
Detection of Malicious Binaries by Deep Learning Methods

Anantha Rao Chukka1 and V. Susheela Devi2
1Defence Research and Development Organisation, India

2Indian Institute of Science, Bengaluru, Karnataka, 560012, India

Keywords: Malware Detection, Deep Learning Models, Convolutional Neural Networks, Malware Analysis, Portalble
Executable, Advanced Persistent Threats.

Abstract: Modern day cyberattacks are complex in nature. These attacks have adverse effects like loss of privacy,
intellectual property and revenue on the victim institutions. These attacks have sophisticated payloads like
ransom-ware for money extortion, distributed denial of service(DDOS) malware for service disruptions and
advanced persistent threat(APT) malware to posses complete control over the victims computing resources.
These malware are metamorphic and polymorphic in nature and contains root-kit components to maintain
stealth and hide their malicious activity. So conventional defence mechanisms like rule-based and signature
based mechanisms fail to detect these malware. Modern approaches use behavioural analysis(static analysis,
dynamic analysis) to identity this kind of malware. However behavioural analysis process is hindered by
factors like execution environment detection, code obfuscation, anti virtualization, anti-debugging, analysis
environment detection etc. Behavioural analysis also requires domain expert to review the large amount of
logs produced by it to decide on the nature of the binary which is complex, time consuming and expensive.
To deal with these problems we proposed deep learning methods, where convolutional neural network model
is trained on the image representation of the binary to decide the binary nature as malicious or benign. In this
work we have encoded the binaries into images in a unique way. Deep convolution neural network is trained
on these images to learn the features to identify the binary as malicious or normal. The malware and benign
samples for the dataset creation are collected from online sources and windows operating system along with
compatible third party application software respectively.

1 INTRODUCTION

1.1 Malware Analysis

Malware(Mullins, 2017), short for malicious soft-
ware, consists of programming designed to disrupt or
deny operation,gather information that leads to loss of
privacy or exploitation, gain unauthorized access to
system resources, and other such abusive behaviour.
Some of the well known malware examples are tro-
jan, ransom-ware, boot-kit, root-kit etc. Analysing
malware provides deep insight into the activities per-
formed by the malware such as file-system modifi-
cations, network connections established, persistent
and stealth activity and information gathering on the
victim’s computing resources. This information fa-
cilitates the security researchers to develop defence
mechanisms. Malware analysis is mainly categorized
into two types.

1. STATIC ANALYSIS (Ligh et al., 2010). In this
process the sample will be examined without run-
ning it, by specialized tools like dis-assemblers.
Static code analysis is the major component of
the static analysis which examines the instruc-
tion sequences to establish the execution be-
havioural characteristics. Meta information col-
lection is another component which collects file
meta-information like compiler environment, dig-
ital signatures, sample type and portable exe-
cutable file characteristics.

2. DYNAMIC ANALYSIS (Ligh et al., 2010). In this
process the sample activity will be monitored by
running it in contained environment. Various sys-
tem monitoring tools and techniques are used to
log the file-system, network, persistent and other
system activity.

132
Chukka, A. and Devi, V.
Detection of Malicious Binaries by Deep Learning Methods.
DOI: 10.5220/0010379701320139
In Proceedings of the 6th International Conference on Internet of Things, Big Data and Security (IoTBDS 2021), pages 132-139
ISBN: 978-989-758-504-3
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

1.2 Deep Learning

(Epelbaum, 2017) Deep learning methods are used
to learn data representations(features) at multiple ab-
straction levels by composing many layers of artifi-
cial neural network units. The feature learning is hier-
archical where the starting layer represents low-level
features and the abstraction level increases with each
further layer. The major advantage of the deep learn-
ing methods is automatic learning of features by train-
ing on large amount of data without any human fea-
ture engineering. Our work uses convolutional neural
network, a kind of deep neural network specifically
used for computer vision applications.

1.2.1 Convolutional Neural Network (CNN)

(O’Shea and Nash, 2015), (Tutorial, 2017) The CNN
architecture consists of three major building blocks.

1. CONVOLUTIONAL LAYERS. These layers con-
sist of a number of filters. The convolution opera-
tion is expressed in terms of neural network oper-
ations where the filters represent the neurons. The
output of filter applied on previous layer is called
as a feature map.

2. POOLING LAYERS. These layers are used to
down sampling of the feature map. These lay-
ers are inserted after one or more convolutional
layers. The pooling layer reduces the over-fitting
by generalizing the feature representations. It re-
duces the number of parameters in the following
layers leading to reduction in computation time.

