
Machine Learning within a Graph Database: A Case Study on Link
Prediction for Scholarly Data

Sepideh Sadat Sobhgol1 a, Gabriel Campero Durand2 b, Lutz Rauchhaupt1 c and Gunter Saake2 d

1Ifak e.v.Magdeburg, Germany
2Otto-von-Guericke University, Magdeburg, Germany

Keywords: Graph Analysis, Network Analysis, Link Prediction, Supervised Learning.

Abstract: In the combination of data management and ML tools, a common problem is that ML frameworks might
require moving the data outside of their traditional storage (i.e. databases), for model building. In such scenar-
ios, it could be more effective to adopt some in-database statistical functionalities (Cohen et al., 2009). Such
functionalities have received attention for relational databases, but unfortunately for graph-based database
systems there are insufficient studies to guide users, either by clarifying the roles of the database or the pain
points that require attention. In this paper we make an early feasibility consideration of such processing for a
graph domain, prototyping on a state-of-the-art graph database (Neo4j) an in-database ML-driven case study
on link prediction. We identify a general series of steps and a common-sense approach for database support.
We find limited differences in most steps for the processing setups, suggesting a need for further evaluation.
We identify bulk feature calculation as the most time consuming task, at both the model building and inference
stages, and hence we define it as a focus area for improving how graph databases support ML workloads.

1 INTRODUCTION

Authors commonly define Machine learning (ML)
as the process of solving a problem by relying
on a dataset and building a statistical model over
it (Burkov, 2019). With the continuous digitization
of everyday life, ML has become an increasingly
popular way for companies to extract business in-
sights from their copious data, and to offer new ser-
vices (Shoham et al., 2018). Instead of having to
move a large amount of data outside of databases, into
another tool, for building ML models, it would be
much more convenient and efficient to have a sin-
gle platform in which the traditional storage and the
novel processing can be both embedded. Hence, in-
tegrating ML algorithms into existing database sys-
tems so that we can take advantage of the bene-
fits in both technologies is an active area of re-
search, specially in relational databases (Kumar et al.,
2017). However the development of such extensions
for databases with non-relational models (e.g. doc-

a https://orcid.org/0000-0002-9746-3612
b https://orcid.org/0000-0002-4901-1849
c https://orcid.org/0000-0002-6907-0520
d https://orcid.org/0000-0001-9576-8474

ument or graph models) has not received similar in-
terest at this stage. Graph databases are a type of
database system that allows to store entities as nodes
and edges in a graph data model. In addition these
systems offer specialized query languages and plugin
libraries to express queries from the field of network
science (e.g. connected components, shortest paths,
etc.). Considering analysis, graph databases provide
natural support for network-based feature engineer-
ing, potentially helping ongoing ML tasks in finding
more context for data items (by considering their re-
lationships). These observations on: a) the potential
of graphs to improve ML processes, and b) existing
limitations in tooling to support such processes, serve
as compelling motivations for research.

In this work we aim to identify how a general case
study might look like. We also seek to evaluate from
a practical perspective, the pipeline of running clas-
sifiers on graph databases, compared to running them
outside of the database system, and to identify in an
early stage, the stress points of the process. From our
research we are interested in execution time, F-scores
of the trained models (to assess the feasibility of the
model), and complexity of implementation.

The ML task that we choose for our study is
link prediction. Link prediction is defined as the

Sobhgol, S., Durand, G., Rauchhaupt, L. and Saake, G.
Machine Learning within a Graph Database: A Case Study on Link Prediction for Scholarly Data.
DOI: 10.5220/0010381901590166
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 159-166
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

159



task of predicting the (future) possible connections
among nodes in different networks (Agarwal et al.,
2012), given features from the current state of the net-
work. This task is a very common ML task on graphs,
and it has applications in social networks, chemistry
and other domains.

To support such a task in- and outside a graph
database, we require a process that follows the next
steps:

1. Data Preparation, which includes train and test
data split.

2. Model Building, covering training and storing a
model inside the database.

3. Model Exploration, which includes the explo-
ration of the model by utilizing meta-data. This
is beyond the scope of this research.

