Detection of Malicious Binaries by Applying Machine Learning Models

Keywords:

Abstract:

1 INTRODUCTION

on Static and Dynamic Artefacts

Anantha Rao Chukka' and V. Susheela Devi?

1 Defence Research and Development Organisation, India
2Indian Institute of Science, Bengaluru, Karnataka, 560012, India

Malware Detection, Machine Learning Models, Malware Analysis, API Sequences, Opcode Sequences,
Import Function, File Meta Information, Malware Operational Patterns, Portable Executable, Artificial Neural
Network, Support Vector Machine, Random Forest, Naive Bayes, K-nearest Neighbour.

In recent times malware attacks on government and private organizations are rising. These attacks are carried
out to steal confidential information which leads to loss of privacy, intellectual property issues and loss of
revenue. These attacks are sophisticated and described as Advanced Persistent Threats(APT). The payloads
used in this type of attacks are polymorphic and metamorphic in nature and contains stealth and root-kit
components. As a result the conventional defence mechanisms like rule-based and signature-based methods
fail to detect these malware. So modern approaches rely on static and dynamic analysis to detect sophisticated
malware. However this process generates huge log files. The domain expert needs to review these logs to
classify whether the binary is malicious or benign which is tedious, time consuming and expensive. Our
work uses machine learning models trained on the datasets, created using the analysis logs, to overcome these
problems. In this paper a number of supervised machine learning models are presented to classify the binary
as malicious or benign. In this work we have used automated malware analysis framework to collect run time
behavioural artefacts. Static analysis mainly focuses on collecting binary meta information, import functions
and opcode sequences. The dataset is created by collecting malware from online sources and benign files from
windows operating system and third party software.

ecutable(PE) characteristics and strings present in
the binary.

Malware(Mullins, 2017), short for malicious soft-
ware, consists of programming designed to disrupt or
deny operation,gather information that leads to loss
of privacy or exploitation, gain unauthorized access
to system resources, and other abusive behaviour. Ex-
amples of malware include virus, worm, trojan, spy-
ware, ad-ware, root-kit and boot-kit etc. Malware
analysis detects and develops defence mechanisms
against the malware attacks by exploring various ac-
tivities of malicious software like its payload, persis-
tence mechanism and stealth features. The analysis is
categorized in two ways, static analysis and dynamic
analysis.

1. STATIC ANALYSIS (Michael Ligh and Richard,
2010). In this process the artefacts are collected
without running the binary. This process includes
static code analysis by disassembling the binary,
collection of meta information like author, digital
signatures, file hashes, creation dates, portable ex-

Chukka, A. and Devi, V.

2. DYNAMIC ANALYSIS (Michael Ligh and
Richard, 2010). In this process the run time
behavioural artefacts are collected by executing
the binary in contained environment. This process
collects information like file-system, process,
network and registry activity etc.

The Malware detection process presented in this pa-
per has two major steps 1. Performing static and dy-
namic analysis. and 2. Applying machine intelligence
on analysis logs to classify the binary.

The proposed system is intended for detecting
Portable Executable malware targeting Microsoft
Windows Operating System. The Portable Executable
(PE)(Goppit, 2006) format is a file format for exe-
cutables, object code, DLLs etc. used in 32-bit and
64-bit versions of Windows operating systems. The
main reason for this is that, at present the automated
malware analysis framework is currently available for
Microsoft Windows only. The proposed system can

29

Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts.

DOI: 10.5220/0010379600290037

In Proceedings of the 6th International Conference on Internet of Things, Big Data and Security (loTBDS 2021), pages 29-37

ISBN: 978-989-758-504-3

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



TIoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

be extended in future for other platforms like Linux
and Mac-OS by developing corresponding analysis
engines.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work, Section 3 describes
the proposed malware detection system architecture ,
Section 4 describes results, Section 5 describes con-
clusion and Section 6 describes future work.

2 RELATED WORK

Several behavioural analysis tools have been devel-
oped over the past decade to detect sophisticated mal-
ware. Some of the tools are proprietary in nature
and some are open-source. Cuckoo malware anal-
ysis(Team, 2020a) is one of the well known open
source frameworks of this kind. Buster Sandbox An-
alyzer((BusterBSA), 2020) is another freeware tool
that has been designed to analyze the behaviour of
processes and the changes made to system and then
evaluate if they are malware suspicious. ThreatAn-
alyzer(Vipre(ThreatTrack), 2020) is one of the com-
mercially available software to perform automatic
malware analysis. Some authors applied machine
learning techniques on the logs generated by these
tools to infer whether the sample is malicious or not.
Some authors clustered the malware samples to iden-
tify malware families. Approaches used are discussed
below.