3. FULLY CONNECTED LAYERS. These are gen-
eral feed forward neural network layers applied at
the end of convolution and pooling layers to com-
bine the features and make predictions of the net-
work.

The CNN also has operations like padding for proper
adjustment of filters at the image boundaries, normal-
ization for stable learning and regularization to reduce
the over-fitting.

The Malware analysis procedures(Static analysis,
Dynamic analysis) have some disadvantages. Static
code analysis takes a long time and requires a do-
main expert to do the analysis. Code obfuscation
techniques hinder this process sometimes. Dynamic
analysis requires detection of the target execution en-
vironment which is complex. It also generates huge
logs and requires a domain expert to carry out the re-
view. Modern malware authors use techniques like
anti-debugging, anti-monitoring, virtual environment
detection, analysis environment detection which hin-
ders both the analysis techniques. Our approach is not

dependent on static and dynamic analysis. It directly
operates on raw binary thereby avoiding these diffi-
culties. The time required for deciding whether the
binary is malicious or not is minimal, once the deep
neural network training is completed.

The Malware detection process presented in this
paper has two major steps 1. Transforming the bi-
naries into images and 2. Training a deep convolu-
tional neural network on these images. The present
system design is focused on detecting 32-bit portable
executable binaries of Microsoft Windows Operat-
ing System. The Portable Executable (PE)(Goppit,
2006) format is a file format for executable, object
code, DLLs etc. used in 32-bit and 64-bit versions
of Windows operating systems. The proposed sys-
tem architecture is file format and operating system
independent. So the system can be easily extended to
other file formats and operating systems by training
the neural network on appropriate datasets.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work, Section 3 describes
the proposed malware detection system architecture ,
Section 4 describes results, Section 5 describes con-
clusion and Section 6 describes future work.

2 RELATED WORK

Recently machine learning methods especially deep
learning techniques are helping to solve some of
the complex problems in different problem domains.
Some authors used these techniques to detect mal-
ware and cluster malware into families. Joshua Saxe
and Konstantin Berlin (Saxe and Berlin, 2015) have
proposed a four layer deep feed-forward neural net-
work with feature vectors constructed by aggregation
of byte entropy, PE Imports and PE meta-data fea-
tures. Edward Raff et al.(Raff et al., 2017) have used
convolution neural networks with raw byte embed-
dings to detect the malware.

In earlier work we have used machine learning
models on feature sets like file meta information,
import functions, opcode sequences, API sequences,
API Normal and custom flags to classify the binary
as malware or benign. We created different meta
datasets by combining the predictions of multiple ma-
chine learning models on individual feature sets to im-
prove the classification accuracy. This system is de-
pendent on static and dynamic malware analysis. So
it encounters the same problems like execution envi-
ronment detection, anti-debugging etc. as discussed
in Section 1.

Lakshmanan Nataraj et al.(Nataraj et al., 2011)
have used visualization and automatic classification

Detection of Malicious Binaries by Deep Learning Methods

133

Figure 1: System Architecture.

of malware into families by treating malware binaries
as grey scale images where raw bits represent pixels.
They extracted GIST features(Torralba et al., 2003)
from these images and used k-NN classifier to classify
them. Our approach also uses similar thought process
by treating binaries as images. However our system
differs in following ways

1. IMAGE CREATION. Our image constructing pro-
cess completely differs from Lakshmanan Nataraj
et al.(Nataraj et al., 2011). We transformed bi-
naries into colour images by treating opcodes as
colour coded pixels instead of treating raw bits as
grey scale pixels. This approach has advantages in
capturing the patterns in malware instruction se-
quences. The raw byte grey scale image is noisy
because PE binary has lot of sections which varies
frequently and have little impact on behavioural
patterns of the binary.

2. LEARNING PROCESS. We used deep learning
techniques to learn the features automatically and
predict the unknown binary category instead of
the traditional k-NN classifier over GIST features.

3 PROPOSED SYSTEM

The proposed system architecture is depicted in Fig-
ure 1. In the first stage datasets are created by trans-
forming the binaries(both benign and malware) into
colour images by mapping the opcodes in the binary
to colour pixels. Next a deep convolutional neural net-
work is trained on the image datasets to learn the fea-
ture filters and weights of the network. Later these
parameters(feature filters + weights) are used to pre-
dict the unknown binary as malware or benign.

