
Informer, an Information Organization Transformer Architecture

Cristian David Estupiñán Ojeda, Cayetano Nicolás Guerra Artal
and Francisco Mario Hernández Tejera

University Institute SIANI, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain

Keywords: Deep Learning, Linear Transformer, Informer, Convolution, Self Attention, Organization, Neural Machine
Translation.

Abstract: The use of architectures based on transformers presents a state of the art revolution in natural language pro-
cessing (NLP). The employment of these architectures with high computational costs has increased in the last
few months, despite the existing use of parallelization techniques. This is due to the high performance that is
obtained by increasing the size of the learnable parameters for these kinds of architectures, while maintaining
the models’ predictability. This relates to the fact that it is difficult to do research with limited computational
resources. A restrictive element is the memory usage, which seriously affects the replication of experiments.
We are presenting a new architecture called Informer, which seeks to exploit the concept of information organi-
zation. For the sake of evaluation, we use a neural machine translation (NMT) dataset, the English-Vietnamese
IWSLT15 dataset (Luong and Manning, 2015). In this paper, we also compare this proposal with architectures
that reduce the computational cost to O(n · r), such as Linformer (Wang et al., 2020). In addition, we have
managed to improve the SOTA of the BLEU score from 33.27 to 35.11.

1 INTRODUCTION

Within the field of natural language processing
(NLP), there are a lot of different types of applica-
tions, such as neural machine translation (NMT), as
well as document classification, language modelling,
sentiment analysis, question-answering, and others.
There is a great diversity of architectures to face these
challenges. In recent months, those based on trans-
formers have gained great relevance. For example we
have the Large-BERT network (Devlin et al., 2019),
which is mainly focused on the task of language mod-
eling and can also be considered a special type of
word embedding. The development of Large-BERT
resulted in GPT-3 (Brown et al., 2020) which has been
a revolution by using a high amount of trainable pa-
rameters (around 175 Billion). Likewise, there is an-
other type of network exemplified by G-Shard (Lep-
ikhin et al., 2020). This network addresses the task of
neural machine translation, which has a total of 600
Billion parameters.

It should be noted that these kinds of neural net-
works are practically impossible to replicate if there is
not a great amount of computational resources avail-
able, due to the high computational cost they present.
Even when techniques to improve their efficiency are

used, there are still memory and training costs restric-
tions. The use of techniques such as transfer learn-
ing has become very popular for NLP tasks by taking
advantage of this kind of architecture (Devlin et al.,
2019), (Pennington et al., 2014). However, it is not al-
ways possible to make use of this training technique,
as it depends highly on the source and target domains.

That is why new architectures have emerged, try-
ing to deal with these root causes, and reduce the com-
plexity to a linear order during training. The Lin-
former (Wang et al., 2020) is a technique that ad-
dresses this problem by reducing the complexity of
the self-attention layer. This is the layer with the
highest complexity and computational cost, becom-
ing O(n2) in the original transformer (Vaswani et al.,
2017). The authors of the Linformer architecture have
demonstrated, both theoretically and empirically, that
self-attention can be reduced to a low-rank matrix.
This is achieved through the decomposition of dot-
product attentions into multiple attentions of linear
projections. This approach allows the factorization of
the original attention.

In this work, we will focus on the application of
efficient architectures in the field of neural machine
translation task (Ott et al., 2018). For experimental
evaluation purposes, the English-Vietnamese dataset

Ojeda, C., Artal, C. and Tejera, F.
Informer, an Information Organization Transformer Architecture.
DOI: 10.5220/0010372703810389
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 381-389
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

381



will be used (Luong and Manning, 2015). This is
because it works reasonably well with low-resources
machines, and this dataset is ideal for evaluation us-
ing graphic cards with limited video memory. The
main idea is to evaluate in a comparative fashion the
performance of four different transformer architec-
tures: firstly the original transformer, proposed in At-
tention is All You Need (Vaswani et al., 2017), a Lin-
former model with linear projections as self-attention
(applied to the encoder stage), and other model pro-
posed by us corresponding to the use of convolutional
layers and max-pooling in self-attention. Finally, we
also propose and evaluate a new model, the Informer
model, which uses these techniques, as well as an in-
formation organization module replacing the original
Feed-Forward.

