applied cube pruning (Huang and
Chiang, 2007), Minimum Bayes Risk decoding
(Kumar and Byrne, 2004), a distortion limit of six,
and the monotone-at-punctuation (do not reorder over
punctuation) heuristic (Koehn and Haddow, 2009).

5 EXPERIMENTS

We carried out the experiments in three scenarios. In
the first scenario, we evaluated the performance of
our three systems: transformer-tiny, transformer-
small, and transformer-large. Then we evaluated our
transliteration technique in the second scenario.
Finally, we made a comparison of word-based and
subword-based models in the third scenario. For the
last two scenarios, we employed the best performing
system in the first scenario. The same datasets were
used in all scenarios; preprocessing, training, and
evaluation steps were also similar.

NLPinAI 2021 - Special Session on Natural Language Processing in Artificial Intelligence

528

5.1 Datasets

We trained our models on the public benchmark
dataset, Amharic-English parallel corpus3, consisting
of 140 thousand sentence pairs. The development and
test sets have 2864 and 2500 sentence pairs.

5.2 Preprocessing

All the Amharic datasets were transliterated with
AT4MT; they were tokenized with an in-house
tokenizer. The English data sets were tokenized with
Moses’ script (Koehn et al., 2007).

For word-based models, we used a shared
vocabulary of the top 44000 most frequent tokens.
For subword-based models, we used word-piece (Wu
et al., 2016), byte pair encoding (BPE) (Sennrich et
al., 2016), and unigram language model (ULM)
(Kudo, 2018). For all techniques, the segmentation
models were built using the training datasets of both
languages separately. We used the word-piece
implementation in Google’s Tensor2Tensor library
(Vaswani et al., 2018); we used the BPE and ULM
implementations in Google’s sentence-piece library
(Kudo and Richardson, 2018). In this
implementation, we provide the desired vocabulary
size for BPE instead of the number of merge
operations as in its original implementation. To make
a comparison among the segmentation schemes,
tokens were segmented into 32000 subword
vocabularies using word-piece, BPE, or ULM.

5.3 Training and Decoding

We trained each NMT model for 250 thousand steps.
For decoding (inference), we used a single model
obtained by averaging the last twelve checkpoints.
Following Wu et al. (2016), we used a beam search
with a beam size of four and a length penalty of 0.6.

5.4 Evaluation

Eventually, translation outputs of the test sets were
detokenized and evaluated with a case-sensitive
BLEU metric (Papineni et al., 2002). For consistency,
we used Post’s (2018) implementation of the metric,
sacreBLEU4. To compensate for the limitations of
BLEU (Callison-Burch et al., 2006; Reiter, 2018), we
also used BEER (Stanojevic and Sima’an, 2014) and
CharacTER (Wang et al., 2016) metrics. The

3 Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-

145

Amharic outputs were not back transliterated to use
these automatic metrics effectively.

6 RESULTS

Tables 3 and 4 show the performance results of the
three systems with BLEU, BEER, and CharacTER
metrics in English-to-Amharic and Amharic-to-
English translations. In this scenario, only the word-
piece technique was used for word segmentation. The
transformer-tiny model is the least performing model.
The only difference between transformer-small and
transformer-tiny is their training batch sizes. By just
increasing the training batch size from 1024 to 4096,
we gained more than one BLEU score for both
English-to-Amharic and Amharic-to-English
translations. BEER and CharacTER scores also
reflect similar improvements. Unlike BLEU and
BEER, the smaller the CharacTER score, the better.
Transformer-large outperforms both systems.

Table 3: Performance results of transformer-tiny,
transformer-small, and transformer-large in English-to-
Amharic translation.

NMT System BLEU BEER CharacTER
Transformer-tiny 17.8 0.485 0.639
Transformer-small 18.9 0.498 0.614
Transformer-large 26.7 0.552 0.523

Table 4: Performance results of transformer-tiny,
transformer-small, and transformer-large in Amharic-to-
English translation.

NMT System BLEU BEER CharacTER
Transformer-tiny 24.0 0.523 0.629
Transformer-small 25.4 0.530 0.614
Transformer-large 32.2 0.570 0.539

In this case of low-data condition, using smaller

and fewer layers are not beneficial for transformer-
based systems; smaller batch sizes are not useful
either.

Since the transformer-large is the best performing
system, we have used it to evaluate word-based and
subword-based models. Tables 5 and 6 show the
performance results of the word-based and subword-
based models. All subword-based models outperform
word-based ones by approximately three up to four
BLEU. In table 5, in the English-to-Amharic
translation, the word-piece technique has the best
performance; BPE and ULM have almost equivalent

4 Signature BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.9

Neural Machine Translation for Amharic-English Translation

529

performances. Besides, a better result was achieved
when transliteration is applied to Amharic data. In
table 6, in Amharic-to-English translation, the ULM
technique has the best performance; word-piece and
BPE have comparable performances.