3.1 Sample Collection

Deep learning models are dependent on large amount
of quality data to learn better feature representa-
tions. The information security researchers world-
wide are maintaining the repositories of malware for
the collaborative research and developing defence
mechanisms. Lenny Zeltser(Zeltser, 2020) com-
piled some of the well known resources which in-

cludes Contagio malware dump(MilaParkour, 2020),
VirusShare(Mellissa, 2020) and Malwr(Community,
2017) repository. We have collected 12500 malware
samples from the VirusShare(Mellissa, 2020) for the
present experiment.

Benign Portable Executable(PE) files are col-
lected by filtering application/x-msdownload(MSDN,
2016) Multi-purpose Internet Mail Extension(MIME)
from Operating System and third party application
software files. The files have 5MB size restriction.
Total 12500 benign PE files are used for the current
experiment. The major reason behind the size restric-
tion is to avoid large software files which are gener-
ally used as carriers for the smaller size malware pay-
loads. The large files also generate millions of op-
codes which makes the image creation process time
consuming and computationally expensive. All the
samples(both malware and normal) are windows 32-
bit architecture compatible. Windows 32-bit and 64-
bit executables differ in the instruction types, align-
ments and other architectural characteristics. So mix-
ing both types of executables will lead to noisy and
inaccurate data.

3.2 Image Creation

The image creation has following three major steps
and Algorithm 1 describes the image creation process
in detail.

1. Collect unique opcodes over the complete sample
collection.

2. Map each opcode to unique colour code.

3. Transform each sample into image by arranging
the opcodes in given image shape and replacing
opcodes with respective colour codes.

3.3 Datasets

We have created two types of datasets from the sam-
ple collection.

1. TYPE1. It is a dataset with 384×384 size three
channel colour images created by arranging op-
codes into 384×384 grid and mapping them with
respective colour codes.

2. TYPE2. It is a dataset with 384×384 size three
channel colour images created using 8× 8 sub-
grids of opcodes. The sub-grids are used to ex-
ploit the spatial correlation among the instruction
sequences. The opcodes in sub-grids are mapped
to respective colour codes to form the image.

We have used a total of 25000(12500 Normal + 12500
Malicious) samples for the dataset creation. The par-

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

134

Algorithm 1: Sample Binary to Image Conversion.

1: procedure CONVERTTOIMAGES(source, destination,
size)

2: for all sample ∈ source do
3: opcodes← ExtractOpCodes(sample) . ∗1
4: SaveToFile(opcodes,destination)
5: end for
6: opcode set←Φ

7: for all sample ops ∈ destination do
8: opcode set← opcode set ∪ sample ops . ∗2
9: end for

10: color mapper←{}
11: for all opcode ∈ opcode set do
12: color code← GetRGBCode() . ∗3
13: color mapper[opcode]← color code
14: end for
15: color mapper[pad code]← pad color
16: for all sample ops ∈ destination do
17: t grid←CGrid(size,sample ops) . ∗4
18: s img← mapper(t grid,color mapper)
19: SaveToFile(s img,destination)
20: end for
21: end procedure

• ∗1: ExtractOpcodes uses python diStorm (Dabah,
2020) library to collect opcodes

• ∗2: Union Collects Unique Opcodes

• ∗3: GetRGBCode returns unique color code which is
not present in color mapper

• ∗4: CGrid returns opcodes arranged in grid with given
size(width, height). If opcodes exceeds the size it dis-
cards remaining opcodes. Otherwise it pads the grid
with default padding code

titioning of the dataset into train, validations and test
set is as follows.

• TRAINING. 18000 Samples (9000 from each
class i.e Normal and Malicious)

• VALIDATION. 2000 Samples (1000 from each
class i.e Normal and Malicious)

• TEST. 5000 Samples (2500 from each class i.e
Normal and Malicious)

Figure 2 provides some of the example sample images
of the datasets.

3.4 Convolution Neural Network

(Howard and Thomas, 2020), (Chollet, 2020) and
(Team, 2020) The Convolutional neural network ar-
chitecture is depicted in Figure 3. The model has 6
convolution layers, 3 Max-pooling layers along with
fully connected network of 2 dense layers and one bi-
nary output layer.

