
Comparison between Filtered Canny Edge Detector and 
Convolutional Neural Network for Real Time Lane Detection in a 

Unity 3D Simulator 

Jurij Kuzmic and Günter Rudolph 
Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 14, Dortmund, Germany 

Keywords: Lane Detection, Convolutional Neural Network (ConvNet), Filtered Canny Edge Algorithm, Autonomous 
Driving, Simulator in Unity 3D, Sim-to-Real Transfer, Training Data Generation, Computational Intelligence. 

Abstract: This paper presents two methods for lane detection in a 2D image. Additionally, we implemented filtered 
Canny edge detection and convolutional neural network (ConvNet) to compare these for lane detection in a 
Unity 3D simulator. In the beginning, related work of this paper is discussed. Furthermore, we extended the 
Canny edge detection algorithm with a filter especially designed for lane detection. Additionally, an optimal 
configuration of the parameters for the convolutional neural network is found. The network structure of the 
ConvNet is also shown and explained layer by layer. As well known, a lot of annotated training data for 
supervised learning of ConvNet is necessary. These annotated training data are generated with the Unity 3D 
environment. The procedure for generation of annotated training data is also presented in this paper. 
Additionally, these two developed systems are compared to find a better and faster system for lane detection 
in a simulator. Through the experiments described in this paper the comparison of the run time of the 
algorithms and the run time depending on the image size is presented. Finally, further research and work in 
this area are discussed.  

1 INTRODUCTION 

In the autonomous vehicle industry, vehicles can 
drive independently and without a driver. To do this, 
these vehicles have to recognise the lane precisely in 
order not to get away from the road and not to injure 
the occupants. The lane markings are marked as solid 
or dashed lines on the left and right side of the road 
and are directly visible to the human eye. But for 
autonomous vehicles we need algorithms. These lines 
of the lane have to be distinguished and separated 
from other lines in the image by the autonomous 
vehicle. After the separation of the lines in a 2D 
image, the centre of the lane can be calculated next. 
Lane detection is not new and has been researched in 
the vehicle industry for a long time. Today, Lane 
Keeping Assist Systems (LKAS) or Lane Departure 
Warning Systems (LDWS) are standard equipment in 
some vehicles. These systems warn if you get out of 
lane or can even keep the car in the lane for a while. 
For example, at Nissan Motors such systems exist 
since 2001 (Tsuda, 2001), at Citroën since 2005 
(Web.archive, 2005) and at Audi since 2007 

(Audiworld, 2007). The problem in academic 
research is that algorithms and procedures, which are 
already established in the autonomous vehicle 
industry, are kept under lock and key and are not 
freely accessible. For this reason, own algorithms and 
procedures have to be researched and developed in 
the academic field.  

The goal of our work is to switch from the 
simulation we have developed before (Kuzmic and 
Rudolph, 2020) to the real model cars. In case of a 
successful transfer of simulation to reality (sim-to-
real transfer), the model car behaves exactly as before 
in the simulation. In the simulation, some tools keep 
the vehicle on track without visual evaluation. In 
reality, these aids do not exist. For this reason, the 
lane in the simulation also has to be recognised 
visually with a camera. For this purpose, two methods 
are implemented, tested and compared in this paper. 
These methods can not only be applied to the images 
from the simulation. After some adjustments of the 
parameters, these methods are also suitable for real-
world use. 
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2 RELATED WORK 

There are some scientific papers dealing with the 
detection of the lane, e.g. (Wang, Teoh, Shen, 2004) 
who have made the detection of the lane and tracking 
using B-Snake or (Kim, 2008) who has developed a 
robust lane-detection-and-tracking algorithm to deal 
with challenging scenarios such as a lane curvature or 
worn lane markings. Some scientific works use the 
Canny edge algorithm and hyperbola fitting to detect 
the lane (Assidiq, Khalifa, Islam, Khan, 2008). A 
fairly recent approach to detect lanes is to incorporate 
information from previous frames. This can be 
realised by combining the convolutional neural 
network (CNN) and the recurrent neural network 
(RNN) (Zou et al., 2020). As soon as 3D information 
is available, it is possible to distinguish between roads 
and obstacles (Nedevschi et al., 2004). Such 3D 
information can be obtained, for example, from 
LiDAR sensors (Beltrán et al., 2018). Another 
approach to get 3D information for lane or object 
detection is the stereo camera. This camera contains 
two cameras at a certain distance, similar to human 
eyes. This delivers two images. The two images can 
be used to determine the depth of the image to 
distinguish between roads, humans, cars, houses, etc. 
(Li, Chen, Shen, 2019). Also, some related scientific 
papers present the sim-to-real transfer. Most of them 
are deep reinforcement learning approaches. The goal 
of our work is to develop further methods for lane 
detection in a simulator, to perform a sim-to-real 
transfer and to switch from simulation to the real 
model vehicles. 