Table 5: Performance results of word-based NMT,
subword-based NMT, and PBSMT baseline models in
English-to-Amharic translation.

NMT Model BLEU BEER CharacTER
Word-based 23.0 0.510 0.592
BPE 25.7 0.547 0.525
ULM 25.6 0.548 0.524
Word-piece 26.7 0.552 0.523
Word-piece-no-
transliteration 26.0 0.546 0.528

PBSMT-MERT 20.2 0.502 0.646
PBSMT-MIRA 19.4 0.485 0.702

Table 6: Performance results of word-based NMT,
subword-based NMT, and PBSMT baseline models in
Amharic-to-English translation.

NMT Model BLEU BEER CharacTER
Word-based 29.1 0.537 0.592
BPE 32.7 0.571 0.534
ULM 33.2 0.578 0.527
Word-piece 32.2 0.570 0.539
PBSMT-MERT 25.8 0.508 0.633
PBSMT-MIRA 23.3 0.497 0.701

For the baseline PBSMT models, better scores

were achieved when feature weights were tuned using
MERT than MIRA. Thus, we took PBSMT-MERT as
our strong baseline. The best subword-based models
outperform the baseline models by approximately six
up to seven BLEU.

7 CONCLUSIONS

We conducted Amharic-English NMT with complex
morphology in low-resource conditions. Amharic has
a rich morphology and uses the Ethiopic script. We
used a new transliteration method that is useful for
machine translation. To tackle the complex
morphology and to make an open vocabulary
translation, we used subwords. To segment words
into subwords, we used word-piece, BPE, and ULM.
Furthermore, based on the best practices of prior
research in this line of work, we conducted NMT in
low-data conditions. Thus, we used the transformer-
based NMT architecture by tuning the hyper-
parameters for low-data conditions. In this case of
low-data condition, using smaller and fewer layers

hurts the performance of the transformer-based
system; smaller batch sizes are not beneficial either.
In the evaluation of word-based and subword-based
models trained on a benchmark dataset, all subword-
based models outperform word-based ones by
approximately three up to four BLEU. Moreover, the
best subword-based models outperform the baseline
models by approximately six up to seven BLEU.

We urge on using the universal transformer-based
architecture (Dehghani et al., 2019), auxiliary data
like monolingual corpora, and other word
segmentation techniques for further research. We also
recommend a study on the syntactic divergence of the
languages.

ACKNOWLEDGEMENTS

We would like to thank Nirayo Hailu and Tirufat
Tesfaye for their support.

REFERENCES

Aklilu, A. (2004). Sabean and Ge’ez symbols as a guideline
for Amharic spelling reform. In Proceedings of the first
international symposium on Ethiopian philology, pages
18–26.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural
machine translation by jointly learning to align and
translate. Computing Research Repository,
arXiv:1409.0473. version 7.

Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-
evaluating the role of Bleu in machine translation
research. In 11th Conference of the European Chapter
of the Association for Computational Linguistics,
Trento, Italy. Association for Computational
Linguistics.

Cherry, C. and Foster, G. (2012). Batch tuning strategies for
statistical machine translation. In Proceedings of the
2012 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 427–436, Montreal,
Canada. Association for Computational Linguistics.

Cowley, R. (1967). The standardization of Amharic
spelling. Journal of Ethiopian Studies, 5(1):1–8.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., &
Kaiser, Ł. (2019). Universal transformers. In
International Conference on Learning Representations,
pages 181–184, IEEE.

Ding, S., Duh, K., Khayrallah, H., Koehn, P., and Post, M.
(2016). The JHU machine translation systems for WMT
2016. In Proceedings of the First Conference on
Machine Translation: Volume 2, Shared Task Papers,
pages 272–280, Berlin, Germany. Association for
Computational Linguistics.

NLPinAI 2021 - Special Session on Natural Language Processing in Artificial Intelligence

530

Gezmu, A. M., Seyoum, B. E., Gasser, M., and Nürnberger,
A. (2018). Contemporary Amharic corpus:
Automatically morpho-syntactically tagged Amharic
corpus. In Proceedings of the First Workshop on
Linguistic Resources for Natural Language Processing,
pages 65–70, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Heafield, K. (2011). KenLM: Faster and smaller language
model queries. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, pages 187–197,
Edinburgh, Scotland. Association for Computational
Linguistics.

Huang, L. and Chiang, D. (2007). Forest rescoring: Faster
decoding with integrated language models. In
Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 144–
151, Prague, Czech Republic. Association for
Computational Linguistics.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. Computing Research
Repository, arXiv:1412.6980. version 9.

