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Abstract: Cultural heritage presents both challenges and opportunities for the adoption and use of deep learning in 3D 
digitisation and digitalisation endeavours. While unique features in terms of the identity of artefacts are 
important factors that can contribute to training performance in deep learning algorithms, challenges remain 
with regards to the laborious efforts in our ability to obtain adequate datasets that would both provide for the 
diversity of imageries, and across the range of multi-facet images for each object in use. One solution, and 
perhaps an important step towards the broader applicability of deep learning in the field of digital heritage is 
the fusion of both real and virtual datasets via the automated creation of diverse datasets that covers multiple 
views of individual objects over a range of diversified objects in the training pipeline, all facilitated by close-
range photogrammetry generated 3D objects. The question is the ratio of the combination of real and synthetic 
imageries in which an inflection point occurs whereby performance is reduced. In this research, we attempt 
to reduce the need for manual labour by leveraging the flexibility provided for in automated data generation 
via close-range photogrammetry models with a view for future deep learning facilitated cultural heritage 
activities, such as digital identification, sorting, asset management and categorisation.

1 INTRODUCTION 

One of the key advancements that led to an increased 
interest-driven amateur 3D recording of cultural 
heritage objects can be said to be a critical progress 
made within the field of Digital Heritage. This critical 
progress in combined technology and approach is 
close-range photogrammetry in its many 
implementations, methods and use (Ch’ng et al., 
2019; Luhmann et al., 2006; Mudge et al., 2010; 
Yilmaz et al., 2007). Its advent has opened up 
possibilities for both digitisation and digitalisation 
due to its ease of use and accessibility and thus, is a 
catalyst for the widespread recording of objects 
within cultural heritage. The ability to record true 
appearances of objects can open up many 
possibilities; it removes barriers such as the effort and 
cost of 3D laser scanning and closes the gap between 
visual representations of authentic cultural heritage 
objects that can populate virtual environments (Cai et 

al., 2018; Ch’ng et al., 2019; Li et al., 2018). We see 
further potentials for the use of photogrammetry-
based objects, and that is the use of such models for 
generating complementary data that could be used for 
augmenting datasets meant for identifying cultural 
relics. We believe that, for the fact that the 3D 
recorded objects are 1) digital, and that these objects 
can be 2) manipulated within a virtual space, and that 
many facets of each object can be generated as 
images, and across many collections of objects. 
Therefore, a dataset composed of sythetic imageries 
can be used as training datasets that complements 
existing databases. We have since created such a 
dataset named DeepRelic. What we are unsure of is, 
if training datasets can be entirely virtual, i.e., 
photogrammetry-based imageries, or if there is a ratio 
whereby an inflection point can be found where 
additional virtual imageries will no longer increase 
deep learning performances in terms of object 
identification. We therefore ask the question – can 
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Figure 1: Workflows in our data augmentation pipeline describing the source of the photogrammetry modells, data processing, 
data fusion, the creation of deep learning training sets, and object detection. 

virtual images compliment real images and, if so, 
what is the right combination as measured by the 
average ratio of a collection of objects with variable 
appearances? Our hypotheses are as follows: 

H0: There is no difference in performance 
between different combinations of ratios of computer-
generated images as compared to real images. 

Ha: There is a difference in performance if 
computer-generated images are combined with real 
images. 

Our aim is to test our hypotheses, and if the 
alternate hypothesis is true, to discover a ratio and, 
associated with that ratio, further seek for an 
inflection point where the insertion of virtual 
imageries will degrade performances using fusion 
machine learning datasets.  

The article is written as follows – we first review 
literatures related to our core ideas before proceeding 
to describe our method and approaches in how we 
manage the fusion of data and design experiments. 
Within our expriments, we describe the process of 
creating our DeepRelic dataset, through to the 
training process, and our testing of the performance 
of deep learning algorithms based on the dataset. The 
workflow diagram in Figure 1 illustrates our method. 
The article is then followed by the results of our 
hypotheses testing, and finally we conclude our study 
with future work. 