This information organization module is based
on organizing the information coming from the self-
attention output. It allows the network to organize
the features by reducing their dimension with convo-
lutional layers at the encoder level. That means that
we do not add the restriction that the input must be
the same as the output of the module, such as an auto-
encoder. The network has full freedom to organize
the information. We demonstrate that The Informer
presents the best performance, with a BLEU-1 met-
ric value of 35.1119 in the inference test set and a
PERPLEXITY value of 20.2263 in the inference val-
idation set.

2 RELATED WORK

There are different architectures in the state of the
art which try to improve the efficiency of transformer
networks (Tay et al., 2020c), (See Table 1). Among
them, the most prominent is the Linformer (Wang
et al., 2020), which achieves a linear cost during train-
ing in self-attention. It is positioned as one of the most
attractive alternatives when training a low-cost model.
Thanks to this potential, it will be used as the basis for
conducting the experiments in this paper.

Another model is the Reformer (Kitaev et al.,
2020). This facilitates handling datasets with quite
long sequences-sizes greater than 2048. The main ad-
vantage of the Reformer is that it uses less memory.
The complexity is reduced to O(n logn) by using the
Locally Sensitive Hashing technique (LSH).

One technique that has been used by default in
Linformer is mixed precision (Micikevicius et al.,
2017). It is based on using floating-point types, of
16bits and 32bits respectively, in such a way that the
memory used when training is reduced. However,
due to compatibility terms when training the mod-

els, it was decided not to implement this technique in
the experiments. Another interesting technique is the
Sparse Transformer (Child et al., 2019). It consists of
the addition of sparsity in self-attention, performing
the calculations from the diagonal of the generated P
matrix. It is useful in predicting longer sequences.

Finally, one of the recent results with the
IWSLT15 English-Vietnamese dataset achieves a
BLEU-1 score of 33.27 (Provilkov et al., 2020). It
is based on subword regularization and it uses Byte-
Pair Encoding (BPE) (Sennrich et al., 2016) along
with dropout during training and standard BPE dur-
ing inference. (See Table 2) for paper results with
the English-Vietnamese dataset. There is another ar-
ticle that obtains a BLEU score of 43.60 (Phan-Vu
et al., 2018), however, this article does not only use
the IWSLT15 EN-VI dataset to perform the training.
It also uses a set of subtitles extracted from the inter-
net, increasing the dataset from 133,317 samples to
1,103,456 samples. That is why we cannot make a
fair comparison with this article.

3 DATASET

The dataset that will be used is the IWSLT15 English-
Vietnamese dataset (Luong and Manning, 2015) from
the International Workshop on Spoken Language
Translation. This dataset has the following main char-
acteristics:

• Training samples: 133,317 (Files: X = train.en, Y
= train.vi)

• Validation samples: 1,553 (Files: X = tst2012.en,
Y = tst2012.vi)

• Test samples: 1,268 (Files: X = tst2013.en, Y =
tst2013.vi)

In order to deal with low video memory, we decided
to remove sequences higher than 200 tokens.

• Samples eliminated from training set: 40. (0.03%
of the data)

• Samples eliminated from validation set: 0

• Samples eliminated from test set: 0

The number of total samples of the dataset after this
operation is:

• Training samples: 133,277

• Validation samples: 1,553

• Test samples: 1,268

The average sequence size of the samples is: 17.79,
and the maximum sequence sizes are (English: 193,
Vietnamese: 199).

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

382



Table 1: Extracted from (Tay et al., 2020c). ”Summary of Efficient Transformer Models presented in chronological order
of their first public disclosure. Some papers presented sequentially may first appear at the same time, e.g., as an ICLR
submission. Papers annotated with a superscript † are peer-reviewed papers. Class abbreviations include: FP = Fixed Patterns
or Combinations of Fixed Patterns, M = Memory, LP = Learnable Pattern, LR = Low Rank, KR = Kernel and RC = Recurrence.
Furthermore, n generally refers to the sequence length and b is the local window (or block) size. We use subscript g on n to
denote global memory length and nc to denote convolutionally compressed sequence lengths”.