Kneser, R., and Ney, H. (1995). Improved backing-off for
m-gram language modeling. In 1995 International
Conference on Acoustics, Speech, and Signal
Processing, Volume 1, pp. 181–184). IEEE.

Koehn, P. and Haddow, B. (2009). Edinburgh’s submission
to all tracks of the WMT 2009 shared task with
reordering and speed improvements to Moses. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 160–164, Athens, Greece.
Association for Computational Linguistics.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,
Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., and Herbst, E. (2007). Moses: Open source toolkit
for statistical machine translation. In Proceedings of the
45th Annual Meeting of the Association for
Computational Linguistics, Companion Volume
Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic. Association for
Computational Linguistics.

Koehn, P. and Knowles, R. (2017). Six challenges for
neural machine translation. In Proceedings of the First
Workshop on Neural Machine Translation, pages 28–
39, Vancouver. Association for Computational
Linguistics.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical
phrase-based translation. In Proceedings of the 2003
Human Language Technology Conference of the North
American Chapter of the Association for
Computational Linguistics, pages 127–133.

Kudo, T. (2018). Subword regularization: Improving neural
network translation models with multiple subword
candidates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75, Melbourne,
Australia. Association for Computational Linguistics.

Kudo, T. and Richardson, J. (2018). SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing. In

Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Kumar, S. and Byrne, W. (2004). Minimum Bayes-risk
decoding for statistical machine translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004, pages 169–176, Boston, Massachusetts,
USA. Association for Computational Linguistics.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and
Ranzato, M. (2018). Phrase-based & neural
unsupervised machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 5039–5049, Brussels,
Belgium. Association for Computational Linguistics.

Morishita, M., Oda, Y., Neubig, G., Yoshino, K., Sudoh,
K., and Nakamura, S. (2017). An empirical study of
minibatch creation strategies for neural machine
translation. In Proceedings of the First Workshop on
Neural Machine Translation, pages 61–68, Vancouver.
Association for Computational Linguistics.

Neishi, M., Sakuma, J., Tohda, S., Ishiwatari, S.,
Yoshinaga, N., and Toyoda, M. (2017). A bag of useful
tricks for practical neural machine translation:
Embedding layer initialization and large batch size. In
Proceedings of the 4th Workshop on Asian Translation
(WAT2017), pages 99–109, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Nguyen, T. and Chiang, D. (2018). Improving lexical
choice in neural machine translation. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 334–343, New Orleans, Louisiana. Association
for Computational Linguistics.

Och, F. J. (2003). Minimum error rate training in statistical
machine translation. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics, pages 160–167, Sapporo, Japan.
Association for Computational Linguistics.

Och, F. J. and Ney, H. (2003). A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 186–191,
Brussels, Belgium. Association for Computational
Linguistics.

Reiter, E. (2018). A structured review of the validity of
BLEU. Computational Linguistics, 44(3):393–401.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units.

Neural Machine Translation for Amharic-English Translation

531

In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, Berlin, Germany.
Association for Computational Linguistics.

Sennrich, R. and Zhang, B. (2019). Revisiting low-resource
neural machine translation: A case study. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 211–221, Florence,
Italy. Association for Computational Linguistics.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958.

Stanojevic, M. and Sima’an, K. (2014). Fitting sentence
level translation evaluation with many dense features.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 202–206, Doha, Qatar. Association for
Computational Linguistics.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 2818–2826.

Unicode Consortium (2020). The Unicode Standard.
Unicode Consortium, Mountain View, CA.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A.,
Gouws, S., Jones, L., Kaiser, Ł., Kalchbrenner, N.,
Parmar, N., Sepassi, R., Shazeer, N., and Uszkoreit, J.
(2018). Tensor2Tensor for neural machine translation. In
Proceedings of the 13th Conference of the Association
for Machine Translation in the Americas (Volume 1:
Research Track), pages 193–199, Boston, MA.
Association for Machine Translation in the Americas.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need. In Advances in neural
information processing systems, pages 5998– 6008.

Wang, W., Peter, J.-T., Rosendahl, H., and Ney, H. (2016).
CharacTer: Translation edit rate on character level. In
Proceedings of the First Conference on Machine
Translation: Volume 2, Shared Task Papers, pages
505–510, Berlin, Germany. Association for
Computational Linguistics.

Williams, P., Sennrich, R., Nadejde, M., Huck, M., Haddow,
B., and Bojar, O. (2016). Edinburgh’s statistical machine
translation systems for WMT16. In Proceedings of the
First Conference on Machine Translation: Volume 2,
Shared Task Papers, pages 399–410, Berlin, Germany.
Association for Computational Linguistics.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al. (2016). Google’s neural machine
translation system: Bridging the gap between human
and machine translation. Computing Research
Repository, arXiv:1609.08144. version 2.

NLPinAI 2021 - Special Session on Natural Language Processing in Artificial Intelligence

532