Smita Ranveer and Swapnaja Hiray(Ranveer and
Hiray, 2015) discussed SVM classifier on opcode
sequences and API(Application Programming Inter-
face) sequences from behavioural analysis as fea-
tures to identify the nature of the sample. Konrad
Rieck et al.(Rieck et al., 2011) proposed a new en-
coding mechanism of the dynamic behavioural logs
from CWSSandbox(Vipre(ThreatTrack), 2020). They
called it as MIST(Malware Instruction Set) as it re-
sembles the general processor instruction set formats.
They formed Q-gram sequences on the MIST to em-
bed the malware report as a vector of large dimen-
sion with binary numbers. They used clustering algo-
rithms on these vectors to identify the malware fami-
lies. P. V. Shijo and A. Salim(Shijo and Salim, 2015)
used strings and API sequences as the feature set and
applied SVM and random forest models to classify
the samples. Igor Santos et al.(Santos et al., 2013)
used opcode mutual information gain as feature selec-
tion for static malware analysis and indicator features
of monitored actions in dynamic analysis to perform
the classification.

We use four additional feature sets, 1. Im-
port Functions, 2. Application Programming Inter-

30

face(API) calls generally exploited by malware au-
thors, 3. Custom flags which represent the malware
operational patterns and 4. Portable Executable(PE)
file format characteristics along with opcode se-
quences and API sequences to improve the classifi-
cation accuracy.We also use multi level classification
along with classifier stacking to improve the classi-
fication accuracy. Our dataset creation procedure is
unique where features of same kind are grouped to-
gether to make a feature set. This process has the fol-
lowing advantages

* Weighting of features based on their importance
impacts the classifier performance. However tun-
ing of these parameters is computationally expen-
sive with more number of features. This problem
can be solved by weighting the feature sets rather
than individual features.

» Users have flexibility to build various derived
datasets based on their requirement from these
feature sets.

* Dimensionality reduction can be applied at fea-
ture set level rather than entire dataset level.

3 PROPOSED SYSTEM

The proposed system architecture is depicted in
Figure 1. The Automated malware analysis en-
gine, based on API hooking technology(Michael Ligh
and Richard, 2010) ((BusterBSA), 2020)(Hunt and
Brubacher, 1999) is used to collect dynamic be-
haviour artefacts of the binary. Samples are exe-
cuted in controlled environment created using Vir-
tualisation Software. The guest system is equipped
with Windows 7 Operating System. Static anal-
ysis artefacts are collected using python PE utili-
ties(Carrera, 2020)(Tek, 2020) and diStorm3(Dabah,
2020) library. Three types of derived datasets are cre-
ated from the original dataset by multiple classifier
predictions, trained on individual feature sets of the
original dataset. The classification accuracy is im-
proved with derived datasets compared to the indi-
vidual feature sets. So the final classification of the
sample whether it is malware or benign is obtained
using derived datasets.

3.1 Sample Collection

Machine learning models are driven by the data,
so sample collection by quality and quantity is an
important process. Security researchers worldwide
are maintaining malware repositories for developing
detection mechanisms. Some of the well known



Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts

Static Analysis
\ ! » Log Processing

Sample Collection S
»  Dynamic Analysis
Malware ‘< —
ML Models ) prlgmal Dataset
¢ — 1 (Union of Feature Sets)

Normal ] ) x
__ v

Derived Datasets

Figure 1: System Architecture.

resources(Zeltser, 2020) are Contagio malware
dump(MilaParkour, 2020), VirusShare(Mellissa,
2020) and Malwr(Community, 2017) repository. Ap-
proximately 200000 PE malware binaries have been
collected from these resources. Samples have also
been collected through malware analysis framework.

We have collected normal PE files from the win-
dows operating system and third party application
software by filtering Multipurpose Internet Mail Ex-
tensions(MSDN, 2016) (MIME) type application/x-
msdownload which represents PE binary. The file size
is restricted to 3MB.