Model / Paper Complexity Decode class
Memory Compressed† (Liu et al., 2018) O(n2

c) yes FP+M
Image Transformer† (Parmar et al., 2018) O(n ·m) yes FP

Set Transformer† (Lee et al., 2019) O(nk) no M
Transformer-XL† (Dai et al., 2019) O(n2) yes RC

Sparse Transformer (Child et al., 2019) O(n
√

n) yes FP
Reformer† (Kitaev et al., 2020) O(n logn) yes LP

Routing Transformer (Roy et al., 2020) O(n logn) yes LP
Axial Transformer (Ho et al., 2019) O(n

√
n) yes FP

Compressive Transformer† (Rae et al., 2020) O(n2) yes RC
Sinkhorn Transformer† (Tay et al., 2020b) O(b2) yes LP

Longformer (Beltagy et al., 2020) O(n(k+m)) yes FP+M
ETC (Ainslie et al., 2020) O(n2

g +nng) no FP+M
Synthesizer (Tay et al., 2020a) O(n2) yes LR+LP

Performer (Choromanski et al., 2020) O(n) yes KR
Linformer (Wang et al., 2020) O(n) no LR

Linear Transformers† (Katharopoulos et al., 2020) O(n) yes KR
Big Bird (Zaheer et al., 2020) O(n) no FP+M

Table 2: English-Vietnamese results. Metric used: BLEU.

Model BLEU Score
Transformer+BPE-Dropout (Provilkov et al., 2020) 33.27

Transformer+BPE+FixNorm+ScaleNorm (Nguyen and Salazar, 2019) 32.8
Transformer+LayerNorm-simple (Xu et al., 2019) 31.4

CVT (Clark et al., 2018) 29.6
Self-Adaptive Control of Temperature (Lin et al., 2018a) 29.12

SAWR (Zhang et al., 2019) 29.09
DeconvDec (Lin et al., 2018b) 28.47

LSTM+Attention+Ensemble (Luong and Manning, 2015) 26.4

The core idea when using this dataset is to evaluate
whether it is possible to have a performance equal
to, or greater than, the original transformer with a re-
duced sequence size “r”. This size will be less than
the average sequence size of the samples. To do this,
we use a reduction size that is approximately half of
that value, r = 8. Models that use max-pooling tech-
niques, will reduce the size to r = 4.

4 MODEL COMPARISON

For this work, we will compare four different trans-
former models. We will evaluate the performance of
the architectures as techniques that are applied to im-
prove their efficiency. To this end, we have a first

model based on the original transformer (Vaswani
et al., 2017), in such a way that it serves as a basis for
determining the performance of the rest of the mod-
els. The second model implements the linear projec-
tions proposed in the Linformer paper (Wang et al.,
2020). The third model applies convolutional tech-
niques when making the projections. The latest model
also includes an information organization stage that
replaces the conventional feed-forward submodule. It
is important to note that these models focus on apply-
ing efficiency improvement techniques only in the en-
coder stage. This is because we want to maintain the
flexibility provided by the decoder stage. Depending
on the type of data that is being used, it could also be
applied to the decoder stage.

Informer, an Information Organization Transformer Architecture

383



4.1 Original Transformer

For this first baseline model, we replicate the origi-
nal transformer model as presented in (Vaswani et al.,
2017) (See Figure 1). As well as the default self-
attention layer. (See Figure 2). The original trans-
former is made up of various clearly differentiated
modules. In a first module we can find the input to the
encoder and decoder modules respectively. This mod-
ule consists of the sum of an input embedding (one
embedding is used for encoder and the other embed-
ding for decoder) with the positional encoding matrix.

Then we have the encoder modules, which can be
stacked. These are made up of a multi-head atten-
tion submodule, as well as a feed-forward submodule.
These submodules are further joined with a residual
connection.

Regarding to multi-head attention, (Figure 2), we
need to compute the Query, Key and Value matrices.
To do this, the entries are multiplied by the respec-
tive Query, Key and Value weight matrices. Later, we
calculate the Scores matrix through the matrix mul-
tiplication between the Query matrix and the trans-
pose of the Key matrix. We divide this Scores matrix
by the root of the head dimension, thereby stabilizing
the gradient. Likewise, the values will be normalized
through a softmax function. Finally, the results are
computed through matrix multiplication between the
Scores matrix and the Value matrix. (See equation 1).

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V (1)

Each layer of the decoder follows a similar scheme.
This module presents the inclusion of a masked multi-
head attention submodule. In it, we masked the input
of the decoder; in this way we managed to prevent
the decoder from seeing tokens of the sentence that
did not correspond to it. With this, it is possible to
simulate the state of inference.