4. Inference, which includes using the model to
make new predictions, given data passed as an ex-
ample.

After defining the steps of the process, we can now
establish the main contributions of this study: a) We
provide a simple prototype for link prediction us-
ing traditional network features and XGBoost, over
a subset of the Microsoft Academic Graph. 1. b) We
compare the costs of data split and feature calcula-
tion using an off-the-shelf database, and in- and out-
database processing. c) We validate the feasibility of
our pipeline, with limited hyper-parameter tuning and
feature importance analysis. d) We report early re-
sults for inference in- and outside the database. The
remainder of this paper is structured as follows: Sec. 2
provides basic concepts for graph ML tasks and link
prediction. Sec. 3 introduces our research questions
and the setup for our study. We follow with our re-
sults in Sec. 4 and we wrap-up with our conclusions
and suggestions for future research, in Sec. 5.

2 BACKGROUND

In this section, we briefly establish key terms and con-
text to understand our study. We start with a basic
listing of ML tasks on graph data and ML-driven ap-
proaches towards link prediction.

2.1 Machine Learning Tasks On Graphs

The most common ML tasks on graphs that can be
found in the literature include Link Prediction, Com-
munity Detection (Agarwal et al., 2012), Node Clas-

1The code is available online https://github.com/
sepideh06/ML-on-graphs/

sification (Agarwal et al., 2012), Anomaly Detec-
tion (Kaur and Singh, 2016; Chu et al., 2012) and
Graph Embedding (Wang et al., 2016; Goyal and Fer-
rara, 2018). In traditional research graph features are
calculated and then fed to ML models such as SVMs,
or Random Forests (Agarwal et al., 2012), in recent
years the use of graph neural networks has been pop-
ularized, leading to improvements over more tradi-
tional models (Dwivedi et al., 2020).

The task of link prediction is to predict the possi-
bility of a future connection between nodes by using
features of the entities in the current graph (Agarwal
et al., 2012; Vartak, 2008). Current link prediction
algorithms can be categorized into supervised (Tang
et al., 2016), unsupervised (Kashima et al., 2009) and
semi-supervised (Berton et al., 2015) methods.

2.2 Machine Learning Approaches
towards Link Prediction

For a set of training data, if there is a link between two
vertices, the data point will get a label +1 otherwise
-1. A classification model which is based on this def-
inition needs to predict a label for data points which
are not currently linked in the train dataset. Classi-
fication models can be built based on a set of fea-
tures, such as so-called graph-topological features, in-
cluding Node Neighborhood-Based Features (based
on this feature, the probability of having connection
between two nodes x and y grows if the number
of neighbours they share increases), Path-based Fea-
tures and Features based on Node and Edge Attributes
(Agarwal et al., 2012; Mutlu and Oghaz, 2019).
Different supervised learning algorithms have been
used in the literature for this classification includ-
ing naive Bayes, k-nearest neighbors, neural net-
works, support vector machines and XGBoost. Com-
paring the performance of different classification al-
gorithms on link prediction task, shows that XG-
Boost (Becker et al., 2013) is an appropriate solution
especially when we deal with unbalanced data (Chuan
et al., 2018). Based on (Al Hasan et al., 2006), the per-
formance of the mentioned algorithms on BIOBASE
and DBLP datasets are shown to not be as good as
the performance of XGBoost. Apart from traditional
supervised algorithms, there are also other emerg-
ing approaches towards link prediction. For exam-
ple a state of the art solution for finding relations
between semantic concepts on the WN18RR dataset
has been presented by Pinter and Einstein (Pinter
and Eisenstein, 2018). Other recent models for link
prediction include DihEdral (Xu and Li, 2019), In-
teractE (Vashishth et al., 2019), HypER (Balazevic
et al., 2018), ConvE(Dettmers et al., 2018) and De-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

160



Com (Kong et al., 2019) which are all designed based
on neural networks. Such approaches rely more
on neighborhood information and less on traditional
graph topological features.

3 LINK PREDICTION ON A
SUBSET OF THE MICROSOFT
ACADEMIC GRAPH

In this section, we introduce our research ques-
tions. We also describe the key components of our
approach including our dataset, and the studied con-
figurations for the ML process with a graph database.

3.1 Research Questions

To guide our research to support a standard ML pro-
cess over a graph model, we have chosen a list of re-
search questions:

1. Data Preparation. What is the impact, in terms
of execution time, of performing data splitting
and feature calculation in- and outside of the
database?