3 FILTERED CANNY EDGE FOR 
LANE DETECTION 

The Canny edge detector (Canny, 1986) is often used 
to create edges in a 2D image because it works 
quickly and accurately. In an image which shows a 
track, the human eye directly detects the track. But to 
keep a car in the lane, these lines have to be filtered 
first. For this reason, we have extended this algorithm 
and researched our procedure for filtering. To 
determine the lane using the Canny edge detector, a 
greyscale image has to be created from the coloured 
input image (Fig. 1, left). In the next step, an edge 
image has to be made from the greyscale image using 
the canny edge algorithm. Figure 1, right shows the 
generated edge image from the coloured input image. 
 

 
Figure 1: Image from the simulation. Left: Colour input 
image. Right: Generated Canny edge image. 

The edges can now be extracted as lines from the 
created edge image using the Hough transform (Canu, 
2018). This transformation gives the coordinates of 
all lines in the image as P (x1, y1) and Q (x2, y2) 
coordinates. Figure 2 shows all found lines from the 
edge image with the Hough transform demonstrated 
in a diagram. 

 
Figure 2: Plotted coordinates of lines after Hough transform 
(orange). Angles alpha and beta for comparison (green). 

For each line, the gradient (m) of the straight line is 
calculated. From this gradient, the angle in degrees to 
the X-axis can now be calculated with the arctangent 
function atan(m). After calculating the angles, all 
lines with an angle below 30° and above 80° (alpha 
and beta in Figure 2) can be ignored. These 
parameters work for our orientation and tilt of the 
camera in the simulation. If the position of the camera 
changes, these parameters can be adjusted in this 
algorithm. For all remaining (pre-filtered) lines the 
intersections with the X-axis (IX) can now be 
calculated and saved together with the P and Q 
coordinates of the straight line. In the next step, the 
smallest distance (D) on the X-axis has to be found 
from the centre of the image (B) to the left and right: 
D = |IX-B|. Search in a predefined radius (R) for 
further intersection points (IX) to calculate the centre 
of the lane marking. This parameter depends on the 
width of the image (pixels) and can also be adjusted. 
The following figure 3 shows this procedure. 
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Figure 3: Filtered lane points (IX). Found lane points left 
(black) and right (red) in a certain radius (dark-green). The 
input image frame and the middle of the vehicle (light-
green). 

So, an average function left and right can be 
calculated from the found lines. These intermediate 
functions are the course of the track marking left and 
right. To calculate the centre of the track, the centre 
can be calculated from these two average functions. 
The following figure 4 shows the lane before (Fig. 4, 
left) and after filtering (Fig. 4, right).  

 
Figure 4: Filtered Canny edge for lane detection. Left: 
Plotted lines after Hough transform in a colour input image. 
Right: Colour input image with filtered lane detection. 

In this example, it was assumed that the track is 
straight. On motorways, this is usually the case. At 
least in the relevant vicinity of the car. Actually, the 
motorways are only slightly curved. If the road is 
straight, only one orientation point left and right at a 
certain height (red points in figure 5) is sufficient to 
determine the lane course in the input image and to 
control the vehicle.  

 
Figure 5: Points of orientation at a certain height (red 
points) to calculate the centre of the lane and to keep the 
vehicle on track (controlling the car). 

However, if the road is curved, several orientation 
points at different heights are necessary. For this 

purpose, the image can be divided horizontally into 
several sections (Wang, Teoh, Shen, 2004). The 
number and height of the sections can be freely 
chosen. This horizontal split depends on the 
resolution, the visible image area and the tilt of the 
camera. As soon as the splitting is done, the lane 
markings left and right of each section can be 
recognised as a straight line with the filtered Canny 
edge algorithm. The following Figure 6 describes this 
procedure. The individual sections are separated by 
the horizontal orange lines. 