4.2 Linformer Encoder

In the Linformer encoder (Wang et al., 2020), we
keep the overall structure provided by the original
transformer model. However, the self-attention stage
presents the technique of using linear projections in
order to reduce the model complexity. (See Figure 3).
The authors demonstrate that the self-attention mech-
anism, in the context of the mapping matrix P, is low-
rank.

When making the projections, we decided to share
the projections at all levels by default. This implies
that the same projection will be used for Keys and

Multi-Head-Attention
Masked

Multi-Head-Attention

Multi-Head-AttentionFeed Forward

Feed Forward

Encoder input Decoder input

Output

Positional
encoding

Positional
encoding

Figure 1: Original Transformer architecture.

Linear

V K Q

Linear
Linear

Scaled Dot-Product Attention
Scaled Dot-Product Attention

Scaled Dot-Product Attention

Linear
Linear

Linear

Linear
Linear

Linear

Concat

Linear

Figure 2: Original Transformer Multi-Head Attention.

Values. Likewise, all the self-attention heads will use
the same projection, as well as the N encoder layers.
Thus, we managed to reduce the number of trainable
parameters to carry out the projections. However, this
is a parameter that could be adjusted depending on
the type of data and the performance of the model.
In (Figure 4), the inner workings of the self-attention
layer are shown, we emphasize the shapes of tensors
for a better understanding.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

384



Linear

V K Q

Linear
Linear

Scaled Dot-Product Attention
Scaled Dot-Product Attention

Scaled Dot-Product Attention

Linear
Linear

Linear

Linear
Linear

Linear

Concat

Linear

Linear
Linear

Projection

Linear
Linear

Projection

Figure 3: Multi-Head Attention operation on the Linformer.

Projection

Transpose

Projection

Transpose

TransposeMatmul

Matmul

Knxdk Vnxdk

Kdkxn Vdkxn

EKdkxr FVdkxr

Qnxdk

SCORESnxr FVrxdk

ATTENDEDnxdk

Figure 4: Internal operations of self-attention in the Lin-
former model with linear projections.

4.3 Convolutional Linformer Encoder

In this model a convolutional layer is applied, in addi-
tion to max-pooling, when generating the projections
of the Keys and Values matrices. This presents a cer-

tain difference when it comes to computing, with re-
spect to the previous model, so it is necessary to apply
the projections before splitting heads. (See Figure 5).

Given this, it is possible to apply the convolutional
layer on the projections. The kernel and stride size
suggested in the Linformer paper (Wang et al., 2020)
is followed for this model. The rest of the architecture
is exactly the same as the original Linformer. Thanks
to this, it is possible to evaluate the differences be-
tween linear-type projections and convolutional-type
projections. By default, max-pooling is used by halv-
ing the default value of ”r”, from r = 8 to r = 4. This
means compression to half the encoder sequence size
indicated on the Linformer encoder model. We also
apply a Leaky-ReLU activation layer.

Conv1D
Maxpool

Transpose Transpose

Matmul

Matmul

Transpose Transpose

Split Heads Split Heads

Transpose

Conv1D
Maxpool

Knxd Vnxd

Kdxn Vdxn

EKdxr/2 FVdxr/2

EKr/2xd FVr/2xd

EKr/2xdk

EKdkxr/2

Qnxdk

SCORESnxr/2 FVr/2xdk

ATTENDEDnxdk

Figure 5: Inner operations of the Convolutional Linformer.

4.4 Informer Encoder

The proposed model in this document goes one step
further in the field of optimization. The main idea
in this model is the use of an information organiza-
tion module that allows the network to organize the

Informer, an Information Organization Transformer Architecture

385



features produced by the self-attention layer. The hy-
pothesis is that the Feed-Forward layer is oversized
and makes training convergence slower. Incorporat-
ing this organization to an encoder level also facili-
tates a drastic reduction of the number of parameters.
In that way, we achieve a more efficient architecture.
This submodule differs from a one-dimensional con-
volutional auto-encoder because the input and output
must not be the same. We allow the submodule full
freedom to organize the features in each encoder mod-
ule and make its own representations.