2 RELATED WORKS 

The genericity of the utility value of AI, and in 
particularly machine learning and deep learning are 

pervasive across many different fields. This is true 
within the many activities of digital heritage, where 
AI has been employed for various purposes. Deep 
learning and object detection is one such area for they 
can be used for assisting, facilitating and 
complementing human labour for archives and 
collections, for education and audience engagement 
within museums. Here, we review relevant 
approaches that fit our research intention prior to 
delving into the literatures of related works. 

2.1 Object Detection 

Object detection, the process of identifying objects in 
an image along with localisation and classification, 
has drawn significant benefits from the introduction 
of deep learning techniques over the past several 
years. Compared with traditional object detection 
methods, modern object detection algorithms have 
made significant improvements in accuracy, speed 
and memory, and thereby have become pervasive in 
a wide range of applications. Some examples are 
malaria image detection (Hung et al., 2017), 
automobile vision system (Chen et al., 2018) weed 
detection (Sivakumar et al., 2020), and etc. 

There are two groups of principles behind object 
detection in deep learning – single-stage and double-
stage approach. Single Shot Multi-Box Detector 
(SSD) (Liu et al., 2016) and YOLO (Redmon et al., 
2016) are typical examples of the single-stage 
approach, which classifies objects as well as their 
locations within a single step. For double-stage 
approach, Fast Region-based Convolutional Network 
method,   i.e.,   Fast   R-CNN   (Girshick,  2015)  is  a 
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Figure 2: Samples of augmented images. 

representative, which creates a set of high-probability 
regions that surround objects, and then conducts the 
final localisation and classification steps by taking 
these regions as input. Fast R-CNN’s performance is 
similar to SSD in comparison with F1 score, recall, 
precision and IoU, but it might have higher 
generalisation than the SSD in weed detection 
(Sivakumar et al., 2020). The SSD algorithm supports 
low-level computational platforms with ~ 99.3% 
accuracy and adequate speed when used for detecting 
vehicle. The YOLO algorithm on the other hand 
focuses on real-time object detection and performs 
well on objects. 

In our experiment, SSD algorithm was used 
within our training framework. SSD is capable of 
directly finding the bounding boxes of objects and is 
able to predict classes from feature maps in a single 
shot. This can enable us to speed up the training 
process. Its performance is able to achieve a level of 
accuracy adequate for object identification in our 
training datasets. Our research attempts to balance the 
trade-off between performance and usefulness and 
therefore SSD as our choice of algorithm for 
hypotheses testing.  

2.2 Data Augmentation 

Deep learning is dependent on large volumes of data 
for achieving best performances. However, obtaining 
adequate amounts of data for acceptable performance 
is challenging for many domains. This is especially 
true in the field of cultural heritage considering the 
limited access to museum collections and the fragility 

of cultural heritage objects. A viable approach is to 
use data augmentation. Data augmentation maximises 
the utilisation of small datasets whilst achieving 
acceptable performance, and it provides a diverse 
viewpoint and scale coverage to generate more 
images with minimal effort (Dwibedi et al., 2017). 
The most common approach is the transformation of 
existing datasets by flipping, rotating, scaling, 
cropping, translation and noise injection (Shorten & 
Khoshgoftaar, 2019). Dataset transformation are 
based on adequate real-world images. Cultural 
heritage objects are often well-preserved in the 
archives or encased in display glass, which makes it 
difficult to acquire multi-angled pictures of an object 
that would become composites of a good training 
dataset. Cultural heritage objects for image-based 
resources are limited as such, and also that relics are 
uncommon, unique and often unpublished and 
inaccessible in the public domain. Therefore, in order 
to resolve this issue, our study documents and 
reconstructs relics as 3D models through close-range 
photogrammetry technniques, and makes use of the  
3D nature of objects for automatically generating 
imageries that represent the different facets of each 
object, and across many different objects for data 
augmentation. 