The dynamic analysis time for single binary is
approximately 5 minutes. We have used two win-
dows guest analysis environments along with single
Linux host environment. With this limited comput-
ing resources we are able to analyse two samples
in parallel(2sample/Sminutes). Because of this lim-
itation, initially we are using 470 PE malware and
600 benign files for the dataset creation. A total of
1070(470+600) samples are used for the current pro-
totype experimentation. The 1070(470+600) samples
are selected randomly from the collection of mali-
cious and normal repositories respectively. The ex-
perimentation will be scaled in future for the total
sample collection by allocating more computing re-
source.

3.2 Sample Analysis and Feature
Identification

Analysis logs of each sample is generated by perform-
ing both static and dynamic analysis. Following fea-
ture sets are identified for the dataset creation.

1. FILE META INFORMATION (Carrera, 2020;
Tek, 2020; Saxe and Berlin, 2015): is a static fea-
ture set and describes portable executable file for-
mat characteristics like entropy of sections, stack
allocation size, heap allocation size etc. This set
contains a total of 32 features which are real val-
ued. This feature set is fixed and will not change
with data samples. Table 1 gives some of the ex-
ample features of this type.

Table 1: Meta Information Feature Set.

S.No. Feature

Size of Headers
Number of Sections
Size of Stackcommit
Size of Heapreserve
Mean Section Entropy

DN AW =

Table 2: Import Functions Feature Set.

S. Feature S. Feature

No. No.

1 GetProcAddress 6 ExitProcess
2 HttpOpenRequest 7 VirtualFree

3 InternetOpen 8 CreateMutex
4 GetActiveWindow 9 RegOpenKey
5 DestroyWindow 10 ShellExecute

. IMPORT FUNCTIONS (Saxe and Berlin, 2015):

is a static feature set and describes the application
programming interface calls used by the binary
from operating system or third party software or
self contained dynamic link library. These import
functions provide information on sample charac-
teristics like network activity, system activity, per-
sistent mechanism, file system activity etc. This
set contains a total of 1805 features which are bi-
nary where value 1 indicates the feature presence
and O indicates the feature absence. This feature
set changes with data samples. The dimensional-
ity of this set increases with increasing data sam-
ples. We can use feature selection procedure de-
scribed in Subsection 3.3 of proposed system, to
restrict the dimensionality. Table 2 gives some of
the example features of this type.

. Opcode Sequences (Santos et al., 2013): is a

static feature set and describes the machine in-
struction sequences present in the binary. Se-
quences of length two are considered for the
present work. Opcode sequences provides spe-
cific patterns generally malware authors use for
exploiting the vulnerabilities present in the sys-
tem. Opcode sequences also provides informa-
tion on runtime behaviour of the executables. This
feature set is huge in dimensionality. So feature
selection procedure described in Subsection 3.3
of proposed system, is applied to select the 2001
features. These features are binary where value
1 represents feature presence and value O repre-
sents feature absence. This feature set changes
with data samples. Table 3 provides some of the
example features.

31



TIoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

4.

Table 3: Opcode Sequences Feature Set.

S. Feature S. Feature

No. No.

1 (PUSH, CALL) 6 (JNZ, CALL)
2 (ADD, PUSH) 7 (LEA, IMP)

3 (MOV, CALL) 8 (CMP, MOV)
4 (PUSH, 1Z) 9 (XCHG, AND)
5 (XCHG, OR) 10 (ADD, CMP)

API Sequences (Ranveer and Hiray, 2015; Shijo
and Salim, 2015): is a dynamic feature set and de-
scribes the API call sequence the binary exhibits
upon executing it. These sequences indicate the
sample activity like file system, persistence , net-
work etc. Sequences of length two and three are
considered for the present work. Sequence set of
length 2 sequences has 373 features. Sequence set
of length 3 sequences is huge in dimensionality.
So feature selection procedure described in Sub-
section 3.3 of proposed system, is used to select
1001 features. These features are binary where
value 1 represents feature presence and value 0
represents feature absence. API sequence sets
changes with data samples. Some of the example
features are given in Tables 4,5

Table 4: API Feature Set of Length 2 Sequences.

S.No. Feature

(NtCreateFile, InternetConnect)
(WriteFile, GetForeGroundWindow)
(LdrLoadDll, CreateMutex)
(WriteFile, CreateProcess)
(NtCreateFile, RegSetValue)

DN AW =

Table 5: API Feature Set of Length 3 Sequences.