2. Model Building. How efficient is it to build, store
and evaluate a model in- and outside the Neo4j
graph database? How relevant are different com-
binations of graph features to improve the ac-
curacy (efficacy) of the selected link prediction
model?

3. Inference. How does the size of data which is
used for inference affect the performance of the
task?

3.2 Dataset

The dataset we have selected to use, is a subset of the
Microsoft Academic Graph (Sinha et al., 2015), (pub-
lished on 2018-11-09). This dataset contains infor-
mation about scientific publications, journals, con-
ferences, the relationships between publications, au-
thors, affiliations and the relationships between au-
thors and papers.

Fig. 1 shows a Co-authorship network which is
a type of bibliographic network, such as the MAG.
Nodes represent the relations between papers, venues,
topics and authors (Lee and Adorna, 2012).

We choose publications and their relationships
with authors for our link prediction task to predict
possible future collaboration between authors. Since
as we get close to 2019, the number of publications
gets quite large, for our study we decided to choose

Figure 1: Schema of co-authorship network (based on (Lee
and Adorna, 2012)).

all publications as of selected years (we report using
the year 1989). For the first year considered we label
publications as train and test both, with the links of
the following year considered for the train labels. For
the test data we have used the data of both the first
and second year, with the links of the third year used
as test labels. We did not consider information from
years previous to the one taken as the first year. Our
dataset consists of 6.7 M papers, distributed as fol-
lows for the three years (1989, 1990, 1991): 2.1 M,
2.3 M, 2.3 M, and 10 M authors. In terms of relation-
ships, the dataset contains 16.5 M authorship relation-
ships, distributed as follows for the selected years: 5.2
M, 5.6 M, 5.7 M. It also contains 54 M co-authorship
relationships, distributed as follows: 15 M, 20 M,
18.7 M, and 3 M citation relationships among the
papers of the corresponding years. We report the in-
formation for co-authorships in duplicate, to account
for the un-directed nature of edges. Otherwise there
are, 27 M edges for co-authorships in the selected
years.

Fig. 2 shows a visualization of the co-authorship
graph for the years we study (based on a random sam-
ple of 50k edges), using the OpenOrd (Martin et al.,
2011) algorithm for graph layouting as provided in
Gephi. The figure shows nodes (authors) with colors
and sizes proportional to the number of edges (co-
authorships) connected to them. The figure shows a
general pattern where most authors have a small num-
ber of co-authorships on the year, creating the multi-
plicity of blue leaf-like relationships that make-up the
largest area of the graph. At the center, with darker
colors, there are small numbers of authors forming
very dense communities of collaborations.

Machine Learning within a Graph Database: A Case Study on Link Prediction for Scholarly Data

161



Figure 2: Visualization of Co-authorship Graph for 1991,
based on Gephi and OpenOrd Layouting algorithm.

3.3 Link Prediction with a Graph
Database: A Stored
Procedure-based Approach

In this section we introduce the different execution
scenarios we consider for involving a graph database
in the ML task. For this paper we choose Neo4j
as our graph database. It is a popular database sup-
porting property graphs, equipped with the Cypher
query language. Executing the process from outside
of a database is straight-forward: the database can
be used for storing the intermediate data between
steps (e.g. test and train splits, and the model it-
self), and the interaction with the database can be ac-
complished through a program developed by a user
that employs a client from the database with its API
for database interaction. The execution from inside
the database follows a similar logic, but the code with
the client connection has to be shipped beforehand to
the database, as a stored procedure. This stored pro-
cedure can then be called from outside, as a request to
the database, and its execution starts and concludes on
the server side. Fig. 3 describes the generic process of
doing link prediction in- and outside the database. The
feature calculation (offline) stands for those features
which can be independently calculated for each node
such as PageRank (which is used to compute the rank
of a node by iteratively propagating node importance
over the graph). There are also some other features
such as ’common neighbours’ or ’shortest path’ which
are required to be calculated on the fly because they
arefor a specific pair of nodes (for example a pair of
authorIDs) and need to be computed online.

Figure 3: In-Database and Outside of Database Link Pre-
diction.