2.3 3D Reproductions of Cultural 
Heritage 

The significance of digital documentation and 
reconstruction of cultural heritage has been 
emphasised (Alker & Donaldson, 2018). Digitisation 
can  be  said  to  be  the  prerequisite  towards  the full
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Table 1: Our choice of cultural heritage objects used in this research and their metadata. 

Item Full Name ID Sample Image Year Museum 

Gilt Bronze Bull 
 Cattle 

 

Western Xia Dynasty 
(1038-1227) 

 

Ningxia Museum 
 

Tri-coloured Camel 
 Camel 

 

Tang Dynasty 
(618–907) 

 

Nanjing Museum 
 

Kneeling Archer 
 Soldier 

 

Qin Dynasty 
(221-206 BC) 

 

Emperor 
Qinshihuang's 

Mausoleum Site 
Museum 

 

Ox-shaped Bronze Lamp 
 Lamp 

 

Eastern Han Dynasty 
(25-220) 

 

Nanjing Museum 
 

Bronze Mask 
 Mask 

 

Shu Kingdom 
(circa 2800-1100BC) 

 

Sanxingdui Museum 
 

Bronze Owl-shaped Zun with 
Inscription of Fuhao (Xiaozun) 

 
Owl 

 

Shang Dynasty 
(1600-1046BC) 

 

Henan Museum 
 

Pottery Figure of a Standing Lady 
 Lady 

Tang Dynasty 
(618–907) 

 

National Palace 
Museum, Taipei 

 

Celadon Glazed Porcelain Zun 
with Design of a Monster 

 
Monster 

 

Western Jin Dynasty 
(265-316) 

 

Nanjing Museum 
 

 
potentials of the digitalisation of cultural heritage. 3D 
repositories such as Sketchfab have provided a 
platform for the sharing of cultural heritage. While 
there are methods that provide scientific and 
archivable copies (Mudge et al., 2007), methods for 
capturing directly from museums (Ch’ng et al., 2019), 
and the more expensive laser scanning and even a 
combination of close-range photogrammetry and 
laser scanning techniques (Hess et al., 2015), in 
reviewing literatures, and in having practically 
captured over 200 artefacts, we think that any 
leisurely methods that can capture true appearances 
(Ch’ng, 2021), i.e., copies that retains the overall 
identity of the object will be adequate for data 
augmentation.  

3 METHODOLOGY 

Our main goal is to augment our cultural heritage 
image dataset with synthetic imageries so as to test 
our hypotheses. We began with a dataset of 100% real 
images and incrementally adds synthetic images 
consisting of photogrammetry-based 3D objects that 
is automatically generated via 360° rotations and 
positioning using Blender Scripts, in combination 
with different backgrounds. We selected cultural 
heritage datasets within our photogrammetry object 
repository, and made the choice of object structure 
and appearance to increase the variability of our 
dataset as a simulation for scalability in future work. 
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The dataset we created consisted of 800 real-
world images and 800 synthetic images in 8 
categories (Table 1). The size of images is 416 x 416 
x 3 (RGB). Some real-world images were patially 
downloaded from the Web, while others were 
manually photographed at different museums. 
Professional annotators have been adopted to ensure 
that bounding boxes are tightly encapsulating the 
bounding edges of the target objects.  We resized 
images with the original aspect ratio and then added 
paddings to avoid distortion to the image contents.  

In our experiment, we randomly combined real-
world images and synthetic images to form a training 
set of 800 object images based on different image 
proportions. We further created a testing set 
consisting of real-world images for performance 
evaluation. 

3.1 Data Preparation 

This section describes our data preparation pipeline, 
which consists of how 3D objects are managed and 
how imageries generated from the objects in 
combination with background images can be used for 
augmenting our training dataset.  