S. Feature
No.

(UnHookWindowHookEx, CurrentProcess, NtCreateFile)
(NtSetValueKey, NtCreateFile, IsUserAdmin)
(CreateRemoteThread, CreateThread, LdrLoadDIl)
(WriteFile, Sleep, CreateThread)

(InternetConnect, NtCreateFile, HttpOpenRequest)

L I VS I S

32

. API Normal (Team, 2020a; (BusterBSA), 2020):

is a dynamic feature set and contains Operating
System API which generally are exploited to cre-
ate and execute malware with stealth and persis-
tence along with performing other malicious ac-
tivity like information gathering, network com-
promise etc. This set contains a total of 144 fea-
tures which are binary where value 1 represents
feature presence and value O represents feature ab-
sence. This set will not change with data samples.

Table 6: API Normal Feature Set.

S.  Feature S.  Feature

No. No.

1 CreateProcess 6 ShellExecute
2 HttpSendRequestEx 7 CreateMutex
3 DnsQuery_UTFS8 8 CreateFile

4 CreateService 9 RegDeleteKey
5 SetWindowsHookEx 10  RegSetValue

Table 6 gives some of the example features.

. Custom Flags: is a dynamic feature set and de-

scribes the malware operational patterns. For ex-
ample a sample dropping another binary and ex-
ecuting it, which is persistent in the system, and
parent executable deletes itself is considered sus-
picious activity. This set contains 14 features
which are binary. This feature set will not change
with data samples. The description of the flags is
as follows

* IMP_PROCESS1. This flag will be set if process
drops another payload and spans a process from
1t.

e IMP_PROCESS2. This flag will be set if a
process spans a child process and exits it and
deletes its image.

* IMP_PROCESS3. This flag will be set if parent
process spans a process and moves or copies its
image location.

e ImMP_FILEl. This flag will be set if file is
dropped and spans a process from it.

* IMP_FILE2. This flag will be set if a file is
dropped and adds an entry into registry for its
location.

e ImMP_FILE3. This flag will be set if there is a
registry activity for a moved or copied file.

* IMP_FILE4. This flag will be set if a file is
dropped and a service is created from it.

» IMP_FILES.This flag will be set if there is a ser-
vice activity for a moved or copied file.

* IMP_FILE6. This flag will be set if a file is
dropped and loaded into another process ad-
dress space.

* IMP_FILE7. This flag will be set if there is
a driver or dll loading done from a moved or
copied file.

* NETWORK. This flag will be set if any network
activity is performed by the sample.

* Miscl. This flag will be set if any synchro-
nization activity is performed.

* Misc2. This flag will be set if binary creates
local threads or remote threads.



Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts

e Misc3. This flag will be set if binary performs
activity like key logging etc.

3.3 Feature Selection

Some of the feature sets like opcode sequences and
API sequences have large dimensionality. We have
used Weighted Term Frequency(WTF)(Santos et al.,
2013) to select the top K features. Let us say S; =
(T1,T») is a opcode sequence of length two where
each T; is the opcode then:

WTE(S;) = TF(S;) * MI(T;) * MI(T3)
where
* TF(S;) Normalized frequency of S;.

e MI(T;) Mutual Information gain (Christopher
D. Manning and Schiitze, 2008) of T;

_ Count(S;)
YM | Count(S;)
MI(T;) = C11 + Co1 + Cio+ Coo

TF(s;)

N1 N *xNjp
C11 = —*log
N (N11+Nio) * (Not +Ni1)
C —&*log iiahion
TN (Noo +Not ) * (Not +Nir)
Nio N*Njp
C10: —*log
N (N11+Nig) * (N1o + Noo)
N *xNyo

Coo = @ *log
N (Noo +Not ) * (N1o + Noo)

Count(S;). Number of occurrences of S; in total op-
code sequences.