4 EVALUATION

4.1 RQ1: Data Preparation

In this section, we provide experimental insights to
answer to the first of our research questions.

4.1.1 Creating Balanced Training and Testing
Datasets

With link prediction, we are interested in predict-
ing the possible future collaboration between au-
thors. This dataset provides a good criteria for split-
ting train and test data, by using the ’Year’ for each
publication. However existing links need to be com-
plemented with a selection of non-existing links (for
training on both kinds of labels). To this end we
randomly sample without repetition from the set of
all possible non-existing links, until we match the
number of positive examples in the corresponding
split. We make two different lists of train and test pairs
(just the ids of the nodes), and we save the lists back in
the database, as properties of two nodes named train
and test. These nodes are further tagged, with a times-
tamp and additional metadata, to facilitate keeping
track of ML experiments. In order to split data effi-
ciently, a stored procedure is required to be inserted
into Neo4j as a plugin.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

162



4.1.2 Feature Calculation

For our dataset, we consider five features includ-
ing ’common neighbours’, ’shortest path in co-
author graph’, ’second shortest path in co-author
graph’, ’shortest path in citation graph’ and ’second
shortest path in citation graph’. We calculate these
features because previous work establishes that some
similarity measurements (Al Hasan et al., 2006; Han
and Xu, 2016), such as shortest path and common
neighbours., have been shown to contribute to good
model performance. For example the shortest distance
between two authors will be calculated by counting
the number of hops between them. This captures the
idea that perhaps a smaller distance between authors
could be an indicator of their possibility of collabo-
rating in the future. All the features can be calculated
by using Cypher queries.

In order to understand the density of our data, we
calculate the distribution of our features for posi-
tive and negative observations. We employ cumula-
tive distribution plots to describe a summary of the
connection between authors in terms of different fea-
tures. Fig. 4 and Fig. 5, the distribution plots for
train and test data for the feature ’Shortest Path in co-
Author graph’ are presented. For train data in Fig. 4
and for ’exist’ connections, -1 is representative of no
shortest path. The Cypher query return -1 instead of
0, if there is no shortest path between a pair of au-
thor. The plot depicts that a value of 2 hops covers
more than 300 authors and very small number have
a shortest path greater than 20. For ’non-exists’ con-
nections, there is no shortest path between more than
400 authors. A very small portion have a shortest path
greater than 20. The distribution plots for train and
test data for the other features repeats similar patterns
concerning a clear difference in the distributions be-
tween labels (signalling the common-sense nature of
the selected features), and stability in label distribu-
tions across the years.

4.1.3 Experiment Result

This process of reading pairs of authors and calculat-
ing five features for each pair is quite time consuming,
so for the sake of repeated experiments, we sampled
2k random observations at a time. Table. 1 shows the
recorded time for splitting data and calculating fea-
tures in- and outside the data base. Data split inside
the database takes 2 times less than doing the process
outside the database. In addition, there are smaller rel-
ative performance improvements in feature calcula-
tion for in-database usage.

Figure 4: Shortest Path-CoAuthor Graph-Train Data.

Figure 5: Shortest Path-CoAuthor Graph-Test Data.

Table 1: Data Split and Feature Calculation In- and Outside
Neo4j.

In- Outside Graph DB
Data Split 3.1 minutes 7.2 minutes
Feature Calculation 15.21 hours 16.93 hours

4.2 RQ2: Model Creation

In this section we present the results of our exper-
imental evaluation on the aspects of model build-
ing, addressing the second of our research ques-
tions. In order to create and train a model, a
list of parameters needs to be set which will be
later passed to the train function of XGBoost. The
key parameters which affect the most the perfor-
mance of the model are ’learning rate’, ’n estimators’
and ’early stopping rounds’. The last parameter will
make the algorithm stop if after a certain number of
iterations, no improvement in ’log loss’ or ’classifi-
cation error’ of algorithm is obtained. The goal is to
minimize ’mlog loss’ by setting other parameters such
as ’n estimators’ and ’learning rate’ to some optimal
values.