 
Figure 6: Multiple points of orientation for controlling the 
car. Section separator (orange lines). Points of orientation 
(green squares). 

After the lane detection for each section, the track 
markings are obtained as 2D coordinates left and right 
of the image. Thus, the lane centre can be determined 
or the course of the track can be approximated as a 
function. 

Our filtered Canny edge algorithm at a glance: 
0. As a preliminary work, the camera should be 

aligned and calibrated. Only the vital areas 
should be visible in the image (only the 
track). For example, the bonnet of the car or 
the power lines in the sky should not be 
visible. 

1. Create a greyscale image from the coloured 
input image. 

2. Create a Canny edge image from the 
grayscale image. 

3. Apply Hough transform to the edge image 
(2D coordinates for P and Q). 

4. Calculate the gradient (m) for each straight 
line. 

5. Calculate the angle with atan(m) from the 
gradient (m). 

6. Ignore all lines with an angle below 30° and 
above 80°. 

7. Calculate the points of intersection with the 
X-axis (IX) for the remaining lines. 

8. Save intersection points (IX) with the P and 
Q 2D coordinates. 
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9. From the centre of the image (B), find the 
smallest distance D = |IX-B| left and right. 

10. Search in a predefined radius (R) for further 
intersection points (IX) left and right. 

11. Calculate an average function (straight line) 
left and right from the found lines. 

12. Calculate the centre of the track from these 
two functions left and right. 

4 ConvNet FOR LANE 
DETECTION   

To train a convolutional neural network (ConvNet) 
optimally, a large number of annotated data points 
(training data) are required for supervised learning. 
Such data can also be created manually. However, 
with so many data points, annotation takes a very long 
time. Depending on the application, different data are 
also required. The amount of training data, the input 
and output data are also different. The CULane 
dataset (Pan, Shi, Luo, Wang, Tang, 2018) offers data 
for lane recognition for academic research. These 
have already been manually annotated. However, for 
further research, to perform a sim-to-real transfer, the 
simulation has to be adapted to the real application. 
In our case, the camera in the simulation has to have 
the same resolution and orientation as the camera in 
the model vehicle. For this reason, we have created 
our own automatically annotated data set. The next 
chapter describes this procedure. 

4.1 Data Set 

With our simulator in Unity 3D (Kuzmic and 
Rudolph, 2020), thousands of annotated training data 
(input and output data) could be generated 
automatically. For the automatic generation of the 
required data sets, two cameras were installed in the 
vehicle at the same place in the simulator. The first 
camera could see the environment normally (Fig. 7, 
left), the second camera could only see the lane 
markings left and right (Fig. 7, right).  

 
Figure 7: Camera images of the vehicle. Left: Camera for 
input images. Right: Camera for output images (only lane 
markings). 

These two images (Fig. 7) could be used for the 
further generation of the training data. The input 

image (Fig. 8, left) for the ConvNet was created from 
Figure 7, left. This was additionally converted into a 
greyscale image. To get the annotated data (output 
data), a binary image (Fig. 8, right) was created first 
from figure 7, right. For this purpose, a threshold had 
to be found and adjusted for the simulated images 
(Al-amri, Kalyankar, Khamitkar, 2010). This 
parameter depends on the strength of the different 
light influences in the image. 

 
Figure 8: Input and binary image for training. Left: 
Grayscale input image. Right: Binary image for annotation. 

From this binary image, the information for the left 
and right lane marking could be extracted (Fig. 9). 
The first step is to find the centre of the lane markings 
at a certain height. Since the heights are predefined 
(Y-coordinates), only the X-coordinate of these pixels 
is used as annotation for the input image (Fig. 8, left). 
In this case, the neural network has 14 outputs; one 
for each class. 

 
Figure 9: Coordinates of the track sequence for annotation 
of the input image. 