3.1.1 Photogrammetry Objects 

We used a combination of close-range 
photogrammetry objects, captured from museums 
and processed via RealityCapture. These processes 
align images and generate point-cloud and polygon 
data, and additional effort was needed to remove 
access data that are not part of the model (e.g., 
pedestals, visitors, labels, and etc.). Additional 
processing and editing were conducted within 
Blender to position and scale the model. Images 
generated from the 3D models were used for 
extracting features which will then be used for 
recovering the positions of surface points.  Images of 
facets of the models are then sorted and categorised 
together with real-world object data. Details of how 
we digitise museum objects are available (Ch’ng et 
al., 2019). 

3.1.2 Automated Data Augmentation 

Instead of synthesising images through re-scaling, 
rotating, cropping, and etc., we adopted the “Model-
To-Image” methodology to enlarge our dataset. We 
considered our data augmentation approach to be a 
further step from traditional approaches in that we 
have considerably increased the diversity of the 
dataset. 

To speed up the production of our dataset, we 
exported our model from RealityCapture to Sketchfab 
and used a standard plugin that imports models 
directly from Sketchfab into Blender to save time 
from having to remodel our 3D objects within 
Blender. We added an object constraint property to 
the camera in Blender, so that objects are always 
within the viewport. An additional step was to affix 
the trajectory of the camera to a spherical object 
surface and establishing a mathematical correlation of 
its coordinates in three-dimensional Euclidean space. 
When the camera is setup, we randomly modified the 
camera positional coordinates so that we can capture 
images from all sides of the object. We set the 
background as transparent in the rendering pipeline of 
so that we can overlay the object images on 
background images. Through the steps above, we 
automated the image generation process and created 
projections of models with consistent resolution and 
transparent backgrounds across all objects. This 
increases the diversity of imageries, and saves 
considerable effort in the need for manual labour. 

The next step is to use Python with image 
processing package to encase bounding boxes around 
the target objects by detecting pixel values in each 
image and the location of object-pixel edges. In the 
process, we generated the documents that record the 
coordinates of the bounding box and the 
corresponding labels that we use for inputs for the 
machine learning training model. The completion of 
our pipeline yielded a preliminary dataset containing 
images of objects surrounded by bounding boxes and 
corresponding documents  containing the coordinates 
of the boxes (Figure 1). 

We employed existing open-source datasets, i.e., 
“Indoor Scene Recognition” created by MIT 
(Quattoni & Torralba, 2009) of background images as 
they are established datasets that meet our criteria for 
backdrops that contains indoor scenes. We automated  
the placement and scaling of objects in random 
locations on the background images. Based on the 
position and the size of each object’s boundary box in 
the projection image, we calculated the new 
coordinates of the bounding box in the synthetic 
picture and record the related training information 
into annotation files. By repeating the preceding 
steps, we were able to generate a new dataset 
containing the synthetic images and the documents 
from the annotated information. 

We now have a series of datasets with the same 
magnitude but with different stepped proportions of 
synthetic images (10% incremental). In each dataset, 
images were evenly divided into diverse parts with 
each part corresponding to a specific heritage artefact. 
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In selecting the eight sample cultural heritage 
artefacts, we have considered a range of properties 
which includes cultural backgrounds, texture and 
size. We set the magnitude of a single dataset to be 
800 images. We have valid reasons for the size as it 
is difficult to obtain images of rare artefacts, and that 
every cultural heritage objects are unique. This was 
also the reason for the size of our dataset in the 
present, initial research. We made sure that have the 
same proportion of synthetic images in each dataset. 
For different datasets, the ratio of synthetic images 
spans from 0% to 100% set at an incremental interval 
of 10%. When an inflection point is found in the 
performance data, we generated smaller incremental 
intervals of 1% so that we could determine the trend 

of the performance as it descends in line with the 
increase of synthetic images.  

3.2 Experiment 

3.2.1 Hardware and Software 

We used a light workstation with GeForce RTX 2080 
Super, with 64GB of RAM and Intel(R) Core(TM) i7-
9700K CPU @ 3.60GHz (8 CPUs), ~3.6GHz. The 
training process is conducted using Tensorflow deep 
learning framework. 
 