Fig. 7 is the result of including all 5 features
and having ’learning-rate’ equal to 0.01. The mini-
mum log loss is 0.483624 which is obtained at iter-
ation 99. By changing ’learning-rate’ to 0.001 and
’n-estimators’ to 500,700,1000, we get higher mlog
loss equal to 0.490644. The second attempt in which
the ’learning-rate’ is equal to 0.01 generates the min-
imum error for our dataset. The value we consider for

Machine Learning within a Graph Database: A Case Study on Link Prediction for Scholarly Data

163



Figure 6: XGBoost mlog loss for 24 iterations-0.1 learning
rate-5 features.

Figure 7: XGBoost mlog loss for 100 iteration-0.01 learn-
ing rate-5 features.

mlog loss is based on test set (orange line), since the
result for train set is so optimal which signals that we
could be overfitting. In the next step, we would like to
know which features are more valuable in building the
decision trees within the XGBoost model. The impor-
tance score can be calculated for each feature, help-
ing the features to be ranked and prioritised within
the dataset. For calculating importance of each fea-
ture, we can make use of the Gini Index. Feature im-
portance give us an array of values for our 5 fea-
tures. Table.2 shows the values for each feature in
Threshold column. Common neighbour and second
shortest path in citation graph have the least val-
ues and hence can be considered as the most impor-
tant features. ’SelectFromModel’ class which belongs
to ’scikit-learn’library in Python will consider each
score as a threshold. Applying threshold will help to
filter one or more features in each step to observe if
the performance of the model improves. Considering
all features, first of all we train a model using our train
dataset, then measure the performance of the model
on the test data considering the same feature selec-
tion. Table.2 shows that the performance of the model
does not change by decreasing the number of selected
features until the last step , in which F-score decreases
from 81.65% to 76.98%. Apart from reducing the fea-

Table 2: Filtering Features based on Threshold For 5 Fea-
tures.

Threshold Num Of Features Accuracy F-Score
0.000 5 77.70% 81.65%
0.004 4 77.70% 81.65%
0.005 3 77.70% 81.65%
0.035 2 77.70% 81.65%
0.955 1 70.40% 76.98%

Table 3: Filtering Features based on Threshold For 2 Fea-
tures.

Threshold Num Of Features Accuracy F-Score
0.090 2 94.60% 94.43%
0.910 1 94.60% 94.43%

tures based on threshold, we reduce the number of
features by removing the features randomly to see
how it affects the accuracy of the model. The per-
formance of the model increases by decreasing the
number of selected features to ’common neighbours’
and ’shortest path in co-author graph’ from 81.65% in
the first step of having 5 features to 94.43%. Hence
our results show us that, contrary to expectations,
a smaller set of features is sufficient for improving
the performance of the model. Table.3 shows the re-
sult. Fig. 8 is the result of including 2 features (com-
mon neighbors and shortest path in co-authorship
graph) and having ’learning-rate’ equal to 0.01 and
’n-estimate’ equal to 500. The minimum log loss is
obtained which is equal to 0.1789333.

Figure 8: XGBoost mlog loss for 500 iteration-0.01 learn-
ing rate-2 features.

We include this analysis, just to illustrate the role of
parameters and features in optimizing our results. Af-
ter calculating features for each pair of authors, we
need to train the model based on XGBoost and store
it inside Neo4j. The detailed implementation can be
found in GitHub2. The results show that training

2See the storedprocedure named ’CreateAuthorPaper-
Model’ inside the class ’AuthorPaperModel’ in: https://
github.com/sepideh06/ML-on-graphs

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

164



Table 4: Inference In- and Outside Neo4j.

In- Outside the Graph
Feature Calculation 3.31 hours 3.16 hours
MI For 100 Samples 111 ms 104 ms
MI For 75 Samples 94 ms 113 ms
MI For 50 Samples 92 ms 95 ms
MI For 25 Samples 97 ms 99 ms

the model on the database side, using a stored pro-
cedure, can be close-enough in terms of execution
time, as training the model on the user side and the
difference between the approaches is not markedly
large, though more studies are required. The evalu-
ation results also reveal that features such as shortest
path are quite informative for link prediction task and
result in better performance measurements.