As explained in section 3, several orientation points 
should be defined for a winding road. For this reason, 
we have defined seven different heights to describe 
the straight or curved lane. These heights (32, 40, 52, 
66, 84, 104, 128) are important for the orientation of 
the camera and in our case, they are always the same 
for our camera. The following X-coordinates (46, 
319, 63, 286, 77, 251, 90, 221, 99, 197, 107, 179, 112, 
166) could be extracted from figure 9 from bottom to 
top. These X-positions serve as annotation for the 
input image (Fig. 8, left). Due to the fast generation 
of the training data, images with different width and 
height can be generated and automatically annotated. 
The following data sets were created and tested 
(width x height): 160x80, 320x160, 640x160 and 
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640x320 pixels. A total of about 100,000 data sets 
were created. Due to the automatic generation of the 
images, the data set contains colour images (RGB 
images), greyscale images and binary images as input 
with the corresponding annotation. 

4.2 Network Architecture 

After a long period of training, evaluation and testing, 
we found an optimal configuration for the ConvNet 
for our training data. The convolutional layers are 
characterized by the parameters output, kernel and 
stride. Output is the number of output filters in the 
convolution. Kernel is specifying the height and 
width of the 2D convolution window which moves 
over the pixels in the input image. Stride is specifying 
the steps of the convolution along with the height and 
width and is almost always symmetrical in the 
dimension (TensorFlow, 2020). We used Rectified 
Linear Unit (ReLU) as an activation function for all 
layers. In the last dense layer (fully connected layer), 
we used a linear function as activation for regression. 
The convolutional neural network is structured as 
follows (Winkel, 2020): 
 

       Convolutional (8, k = (5, 5), s = (2, 2)) 
 2 x Convolutional (8, k = (3, 3), s = (1, 1)) 
       Dropout (0.5) 
       Convolutional (16, k = (5, 5), s = (2, 2)) 
 2 x Convolutional (16, k = (3, 3), s = (1, 1)) 
       Dropout (0.5) 
       Convolutional (32, k = (5, 5), s = (2, 2)) 
 2 x Convolutional (32, k = (3, 3), s = (1, 1)) 
       Dropout (0.5) 
       Convolutional (64, k = (5, 5), s = (2, 2)) 
 2 x Convolutional (64, k = (3, 3), s = (1, 1)) 
       Dropout (0.5) 
       Flatten 
       Dense (2000) 
       Dense (1000) 
       Dense (200) 
       Dense (14) 

 
The last dense layer shows the number of outputs of 
the neural network. In our example, this contains 14 
outputs for each X-coordinate of the lane (see section 
4.1). The experiments with the convolutional neural 
network are discussed next. 

5 EXPERIMENTS 

The following experiments were carried out to 
compare the functionality and the run time of filtered 
Canny edge algorithm and ConvNet for lane 
detection. The resolution is in the format width x 
height. All experiments (training of the ConvNet and 

the run time measurements) are carried out on the 
same hardware: Intel i7-9750H, 16 GB DDR4, 256 
GB SSD, NVIDIA GeForce GTX 1660 Ti. This gives 
the possibility to compare the results afterwards. The 
input images for the respective methods are also the 
same. 

5.1 Filtered Canny Edge for Lane 
Detection 

The following Table 1 shows the run time of the 
filtered Canny edge algorithm compared to the size of 
the input image. The size of the section in the image 
was evenly split. For an image with 160x80 pixels, it 
corresponds to a section size of 10 pixels in height. 
The time measurement per image is given in 
milliseconds. Since the determination of the lines in 
an image per section is different. So the average time 
for the calculation of the section was built. Through 
the input image is split into sections once, the time for 
splitting (ct) is calculated only once. The run time (t) 
in table 1 results from 𝑡 = 𝑠𝑡 • 𝑠 + 𝑐𝑡. 

Table 1: Run time of the filtered Canny edge detection 
algorithm for lane detection. First column contains the 
number of the experiment (Exp. No.). 

Exp. 
No. 

Resolution 
[Pixel] 

Section
(s) 

Crop 
[ms] (ct) 

Section 
Time 

[ms] (st) 

Run 
Time 

[ms] (t)
1 160x80 

1 

0 2.99 2.99 
2 320x160 0 6.00 6.00 
3 640x160 0 9.97 9.97 
4 640x320 0 12.98 12.98 
5 160x80 

8 

< 0.01 0.37 2.97 
6 320x160 < 0.01 0.74 5.93 
7 640x160 0.96 1.99 16.88 
8 640x320 1.00 2.62 21.96 

The various experiments have shown that larger 
images provide more accurate lane detection. But, 
finding the lane in this input image also takes longer. 
If the resolution is doubling, the run time for finding 
the lane in this image is doubling, too (comparison of 
the run times no. 1 and 2 in table 1). For this reason, 
we have chosen the resolution 320x160 pixels as the 
optimal resolution for lane detection for our data. In 
straight and curved roads, the evaluation takes about 
six milliseconds per frame from the input image 
(comparison of the run times no. 2 and 6 in table 1). 