Each convolution layer is equipped with 10 per-
cent dropout to reduce over-fitting and batch normal-
ization for stable learning. The convolution layers

• malware ∗ t[1|2]: Type[1|2] Malware Images

• normal ∗ t[1|2]: Type[1|2] Normal Images

Figure 2: Example Samples.

uses zero-padding to make the filters fit properly at
the image borders. 2×2 size Max-pooling is applied
after every two convolutions with stride 2 on both di-
mensions. All convolution layers are used RELU acti-
vation units. 3×3 size convolution filters are doubled
for every two convolution layers.

The dense layers are equipped with 50 percent
drop out on each layer to reduce over-fitting. The
batch normalization is applied on each layer for sta-
ble learning. The dense layers have 256 units on each
layer with RELU activation units. The binary output
layer uses SIGMOID activation unit which is most suit-
able for binary classification.

Since our problem is in binary classification do-
main, we have compiled the model with the following
parameters.

• RMSPROP. Optimizer

• BINARY CROSS-ENTROPY. Loss function

• ACCURACY. is performance metric.

3.5 Training

(Howard and Thomas, 2020), (Chollet, 2020) and
(Team, 2020) We have used model ensemble for bet-
ter performance. Four models are trained on the data.
Each model training is described as follows along
with hyper parameters.

• BATCH SIZE. The batch size is fixed at 16.

Detection of Malicious Binaries by Deep Learning Methods

135

Figure 3: Model Architecture.

• EPOCHS. 50 epochs are used in total.

• LEARNING RATE. Dynamic learning rate is
used. The first epoch is trained with learning rate
0.001. The next 4 epochs used 0.1, after that 15
epochs used 0.01 and later 30 epochs used 0.001.

Data augmentation is used on training data to improve
the performance. Two types of models are saved.

1. Best Accuracy Model. A model with best accu-
racy(maximum accuracy) over 50 epochs.

2. Least Loss Model. A model with minimum
loss(minimum loss) over 50 epochs

The final models are constructed as follows

• MEAN CLASSIFIER(ACCURACY). Average ac-
curacy over four best accuracy models.

• MEAN CLASSIFIER(LOSS). Average accuracy
over four least loss models

The training is performed on NVIDIA Tesla K40c
with 12GB GPU memory. The development envi-
ronment is in Python with Kearas API with Tensor-

Flow backend. The training time per epoch is approx-
imately 18 minutes. The total training time per dataset
is 60hours (15H per model * 4 Models).

3.6 Challenges Faced

we have faced the following challenges during the de-
velopment.

• Batch Size. We are unable to perform the training
with large batch sizes because of the GPU mem-
ory restriction. The batch size is restricted to 16.

• Image Size. The average opcodes per binary is
206485. However we restricted the image size to
384× 384 = 147456 pixels. The reason behind
this is that convolution takes longer time with in-
creasing image size.

• Hyper Parameter Tuning. We are able to ex-
periment with small number of values for hyper
parameters like DROPOUT, NUMBER OF CONVO-
LUTION LAYERS, POOLING SIZE AND FILTERS
PER LAYER because of the longer training time
and hardware constraints.

• Diversity of Binaries. Normal binaries are col-
lected from the operating system and limited third
party software. So the samples may not be di-
verse as real time normal files. At the same
time we have not established the diversity in the
VirusShare samples which we have used for our
malware category.

All these challenges will be addressed in future work.

4 RESULTS

4.1 Type1 Dataset

Figure 4 shows that the training of models with Type1
dataset is smooth over the 50 epochs. Some fluctua-
tion is there with validation loss. However mostly it
progressed towards minimum direction except for the
MODEL0 which is random over the 50 epochs period.
It shows that the MODEL0 is struggling to find its op-
timum weights. This behaviour of MODEL0 is cor-
roborated with the accuracy curves in Figure 6 where
MODEL0 validation accuracy is not in agreement with
the training accuracy for most of the time. All re-
maining model accuracies are in agreement with the
training accuracy in large part of the training phase.
This clearly indicates the models are not over-fitting
the data.

The ensemble of the models is used when the
model performance is poor. In this case MODEL0

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

136

Table 1: Classification accuracy with best accuracy model.

CLASSIFIER

DATA MODEL0 MODEL1 MODEL2 MODEL3 MEAN

SET VALID TEST VALID TEST VALID TEST VALID TEST VALID TEST

ACC 0.9710 0.9724 0.9765 0.9792 0.9740 0.9748 0.9805 0.9796 0.9755 0.9765

TYPE1 LOSS 0.1333 0.1291 0.0990 0.0808 0.1286 0.1259 0.0834 0.0855 0.1110 0.1053

ACC 0.9835 0.9776 0.9805 0.9758 0.9815 0.9710 0.9785 0.9750 0.9810 0.9748

TYPE2 LOSS 0.0759 0.0954 0.1731 0.1753 0.1142 0.1244 0.1174 0.1369 0.1202 0.1330

Table 2: Classification accuracy with least loss model.