M. Number of unique opcode sequences

N. Total opcodes frequency in all samples

P. Total opcodes frequency in malware samples
Q. Total opcodes frequency in normal samples
Nji1. T; frequency given class is Malware

No1. 7; frequency given class is Normal

Noo. Q—Noi

3.4 Datasets

The dataset is created by taking union of all feature
sets. It has 5370 features. Three types of derived
datasets are created from the original dataset. These
derived datasets are meta datasets created by multi-
ple classifiers trained on individual feature sets and
combining the predictions in a specific manner. The
description of the derived datasets is as follows

e TypPEl. This dataset creation mainly focussed
on converting real valued File Meta Informa-
tion feature set from the original dataset into bi-
nary meta features. This makes the dataset uni-
form(binary) across all features. This dataset is
created by training a machine learning model on
file meta information feature set and adding pre-
diction value of each sample as b-meta feature
value for that sample. All remaining feature sets
values for each sample from the original dataset
is added without any modification. The dimen-
sionality of this dataset is 5339. Five machine
learning models, ANN(Artificial Neural Network
Classifier), KNN(K-Nearest Neighbour Classi-
fier), NB(Naive Bayes Classifier), RF(Random
Forest Classifier) and SVM(Support Vector Ma-
chine Classifier) are used for training. So five
datasets of this type are created(each one for one
specific model). Figure 2 describes the dataset
creation process. The description of the five
datasets is as follows.

1. ANN_TYPEI. ANN is used for training
and prediction on real valued File Meta
Information feature set.

2. KNN_TYPEl. KNN is used for training
and prediction on real valued File Meta
Information feature set.

3. NB_TYPE]. NB is used for training and predic-
tion on real valued File Meta Information
feature set.

4. RE_TYPEL. RF is used for training and predic-
tion on real valued File Meta Information
feature set.

5. SVM_TYPEl. SVM is used for training
and prediction on real valued File Meta
Information feature set.

TYPE2. This dataset creation mainly focused
on transforming each individual feature set from
the original dataset into a single binary feature.
The dataset is created by training machine learn-
ing models on each individual feature set sepa-
rately and concatenating the predictions for each
sample. The dimensionality of this dataset is
seven(we are using seven feature sets). Five ma-
chine learning models(ANN, KNN, NB, RF and
SVM) are used for training. So five datasets of
this type are created (each one for one specific
model). Figure 3 describes the creation process.
The description of the five datasets is as follows.

1. ANN_TYPE2. ANN is used for training and
prediction on each individual feature set.

2. KNN_TYPE2. KNN is used for training and
prediction on each individual feature set.

33



TIoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

TYPE1 Derived Dataset

[ API2 ] API3 [ OPCODE2 ][ IMPORTS ] API NORMAL CFLAGS B-META
)

- @

Figure 2: Typel Derived Dataset.

B-META = Binary Feature of File Meta
Information Feature Set created using ML
model Prediction.

Feature Sets

J— 13 B-API2 = Binary Feature
[ wem | Bl MuModel of AP Sequences of
p— > LEngchF.EalurESEt
Bt created using ML model
IMPORTS
crLaGs
g & X ¥ v hl 4 T

(sormomea | P et s

Figure 3: Type2 Derived Dataset.

TYPE3 Derived Dataset

ANN_TYPE2 KNN_TYPE2 [ NB_TYPE2 l RF_TYPE2 SVM_TYPE2

ANN_TYPE2=TYPE2 dataset with ANN Model contains 7 binary
features, created by predictions overindividual feature sets.

Figure 4: Type3 Derived Dataset.

3. NB_.TYPE2. NB is used for training and pre-
diction on each individual feature sett.

4. RE_TYPE2. RF is used for training and predic-
tion on each individual feature set.

5. SVM_TYPE2. SVM is used for training and
prediction on each individual feature set.

» TYPE3. This dataset is mainly focused on con-
catenating TYPE2 datasets of all machine learn-
ing models. The dimensionality of the dataset is
35(5 TYPE2 datasets each with seven binary fea-
tures). Figure 4 describes the dataset creation pro-
cess. For example given a sample, ANN is used
for creating 7 binary features, each one for one in-
dividual feature set. KNN is used for creating 7
binary features, each one for one individual fea-
ture set. In the same way remaining 21 features
are created using NB, RF and SVM. All these fea-
ture values concatenating together gives the data
values for the sample.

3.5 Machine Learning Models

Five machine learning models are used for this work
with configurations as given below. The performance
metric used is the classification accuracy.

34

1. ARTIFICIAL NEURAL NETWORKS (Chollet,
2020; Team, 2020b):

* Two hidden layers, each with 64 units, relu ac-
tivation and 0.5 drop-out

* One output unit with sigmoid activation

* Rmsprop optimizer is used along with binary
cross entropy loss.