5.2 ConvNet for Lane Detection 

The first step is to find the optimal input for the 
convolutional neural network. Colour images, 
greyscale images and binary images are available for 
this purpose. To decide for one of these images, the 
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neural network has to be trained with these images 
and the results have to be compared afterwards. By 
mixing (shuffle) the data sets, each run of training is 
different. The best model from ten training runs is 
evaluated. The error is given in per cent and per class. 
To compare the errors on different image sizes, this 
error is calculated with the image width (pixels).   

 
Figure 10: Diagram of training the ConvNet with two 
classes. Error in per cent after ten training times with 
different image resolution. The smallest value is the best. 

 
Figure 11: Diagram of training the ConvNet with 14 
classes. Error in per cent after ten training times with 
different image resolution. The smallest value is the best. 

As can be seen on these two diagrams, the models 
trained with the binary images provide better 
(smaller) error rates. This is the case for 2 (Fig. 10) 
and 14 classes (Fig. 11). However, these models can 
only be used in the simulation. Because of the 
different light influences in the real image, the 
threshold for the creation of the binary images has to 
be found and adjusted every frame. This is not the 
case with the simulated images. Also, the various 
experiments have shown that models with the 
greyscale image as input usually result in a higher 
regression accuracy than the input with RGB images. 
Depending on the use case, this result can be 
confirmed (Bui et al., 2016). This result also depends 
on the nature of images to be classified (Yadav, 
2015). As soon as more information is needed from 
the images, a colour image can sometimes achieve 
better results than a greyscale image. Let us now look 
at the colour and greyscale image models. It can be 
seen that the model trained with greyscale images 
with two classes as output and the 160x80 pixels 
resolution provides the smallest error. So it is more 

accurate compared to other models with two classes. 
With 14 classes, the best result is achieved with the 
model trained with colour images and the pixel size 
320x160. After these experiments, the run time (Tab. 
2) for the detection of the lane can be measured. For 
this purpose, the best models of colour images and 
greyscale images for the respective resolution are 
tested. Classes 2 and 14 in table 2 correspond exactly 
to sections 1 and 8 in table 1 of the experiments for 
the filtered Canny edge for lane detection. 

Table 2: Run time of the ConvNet for lane detection. First 
column contains the number of the experiment (Exp. No.). 

Exp. 
No. 

Resolution 
[Pixel] 

Class Model Error 
[%] 

Run Time 
[ms] 

1 160x80 2 Grey 0.56 18.15 
2 Colour 0.81 17.95 
3 320x160 2 Grey 1.58 18.95 
4 Colour 1.63 19.05 
5 640x160 2 Grey 0.81 19.65 
6 Colour 1.02 20.75 
7 640x320 2 Grey 2.67 22.64 
8 Colour 1.15 27.33 
9 160x80 14 Grey 0.95 18.45 
10 Colour 1.02 17.80 
11 320x160 14 Grey 0.94 18.85 
12 Colour 0.80 20.05 
13 640x160 14 Grey 1.26 19.65 
14 Colour 1.41 21.09 
15 640x320 14 Grey 1.66 22.25 
16 Colour 2.03 25.04 

In these experiments can be seen, that the number of 
classes does not affect the run time (comparison of 
run times no. 1 and 9 in table 2). The models with the 
colour images as input require more run time 
compared to the greyscale images as input to achieve 
the desired output (comparison of the run times no. 
15 and 16 in table 2). Because the greyscale images 
have only one colour channel. In comparison, the 
colour images have three colour channels. The run 
time also increases for larger images compared to 
smaller images as input (comparison of run times no. 
1 and 15 in table 2). Since the kernel of the 
convolutional layer passes through more pixels in the 
input image. Also, the error of the trained model does 
not affect the run time (comparison of the run times 
no. 7 and 8 in table 2). 