CLASSIFIER

DATA MODEL0 MODEL1 MODEL2 MODEL3 MEAN

SET VALID TEST VALID TEST VALID TEST VALID TEST VALID TEST

ACC 0.9670 0.9681 0.9760 0.9748 0.9645 0.9692 0.9785 0.9780 0.9715 0.9725

TYPE1 LOSS 0.1013 0.0960 0.0949 0.0950 0.1167 0.1102 0.0832 0.0810 0.0990 0.0955

ACC 0.9835 0.9776 0.9760 0.9738 0.9795 0.9754 0.9765 0.9742 0.9789 0.9752

TYPE2 LOSS 0.0759 0.0954 0.0938 0.0970 0.0848 0.0917 0.1006 0.1087 0.0888 0.0982

performance is poor. We take average of the perfor-
mance of four models results to give our final predic-
tion. Due to this the prediction will be robust and the
ensemble also helps in improving the classifier per-
formance.

By averaging the results of multiple models, the
performance of our model prediction is robust and
also improves the performance of our final prediction.
Tables 1 and 2 provide the accuracy and loss with re-
spect to different models compared with model en-
semble(Mean) model. Type1 dataset achieved 97.65
percent accuracy with Mean model(Accuracy) and
97.25 percent with Mean model(Loss). There is
a small difference between the validation and test
datasets losses and validation and test datasets accu-
racies per model, and is consistent across all models.
It clearly indicates that the model prediction is con-
sistent with increasing unknown data(Validation and
Test datasets sizes are 2000 and 5000 respectively).
We can conclude from this result along with the accu-
racy comparison with training data from Figure 6 that
the model is generalized properly without over-fitting
on the training data.

4.2 Type2 Dataset

The training with Type2 dataset is not smooth as it
was in Type1 dataset. This can be observed from
Figures 7 and 8. The validation loss curves are ran-
domly fluctuating. From Figure 9 we can observe that

the validation accuracy is slightly deviating from the
training accuracy over a lot of epochs. This clearly
indicates that the model is over-fitting the data. This
can be observed from the results provided in Tables
1 and 2. The Mean model(accuracy) has 98.10 per-
cent accuracy with validation data and 97.48 percent
accuracy with test dataset. In the same manner Mean
model(Loss) has 97.89 percent accuracy with valida-
tion data and 97.52 percent of accuracy with test data.
This clearly shows that the model performance is de-
teriorating fast as unknown data increases as com-
pared to Type1 dataset.

Even though Type2 dataset is unable to generalize
well compared to Type1 dataset, it has the following
advantages

• The validation accuracy of Type2 dataset from
both(accuracy, loss) Mean models is more com-
pared to Type1 dataset. So with proper tuning
of regularization parameters we can achieve good
performance by reducing the over-fitting.

• The Type2 dataset over-fitting margin is large
compared to Type1 dataset. However it is still
a reasonable model because the margin is small
(around 0.5 percent accuracy difference).

Our deep learning model has achieved 97.65% accu-
racy with training on 18000 samples which is better
than the Edward Raff et al.(Raff et al., 2017) approach
in their work titled ’Malware Detection by Eating a
Whole EXE’ where they achieved 94% accuracy with
training on 2 million corpus.

Detection of Malicious Binaries by Deep Learning Methods

137

Figure 4: Type1 Dataset Training Loss.

Figure 5: Type1 Dataset Validation Loss.

Figure 6: Type1 Dataset Accuracy.

5 CONCLUSION

In this paper we have presented detection of malicious
windows binaries with deep learning approaches. The
windows binaries are converted into colour images
by extracting opcodes from the binaries and map-

Figure 7: Type2 Dataset Training Loss.

Figure 8: Type2 Dataset Validation Loss.