4.3 RQ3: Inference

In this section we present the results of our exper-
imental evaluation on the aspects of inference, us-
ing our experimental prototype. Inference involves
using the learned model to make a prediction, given
some data passed as an example. If the model is
saved within Neo4j, we need to retrieve it and read
it into an array of bytes, interpreting it then into the
API of the ML library on which the model is imple-
mented. From outside of the database, the model is
already saved as a local file, hence, we just need to
load the model, ask the model about our sample and
record the time for the predictions. Table. 4 presents
an overview on recorded times for different samples
over 10 iterations. Evaluation results show that in-
creasing the size of the sample does not deteriorate
the performance of the model in- or outside of graph
database Neo4j. Although, the recorded time for the
batch will be increasing little by little as the size of
data is growing but it does not create such a big dif-
ference in the final performance. Besides, there is not
huge difference in recorded time of doing inference
in the alternative cases, since for both situations, such
time is spent to retrieve the model from either inside
database or a local file. The feature calculation for
the new data, is shown to be at an entirely different
temporal scale than inference.

5 CONCLUSION

In this paper, we provided an early consideration
of what could be a practical case study and design
choices for carrying out an ML task with the sup-
port of an off-the-shelf graph database. We envi-
sion that the graph database could be tasked to help

with feature calculation, and to store metadata about
the model which assist model exploration and infer-
ence. To evaluate some choices for such a support
we studied link prediction with traditional ML mod-
els (XGBoost) and simple graph-based features, over
a subset of the popular Microsoft Academic Knowl-
edge Graph, using the Neo4j graph database with a
stored-procedure-based integration. From our study
we find that feature calculation is by far the most
time-consuming task of the process, with an impact
on inference and model building. Hence for graph
databases and ML based on traditional graph features,
future research should emphasize combinations of the
database with scale-out processing frameworks (e.g.
Neo4j and Spark), and extensions to query interfaces
to support better bulk feature calculation. The latter
improvement shares research interests with ongoing
work in close couplings of ML tasks with relational
databases (Ngo and Nguyen, 2020). Regarding this
concern we should also note that specific algorith-
mic improvements building on fine-grained measure-
ments, scoped per type of feature and kind of topol-
ogy, would contribute to the research. Based on our
work we can also suggest that for traditional ML, a
sample-based approach for evaluating feature combi-
nations prior to training models on the whole data is
a common-sense important practice to focus the pro-
cessing on the highest-leverage features. The automa-
tion of the aforementioned practice could also be of
interest for process improvements. In our study we
identified that only 2 features could produce the best
F-score, illustrating the need to establish feature rel-
evance so as to limit the computational requirements
of feature calculation. In our work we also provide an
early assessment on the time for model training when
the model is in- or outside of the database. We find lit-
tle difference between both cases, when not consider-
ing feature calculation as part of the process. Regard-
ing inference, we find that there is a small advantage
of the in-database option over the alternative, similar
observations were made for data splits, but we iden-
tify that future studies with finer-grain profiling and
more data size variations are required to better under-
stand these findings. Moving forward, we suggest that
as graph neural networks are becoming increasingly
competitive for ML tasks, cursor-based approaches
for dataset/feature generation in order to produce the
tensors required to train/use such models, constitutes
a potentially rewarding novel workload for graph data
management systems to consider.

Machine Learning within a Graph Database: A Case Study on Link Prediction for Scholarly Data

165



REFERENCES

Agarwal, A., Corvalan, A., Jensen, J., and Rambow, O.
(2012). Social network analysis of alice in wonder-
land. In Proceedings of the NAACL-HLT 2012 Work-
shop on computational linguistics for literature, pages
88–96.

Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. (2006).
Link prediction using supervised learning. In SDM06:
workshop on link analysis, counter-terrorism and se-
curity.

Balazevic, I., Allen, C., and Hospedales, T. M. (2018).
Hypernetwork knowledge graph embeddings. arXiv
preprint arXiv:1808.07018.

Becker, C., Rigamonti, R., Lepetit, V., and Fua, P. (2013).
Supervised feature learning for curvilinear structure
segmentation. In International conference on medical
image computing and computer-assisted intervention,
pages 526–533. Springer.

Berton, L., Valverde-Rebaza, J., and de Andrade Lopes,
A. (2015). Link prediction in graph construction for
supervised and semi-supervised learning. In 2015
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.

Burkov, A. (2019). The Hundred-Page Machine Learning
Book. Andriy Burkov.