5.3 Evaluation of Results 

After the performance tests for the filtered Canny 
edge detection and the convolutional neural network, 
these two procedures can be compared and evaluated. 
The filtered Canny edge algorithm needs approx. 6 
milliseconds (ms) to detect the lane in a 320x160 
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pixel image. With a video recording of 30 frames per 
second (FPS), the actual frame rate decreases because 
6 additional milliseconds are needed to determine the 
lane per frame (6 𝑚𝑠 • 30 = 180 𝑚𝑠). The System 
needs approx. 1.18 seconds to process 30 frames. 
Calculated to the frames per second, it is around 25 
FPS. The ConvNet needs about 19 ms to determine 
the lane in a 320x160 pixel greyscale image with our 
computer hardware. Additionally, this procedure 
requires 570 ms per 30 frames (19 𝑚𝑠 • 30 =570 𝑚𝑠). This reduces the actual frame rate to about 
19 FPS. Some front cameras installed in self-driving 
cars in the automotive industry can record 1080p 
videos at up to 60 FPS (Texas Instruments, 2021). 
This means, up to 44 FPS for filtered Canny edge 
method and 28 FPS for ConvNet could be achieved. 
The following calculations depend on the hardware of 
the system. As a standard, videos with a lot of motion 
are recorded at 30 FPS (Brunner, 2017). Therefore, 
both tested procedures are suitable for lane detection. 
Both models (Fig. 12 and Fig. 13) are successfully 
tested in the simulator. The plot of the lane is taken 
from the camera of the red vehicle. 

 
Figure 12: Testing of filtered Canny edge for lane detection 
in the simulator. The plot of the lane is taken from the 
camera of the red vehicle. 

 
Figure 13: Testing of ConvNet for lane detection in the 
simulator. The plot of the lane is taken from the camera of 
the red vehicle. 

The evaluation of the results gives the following 
advantages for the filtered Canny edge method 
compared to the ConvNet: Faster detection of the lane 
(factor of 3 on our hardware), no training of the 
artificial neural network, no training data necessary, 

after adjusting the parameters - ready for different 
camera orientations. 

6 CONCLUSIONS 

This section summarizes once again the points that 
were introduced in this paper. Two methods are 
presented and tested for the detection of the lane. The 
first method is the Canny edge detector, which has 
been extended by us. This is called filtered Canny 
edge for lane detection. The lines are extracted from 
an edge image and filtered under certain parameters. 
This method can be used for straight and curved 
roads. For curved roads, the input image can be split 
horizontally into several sections. This algorithm can 
be applied to each of these sections to find the track. 
The smaller sections give a more accurate 
approximation of the lane course. The second method 
is a convolutional neural network, which is trained to 
recognise the course of the track. Seven heights 
(vertical) are defined in a 2D image. At these heights, 
the X-coordinates for the track left and right are taken 
and given to the convolutional neural network for 
training. So the output of the ConvNet is 14 output 
values, which describe the lane on seven different 
heights. The found network structure is also presented 
to implement this method of lane detection. The 
acquisition of automated annotated training data from 
the simulation is also presented. Experiments are 
carried out for both procedures to make comparisons 
and to find a suitable system for lane detection for a 
model vehicle. Both presented methods are suitable 
for the detection of the lane in a 2D image in terms of 
quality and performance. For example, at 30 FPS, 
there would be no jerking in the detection of the track 
for each individual frame. 

7 FUTURE WORK 

As already announced, the goal of our future work is 
to carry out a sim-to-real transfer successfully. This 
means that the simulated environment is completely 
applied to a real model vehicle. Thus, the behaviour 
of the vehicles in the simulation can be compared 
with the behaviour of the model vehicles in reality.  
Especially, it is exciting to see how much FPS the 
model car can work with. An important aspect on 
motorways is the automatic creation of an emergency 
corridor for the rescue vehicles in the case of an 
accident. It is exciting to see whether the model 
vehicles can form an emergency corridor for the 
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rescue vehicles. For example, how do the model 
vehicles behave if an accident occurs? What is the 
behaviour of the car if the radar sensor unexpectedly 
fails or there are unexpected obstacles on the road, for 
example, a deer crossing? These questions can be 
answered after the sim-to-real transfer.  
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