 
 

 

 
Figure 3: Average precision for all datasets (top), and precision graphs for each relic. The precision (y axis) were plotted 
against the incremental percentage of synthetic images in the dataset. 
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Figure 4: Precision difference plot, showing where precision has diverged. The threshold for divergence is set at T=0.08 (red 
vertical line). 

3.2.2 Model and Algorithm Selection 

Given that the size of the current dataset is small, we 
selected a light-weight neural network architecture 
MobileNet to avoid excessive learning on the training 
set. Rather than training from scratch, we further 
leveraged transfer learning to fine-tune the model on 
our dataset to avoid overfitting. 

We hope to seek an appropriate training 
configuration so that the results can reflect the trend 
with the incremental interval percentage of synthetic 
images that we gradually added to the dataset. 
Through repeated training with different object 
detection algorithms with the increase of ratio of 
synthetic images, we found that the performance 
(mean average precision for each object) of SSD 
ranges from 20% - 95%, while the performance of the 
other algorithms were generally over 90%. With high 
variance of the results obtained from SSD, we can 
easily see the distribution plots and observe the 
relationship between the change of ratio and how it 

influences performance. Therefore, the SSD 
framework satisfies our requirements. 

3.2.3 “Hybrid Training” Setup 

In the training process, we leveraged the SSD 
framework with MobileNet V2 backbone pre-trained 
on MS COCO dataset. To test our hypotheses and to 
investigate if synthetic images can influence the 
performance of cultural heritage object detection, we 
adopted the “Control Variable” methodologies to 
train different training sets and observe how different 
combinations of real and synthetic data can affect the 
learning performance. With the same training 
configuration, we train models on the datasets, and 
evaluated the object detection performance based on 
the same testing dataset. For model hyper-parameters, 
we fine-tune each deep learning model for 20K 
iterations using Adam Optimizer with a step-based 
learning rate schedule. This starts from the learning 
rate of 0.001, proceeding to the warming up steps 
until   0.003,   and   cosine   annealing   decay   were  
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Figure 5: Object detection results of “Soldier”, “Cattle”, “Mask” and “Camel” based on our fusion dataset. 

performed, before gradually decreasing the moving 
step that approaches the minimum. To minimise the 
probability of outliers in our results for each ratio, we 
trained the model three consecutive times in order to 
validate that they are in alignment with each other. 

4 RESULTS 

Our results reported an Average Precision (AP) at 
IOU of 0.5 for each dataset. We trained each deep 
learning models using the fusion datasets we have 
generated separately, each yielding a result measured 
as a precision value. Figure 3 shows the result of the 
incremental percentage of synthetic images added to 

the dataset in each cycle of training. The x axis shows 
the percentage of synthetic images, and the y axis the 
average precision value across all eight artefacts. We 
can visually identify that between the range of 80% 
and 100% is a change in precision where the 
inflection point is (red line). When a visual inflection 
point is found, and for the subsequent datapoints 
toward 100% synthetic images, we reduced the 
granularity of our incremental percentage to 1% so 
that we are sure that the trend is actually descending. 
Therefore, there are more datapoints within the range 
of 80% and 100% in our dataset. 

We calculated the difference between each 
subsequent precision data point (see Figure 4) with a 
threshold T=0.08 where the difference begin to 
matter. The graph with 72 datapoints shows where the 
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Figure 6: Object detection results of “Owl”, “Lamp”, “Lady” and “Monster”  based on our fusion dataset. 

precision diverged from stability and begin to degrade 
over time. The red vertical line shows the calculation 
of the inflection point. The value at the threshold was 
used to identify the inflection point for the average 
precision graph (Figure 4, red vertical line). 