2. SUPPORT VECTOR MACHINES(scikit-learn
team, 2020d): Rbf _kernel with parameters
C = 1.0 and gamma = 5 are used where d
represents number of features

3. RANDOM FOREST(scikit-learn team, 2020c):
ten estimators(trees) are used in the forest with
gini impurity criterion. The nodes are ex-
panded until all leaves becomes pure or until all
leaves contain less than 2 samples.

4. NAIVE BAYES(scikit-learn team, 2020a): Gaus-
sian Naive Bayes algorithm is used where likeli-
hood of the features are assumed to be Gaussian.

5. K-NEAREST NEIGHBOUR(scikit-learn team,
2020b): nearest Neighbour with K = 3 is used for
the classification.

4 RESULTS

The experiment used 10-fold cross validation over
100 iterations. The classification accuracy is taken as
average accuracy of 100 iterations. Table 7 provides
the accuracy of each classifier with respect to individ-
ual feature sets. Table 8 provides the accuracy with
respect to derived datasets. The standard devia-
tion over 100 iteration across all datasets(both indi-
vidual feature sets and derived datasets) with all ma-
chine learning models is negligible. It clearly indi-
cates that the model learning is good.

The bar chart in Figure 5 describes the perfor-
mance comparison of the machine learning models
across individual feature sets. Classifiers performance
with respect to File Meta Information feature set is
low compared to other feature sets except for clas-
sifiers KNN and RF. Random Forest performance is
good on average across all individual feature sets.
This is expected as the result is an ensemble of mul-
tiple estimators. Import Functions and API Se-
quences of length 3 accuracy is good across all clas-
sifiers compared to other feature sets. ANN achieves
around 90 percent accuracy with these two feature
sets. Naive Bayes classifier performance is poor over
majority of the feature sets. ANN performance is
good across majority of the feature sets.



Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts

Table 7: Classification with Individual Feature Sets.

CLASSIFIER (ACCURACY)
DATA ANN KNN NB RF SVM
SET AVG STD AVG STD AVG STD AVG STD AVG STD
API_SEQUENCE_2 0.8825 0.0046 0.8617 1.le-16 0.7589 1.le-16 0.8716 0.0045 0.8215 4.4e-16
API_SEQUENCE_3 0.9031 0.0032 0.8636 0 0.8168 0 0.8919 0.0047 0.8056 1.le-16
API_NORMAL 0.8442 0.0038 0.7785 2.2e-16 0.7308 3.3e-16 0.8407 0.0043 0.7355 1.le-16
CUSTOM_FLAGS 0.7909 0.0012 0.7664 1.le-16 0.7748 1.1e-16 0.7897 0.0019 0.7729 1.1e-16
IMPORT_FUNCTIONS  0.8986 0.0046 0.8598 2.2e-16 0.7888 1.le-16 0.8954 0.0057 0.8383 2.2e-16
FILE_META _INFO 0.5036 0.0179 0.8084 3.3e-16 0.5850 0 0.8906 0.0070 0.6598 2.2e-16
OPCODE_SEQUENCE_2 0.8542 0.0234 0.8579 1.le-16 0.7766 0 0.8562 0.0064 0.8028 2.2e-16
Table 8: Classification with Derived Datasets.
CLASSIFIER (ACCURACY)

DATA ANN KNN NB RF SVM

SET AVG STD AVG STD AVG STD AVG STD AVG STD

TYPE1 0.9481 0.0049 0.9047 1.le-16 0.8467 1.le-16 0.9357 0.0058 0.9056 4.4e-16

TYPE2 0.9944 1.7e-10 0.9561 2.2e-16 0.8692 2.2e-16 0.9984 0.0008 1 0

TYPE3 0.9995 0.0005 0.9991 2.2e-16 1 0 0.9998 0.0004 1 0

Feature Sets

Classification Accuracy

& &
& ¥

N
Feature SetType

uANN
mKNN
uNB
B RF
SVM

ooooooo00

o
2
2
(e

Accuracy

1
.9
.8
.7
.6
.5
.4
.3
.2
.1
0
N N3
&

Figure 5: Accuracy With Individual Feature Sets.

Derived Datasets

Classification Accuracy

1
0.95
0.9
0.85
0.8
0.75

TYPE1L TYPE2 TYPE3

B ANN
mKNN
ENB
uRF
SVM

Accuracy

Dataset Type

Figure 6: Accuracy With Derived Datasets.