Chu, Z., Widjaja, I., and Wang, H. (2012). Detecting social
spam campaigns on twitter. In International Confer-
ence on Applied Cryptography and Network Security,
pages 455–472. Springer.

Chuan, P. M., Giap, C. N., Bhatt, C., Khang, T. D., et al.
(2018). Enhance link prediction in online social net-
works using similarity metrics, sampling, and classifi-
cation. In Information Systems Design and Intelligent
Applications, pages 823–833. Springer.

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., and
Welton, C. (2009). Mad skills: new analysis practices
for big data. Proceedings of the VLDB Endowment,
2(2):1481–1492.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
(2018). Convolutional 2d knowledge graph embed-
dings. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. (2020). Benchmarking graph neural net-
works. arXiv e-prints, pages arXiv–2003.

Goyal, P. and Ferrara, E. (2018). Graph embedding tech-
niques, applications, and performance: A survey.
Knowledge-Based Systems, 151:78–94.

Han, S. and Xu, Y. (2016). Link prediction in microblog
network using supervised learning with multiple fea-
tures. JCP, 11(1):72–82.

Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., and
Tsuda, K. (2009). Link propagation: A fast semi-
supervised learning algorithm for link prediction. In
Proceedings of the 2009 SIAM international confer-
ence on data mining, pages 1100–1111. SIAM.

Kaur, R. and Singh, S. (2016). A survey of data mining
and social network analysis based anomaly detection
techniques. Egyptian informatics journal, 17(2):199–
216.

Kong, X., Chen, X., and Hovy, E. (2019). Decompressing
knowledge graph representations for link prediction.
arXiv preprint arXiv:1911.04053.

Kumar, A., Boehm, M., and Yang, J. (2017). Data man-
agement in machine learning: Challenges, techniques,
and systems. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
1717–1722. ACM.

Lee, J. B. and Adorna, H. (2012). Link prediction in a
modified heterogeneous bibliographic network. In
Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining
(ASONAM 2012), pages 442–449. IEEE Computer
Society.

Martin, S., Brown, W. M., Klavans, R., and Boyack, K. W.
(2011). Openord: an open-source toolbox for large
graph layout. In Visualization and Data Analysis
2011, volume 7868, page 786806. International So-
ciety for Optics and Photonics.

Mutlu, E. C. and Oghaz, T. A. (2019). Review on graph
feature learning and feature extraction techniques for
link prediction. arXiv preprint arXiv:1901.03425.

Ngo, H. Q. and Nguyen, X. (2020). Learning models over
relational data: A brief tutorial. In Scalable Uncer-
tainty Management: 13th International Conference,
SUM 2019, Compiègne, France, December 16–18,
2019, Proceedings, volume 11940, page 423. Springer
Nature.

Pinter, Y. and Eisenstein, J. (2018). Predicting semantic
relations using global graph properties. arXiv preprint
arXiv:1808.08644.

Shoham, Y., Perrault, R., Brynjolfsson, E., Clark, J.,
Manyika, J., Niebles, J. C., Lyons, T., Etchemendy,
J., and Bauer, Z. (2018). The ai index 2018 an-
nual report. AI Index Steering Committee, Human-
Centered AI Initiative, Stanford University. Available
at http://cdn. aiindex. org/2018/AI% 20Index, 202018.

Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.-j. P.,
and Wang, K. (2015). An overview of microsoft aca-
demic service (mas) and applications. In Proceedings
of the 24th international conference on world wide
web, pages 243–246. ACM.

Tang, J., Chang, Y., Aggarwal, C., and Liu, H. (2016).
A survey of signed network mining in social media.
ACM Computing Surveys (CSUR), 49(3):42.

Vartak, S. (2008). A survey on link prediction. State Uni-
versity of New York.

Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N.,
and Talukdar, P. (2019). Interacte: Improv-
ing convolution-based knowledge graph embeddings
by increasing feature interactions. arXiv preprint
arXiv:1911.00219.

Wang, D., Cui, P., and Zhu, W. (2016). Structural deep net-
work embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1225–1234. ACM.

Xu, C. and Li, R. (2019). Relation embedding with di-
hedral group in knowledge graph. arXiv preprint
arXiv:1906.00687.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

166