We queried the precision of each 3D model 
dataset for the purpose of investigating if there are 
general trends. Figure 3 is the precision (y) and 
incremental percentage (x) of synthetic images added 
to the fusion dataset for each artefacts. A similar trend 
be observed. In Figure 3, we noted that artefact “Owl” 
has more volatility and lesser precision. In inspecting 
the 3D model (Figure 2), we realised that the contrast 
of light and shadow of the environment where the 
relic was captured was not ideal, thus contributing to 
darker areas that have no features. This indicated that 

the quality of capture is important in the dataset, and 
that care should be taken to ensure appropriate 
lighting conditions were met before including the data 
into the training set. 

In reviewing our original research questions: ‘Can 
virtual images compliment real images?’ and, if so, 
‘what is the right combination as measured by the 
average ratio of a collection of objects with variable 
appearances?’, we can confirm that they have been 
answered via the testing of the hypotheses we 
formulated at the beginning of the article (H0 and Ha). 
H0 ‘There is no difference in performance between 
different combinations of ratios of computer-
generated images as compared to real images.’ is 
false, and therefore the alternate hypothesis Ha ‘There 
is a difference in performance if computer-generated 
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images are combined with real images.’ is true. The 
inflection point for our present DeepRelic dataset is 
81%, indicating that up to 80% synthetic images 
could be used for augmenting the training set without 
performance tradeoffs.  

5 CONCLUSIONS 

Our research began from exploring how we may 
combine deep learning with digitalisation activities, 
such as the use of deep learning algorithms for object 
recognition, and for identification and augmentation 
in mixed reality developments within our range of 
digital heritage activities. We then looked at a 
combination of algorithms, datasets and devices for 
that purpose, and projected that there will be tradeoffs 
between what types of deep learning algorithms we 
use, and the devices, i.e., smartphones, AR headsets 
that are able to support digitalisation endeavours. As 
with any deep learning developments, one of the 
greatest challenges in venturing into new areas is the 
effort needed to acquire data. Within the field of 
digital heritage, this challenge is amplified by the 
rarity of cultural heritage object image datasets, and 
that relics are uncommon, unique and often 
unpublished and inaccessible in the public domain. 
This limitation, together with our experience of close-
range photogrammetry prompts us to probe if fusion 
datasets would work, which led to our research 
enquiry into the possibility of a level of performance 
in object detection that could be facilitated by an 
initially limited dataset, that could be augmented by 
synthetic imageries generated from photogrammetry 
data. We hypothesised that there would be a 
difference in performance if computer-generated 
images are combined with real images, and also asked 
where the inflection point would be. 

We created a workflow to test our hypotheses, 
resulting in a dataset which we termed DeepRelic, and 
conducted experiments in order to determine where 
the inflection point if any would be. We discovered 
based on our fusion dataset that up to 80% of virtual 
images could be used without significant 
performance tradeoff and thereby have answered our 
research questions. Of course, as data increases, and 
particular collections of cultural heritage objects 
become diverse, the inflection point and 
consequently, the ratio may change. Nevertheless, 
collections of artefacts that are used for digitalisation 
are often bounded to particular exhibits and therefore, 
the size of the dataset may not increase that much. It 
does matter when digitalisation activities are 
expanded to an entire city. 

This research has led to some questions which we 
will be probing for the future. Presently, we are 
interested to know if the precision and percentage of 
synthetic data will be similar in all cases, across 
collections, since this may be influenced by factors 
such as the size of the dataset, the content of the 
images, the quality of synthetic images, and etc. Our 
aim is to continue our initial exploration and 
hypotheses testing by expanding our DeepRelic 
dataset with models from different collections that 
may contain similar forms so as to explore limits for 
the fusion approach which we have discussed in this 
article. 

In summary, the creation of new datasets are 
challenging on many fronts, but our experiments have 
demonstrated the potentials of fusion datasets that 
have composites of both real and synthetic images. 
We strongly believe that imageries of 3D models 
generated by close-range photogrammetry can 
complement real-world datasets, and thus can 
tremendously increase the magitute of datasets, but 
also considerably reduce human effort. 
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