The bar chart in Figure 6 gives the performance com-
parison of the derived datasets across all classifiers.
The performance of derived datasets is better than the
performance of all individual feature sets as expected
across all machine learning models. The classifica-
tion accuracy of TYPE?2 derived dataset is better than
that of TYPEI derived dataset and TYPE3 derived
dataset gives the best performance. It can be seen that

Accuracy Comparision

Individual Classifier

ANN KNN NB RF SVM

Classifier

mTYPEL
®TYPE2
TYPE3

Accuracy

Figure 7: Accuracy Comparison over Derived Datasets for
Machine Learning Models.

TYPE3 dataset performance is very good across all
classifiers. TYPE3 achieves more than 99 percent ac-
curacy across all classifiers.

The bar chart in Figure 7 gives the performance
comparison of machine learning models across all de-
rived datasets. ANN performs well over all three de-
rived datasets. ANN, RF and SVM achieve more than
99 percent accuracy with TYPE2 and TYPE3 datasets.
Naive Bayes performance is poor with TYPE] and
TYPE2 datasets. However it achieves 100 percent ac-
curacy with TYPE3 dataset. KNN achieves more than
90 percent accuracy across all the derived datasets.

Machine learning models provide good results
when datasets contain quality features. Providing new
information to the models always yields better results.
Most of the relevant work used limited feature sets
like combination of opcode sequences and API se-
quences or API sequences and strings etc. Our work
has used four additional feature sets along with op-

35



TIoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

code sequences and API sequences to improve the
classification accuracy. Work on this problem done
earlier, experimented with single dataset which is a
direct combination of the feature sets. We have intro-
duced derived datasets where multi level classification
is performed, which greatly improves the classifica-
tion accuracy. With these improvements our model
classification accuracy is more than 99.90% which is
better than existing approaches where P. V. Shijo and
A. Salim(Shijo and Salim, 2015) achieved 98.7% ac-
curacy in their work titled Integrated static and dy-
namic analysis for malware detection and Igor San-
tos et al.(Santos et al., 2013) achieved 96.60% accu-
racy in their work titled OPEM: A Static-Dynamic Ap-
proach for Machine-learning-based Malware Detec-
tion.

5 CONCLUSION

In this paper we have presented detection of ma-
licious windows binaries with behavioural analysis
along with machine intelligence approaches. Fea-
ture sets like API sequences, opcode sequences, file
meta information, custom attributes and import func-
tions are extracted from the binaries and the dataset
is created by taking the union of these feature sets.
All feature sets except file meta information are bi-
nary. File meta information is a real valued feature
set. The derived datasets are created by different
mechanisms like direct concatenation of all individual
feature sets except real valued file meta information
where machine learning models are used to make it a
single binary feature, concatenation of individual fea-
ture set predictions by machine learning model pre-
viously trained on it and, concatenation of individual
feature set predictions across all five classifiers pre-
viously trained on it. The results show that derived
datasets give better performance as compared to us-
ing individual feature sets. In the derived datasets,
TYPE3 dataset outperforms the other datasets. In this
work we have used four additional feature sets besides
opcode sequences and API sequences along with clas-
sifier ensemble methods to improve the classifier per-
formance which further leads to improvement in the
malware detection rate by reducing the false positives.
We have achieved more than 99.90% classification ac-
curacy with our work. In future, we are planning to
extend this mechanism to other file formats like MS
office Suite and PDF etc. We are also planing to use
unsupervised and soft computing mechanisms for au-
tomatic feature extraction and selection.

36

6 FUTURE WORK

In this paper we have discussed detection of mali-
cious windows binaries only. This mechanism will be
extended to other file formats like Microsoft Office
documents(Word, Power Point, Excel), Portable Doc-
ument Format(PDF) and Web Application(HTML,
HTA, JS). We are also planning to extend this mecha-
nism to other operating systems(Linux, MacOS) by
developing appropriate automatic malware analysis
engines. We are also planning to create and experi-
ment with another type of dataset known as Malware
Instruction Set(MIST Dataset ) discussed by Konrad
Reick et al.(Rieck et al., 2011) with modifications to
number of levels and argument blocks based on out-
put format of automated malware analysis framework.
We are also planning to use unsupervised models like
Latent Dirichlet allocation(LDA)(Blei et al., 2003) to
automatically extract features from analysis logs. Soft
computing techniques will be used for feature selec-
tion and weighting.