Figure 9: Type2 Dataset Accuracy.

ping them into colour pixels. Convolutional neural
network is trained on these images to learn the fea-
tures filters and weights of the network. Two types
of datasets are used for training, Type1 dataset is
383× 384 pixel images where each image is created
by arranging the opcodes in 383×384 grid and map-
ping them into respective colour codes, Type2 dataset
also has 383× 384 pixel images where each image
is created by arranging opcodes blocks of size 8× 8
and mapping opcodes in block into respective colour
codes. Two types of models (Best accuracy, Least
Loss) are saved for the prediction. Model ensem-

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

138

ble is used where multiple models are trained on the
dataset and the final models(Mean accuracy, Mean
Loss) are constructed by taking the average of the
results. The results show that Type1 dataset learn-
ing is smooth and produced 97.65% accuracy with
Mean accuracy model and 97.25% with Mean loss
model. Type2 dataset is somewhat over-fitting the
data and produced 97.48% accuracy with Mean ac-
curacy model and 95.52% accuracy with mean loss
model. However Type2 dataset performance can be
improved by adjusting the regularization parameters
because it has high validation accuracy. In this work
we have used deep learning methods on the image
representations of the binaries to detect the nature of
the binary as malicious or benign. This mechanism is
unique in nature by working directly on raw binaries
thus avoiding all the difficulties in malware analysis
process. The accuracy of our model is more than 97
percent which is reasonably good in the malware de-
tection domain.

6 FUTURE WORK

We plan to experiment with the models by tuning
the parameters of the network to improve the accu-
racy. We are also planning to extend this mecha-
nism to other file formats like Microsoft Office doc-
uments(Word, Power Point, Excel), Portable Doc-
ument Format(PDF) and Web Application(HTML,
HTA, JS) and Operating Systems like Linux, MacOS
by training the model on appropriate file formats.The
current mechanism assigns unique colour codes to
unique opcodes. However we are trying to assign
colour code mapping per group basis where opcodes
are placed in groups based on their functional simi-
larities like data transfer, control instructions etc. The
future work will also address the challenges described
in Section 3.

REFERENCES

Chollet, F. (2020). Keras: The Python Deep Learn-
ing library - The Sequential model. https://keras.io/
getting-started/sequential-model-guide/.

Community, C. S. (2017). Malwr (Free malware analysis
service). https://malwr.com/.

Dabah, G. (2020). Powerful Disassembler Library For
x86/AMD64. https://github.com/gdabah/distorm.

Epelbaum, T. (2017). Deep learning: Technical introduc-
tion. arXiv:1709.01412. https://arxiv.org/pdf/1709.
01412.pdf.

Goppit (2006). Portable executable file format – a re-
verse engineer view. CodeBreakers Magazine (Se-

curity & Anti-Security- Attack & Defense), 1 issue
2. http://index-of.es/Windows/pe/CBM 1 2 2006
Goppit PE Format Reverse Engineer View.pdf.

Howard, J. and Thomas, R. (2020). Practical Deep Learn-
ing For Coders. http://course.fast.ai/.

Ligh, M., Adair, S., Hartstein, B., and Richard, M. (2010).
Malware Analyst’s Cookbook and DVD: Tools and
Techniques for Fighting Malicious Code. Wiley Pub-
lishing.

Mellissa (2020). VirusShare (Repository of malware sam-
ples). https://virusshare.com/.

MilaParkour (2020). Contagio (Malware Dump). http://
contagiodump.blogspot.com/.

MSDN (2016). MIME Type Detection in Windows Internet
Explorer. https://msdn.microsoft.com/en-us/library/
ms775147(v=vs.85).aspx.

Mullins, D. P. (2017). Introduction to Computing, chapter
5.4. Online.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. (2011). Malware images: Visualization and au-
tomatic classification. International Symposium on Vi-
sualization for Cyber Security(VizSec’11).

O’Shea, K. and Nash, R. (2015). An introduction to convo-
lutional neural networks. ArXiv e-prints.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. (2017). Malware detection by
eating a whole exe. arXiv:1710.09435v1.

Saxe, J. and Berlin, K. (2015). Deep neural network based
malware detection using two dimensional binary pro-
gram features. arXiv:1508.03096v2.

Team, G. B. (2020). An open-source software library for
Machine Intelligence. https://www.tensorflow.org/.

Torralba, A., Murphy, K. P., Freeman, W. T., and Rubin,
M. A. (2003). Context-based vision system for place
and object recognition. International Conference on
Computer Vision.

Tutorial, S. U. (2017). Convolutional Neural Net-
work. http://ufldl.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/.

Zeltser, L. (2020). Malware Sample Sources
for Researchers. https://zeltser.com/
malware-sample-sources/.

Detection of Malicious Binaries by Deep Learning Methods

139