REFERENCES

Blei, D. M., Ng, A. Y., and Jordan, M. 1. (2003). La-
tent dirichlet allocation. J. Mach. Learn. Res.,
3(null):993-1022.

(BusterBSA), P. L. (2020). Buster Sandbox Analyser. http:
//bsa.isoftware.nl/.

Carrera, E. (2020). pefile - Multi-platform Python module
to parse and work with Portable Executable (PE) files.
https://github.com/erocarrera/pefile.

Chollet, F. (2020). Keras: The Python Deep Learn-
ing library - The Sequential model. https://keras.io/
getting-started/sequential-model- guide/.

Christopher D. Manning, P. R. and Schiitze, H. (2008).
Introduction to Information Retrieval, chapter 13.5.
Cambridge University Press.

Community, C. S. (2017). Malwr (Free malware analysis
service). https://malwr.com/.

Dabah, G. (2020). Powerful Disassembler Library For
x86/AMD64. https://github.com/gdabah/distorm.

Goppit (2006). Portable executable file format — a re-
verse engineer view. CodeBreakers Magazine (Se-
curity & Anti-Security- Attack & Defense), 1 issue
2. http://index-of.es/Windows/pe/CBM_1_2_2006_
Goppit_PE_Format_Reverse_Engineer_View.pdf.

Hunt, G. and Brubacher, D. (1999). Detours: Binary inter-
ception of win32 functions. In Third USENIX Win-
dows NT Symposium, page 8. USENIX.

Mellissa (2020). VirusShare (Repository of malware sam-
ples). https://virusshare.com/.

Michael Ligh, Steven Adair, B. H. and Richard, M. (2010).
Malware Analyst’s Cookbook and DVD: Tools and
Techniques for Fighting Malicious Code. Wiley Pub-
lishing.



Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts

MilaParkour (2020). Contagio (Malware Dump). http://
contagiodump.blogspot.com/.

MSDN (2016). MIME Type Detection in Windows Internet
Explorer. https://msdn.microsoft.com/en-us/library/
ms775147(v=vs.85).aspx.

Mullins, D. P. (2017). Introduction to Comput-
ing. http://cs.sru.edu/~mullins/cpsc100book/
module05_Software AndAdmin/module05-04_
softwareAndAdmin.html.

Ranveer, S. and Hiray, S. (2015). Svm based effective mal-
ware detection system. International Journal of Com-
puter Science and Information Technologies(1JCSIT),
6(4):3361-3365.

Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). Au-
tomatic analysis of malware behaviour using machine
learning. Journal of Computer Security, 19(4):639—
668.

Santos, 1., Devesa, J., Brezo, F., Nieves, J., and Bringas,
P. G. (2013). Opem: A static dynamic approach for
machine learning based malware detection. Proceed-
ings of International Conference CISIS 12-ICEUTE
12 Special Sessions Advances in Intelligent Systems
and Computing, 189:271 — 280.

Saxe, J. and Berlin, K. (2015). Deep neural network based
malware detection using two dimensional binary pro-
gram features. arXiv:1508.03096v2.

scikit-learn team (2020a). Naive Bayes. http://scikit-learn.
org/stable/modules/naive_bayes.html.

scikit-learn team (2020b). Nearest Neighbors. http://
scikit-learn.org/stable/modules/neighbors.html.

scikit-learn team (2020c). RandomForestClassifier.
http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html.

scikit-learn team (2020d). Support Vector Machines. http:
//scikit-learn.org/stable/modules/svm.html.

Shijo, P. V. and Salim, A. (2015). Integrated static
and dynamic analysis for malware detection. In-
ternational Conference on Information and Commu-
nication Technologies (ICICT 2014), 46:804 — 811.
https://doi.org/10.1016/j.procs.2015.02.149.

Team, C. D. (2020a). Cuckoo Sandbox - Automated Mal-
ware Analysis. https://cuckoosandbox.org/.

Team, G. B. (2020b). An open-source software library for
Machine Intelligence. https://www.tensorflow.org/.

Tek (2020). Malware-classification. https://github.com/
Te-k/malware-classification/blob/master/checkpe.py.

Vipre(ThreatTrack) (2020). ThreatAnalyzer. https://www.
vipre.com/products/business-protection/analyzer/.

Zeltser, L. (2020). Malware Sample Sources
for Researchers. https://zeltser.com/
malware-sample-sources/.

37