We start from the previous model that uses con-
volutional operations at the self-attention level. In
fact, the same parameters and layers will be used to
make the comparison between both models. Further-
more, this model incorporates the use of a convolu-
tional auto-encoder submodule. This submodule aims
to replace the feed-forward from the encoder layers,
in such a way that a considerable decrease in the num-
ber of parameters is achieved.

The feed-forward submodule consists of two lin-
ear layers: the first linear layer that goes from a model
dimension size (512) to a higher size, (2048) along
with the activation function (Leaky-Relu), followed
by a second layer that transforms the features back to
the model dimension. We take into account that in
Linformer-based models, it is necessary to maintain
a fixed encoder sequence size, therefore, we can take
advantage of that handicap.

To do this, we designed a structure similar to an
auto-encoder instead of following the feed-forward
scheme. First, a one-dimensional convolutional layer
with a kernel and stride sizes of d model/h is applied,
followed by a Leaky-ReLU activation layer. This re-
duces the size of the model dimension to the size of
a head dimension. Then max-pooling is applied to
halve this size. Therefore, the latent dimension of the
auto-encoder will be dk/2. We finish this process by
building a mirror decoder, with an unpooling layer, as
well as a convolutional transpose with the same kernel
and stride sizes. (See Figure 6).

As we are based on the Linformer article, whose
complexity is O(n · r), the complexity of the Informer
will be the same. The main change lies in the replace-
ment of the feed-forward sub-module by operations
of linear complexity (The Information Organization
sub-module).

Conv1D
Maxpool

S

MaxUnpool
ConvTrans1D

Figure 6: Informer submodule. S corresponds to the en-
coder submodule 1 output.

5 EXPERIMENTS AND RESULTS

5.1 Hyper Parameters

To make a correct comparison between the differ-
ent models, we have chosen to set the same values
for Label Smoothing, Dropout, Batch Size, Epochs,
Heads, Model Dimension, Head Dimension, and en-
coder/decoder layers. Except for the original trans-
former, the rest of the encoder sentence lengths and
reduced sequence dimensions will also be the same.
We also apply max-pooling for the convolutional Lin-
former and Informer models. (See Table 3).

5.2 Training Details

In order to obtain the vocabularies, one vocabulary is
used for inputs (English), and another vocabulary for
outputs (Vietnamese). To do this, we start from the
X and Y training sets. A list of all the unique words
is obtained, and a numerical identifier is assigned for
each word/token in the list. Then we have two dic-
tionaries for each X and Y set (One to convert from
token/word to integer, and another one for the oppo-
site operation).

On the other hand, when making the inference,
there are techniques that try to solve the problem of
bias exposure, as is the case of beam search (Wiseman
and Rush, 2016). However, after comparing differ-
ent architectures, we chose not to use this technique,
in order to avoid incorporating parameters like beam
size or penalty length that may affect the comparison
results. Instead, greedy search has been chosen. The
metrics that will be used are BLEU-1 (Papineni et al.,
2002) and perplexity. Finally, a limit of 40 epochs has
been established in order to compare the models.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

386



Table 3: Hyper-Parameters used in the models comparison.

Hyper-parameter Transformer Linformer Conv. Linformer Informer
Heads h 8 8 8 8

Model Dimension d model 512 512 512 512
Head Dimension dk 64 64 64 64

Encoder/Decoder layers N 6 6 6 6
Encoder fixed length n Not applied 200 200 200

Max-pooling Size Not applied Not applied 2 2
Feed-Forward Size f f 2048 2048 2048 Not applied

Reduced Sequence Dimension r Not applied 8 8 8
Label Smoothing True True True True

Dropout 0.1 0.1 0.1 0.1
Batch Size 8 8 8 8

Epochs 40 40 40 40

5.3 Results Analysis

If we show the results obtained during training, it is
clearly observed that the Informer model outperforms
the rest of the models. (See Figures 7 and 8). Also, as
we make changes to the architectures, we see different
performance gains. (See Tables 4 and 5).

Table 4: Inference BLEU-1 results.

Model Validation Test
Original Transformer 26.2469 26.0866

Linformer 27.5829 27.5111
Conv. Linformer 28.3883 29.0317

Informer 31.7617 31.9736

Table 5: Perplexity results.

Model Validation
Original Transformer 26.0275

Linformer 26.2831
Conv. Linformer 25.5365

Informer 23.2831

Then, we can confirm that the use of an information
organization submodule helps to obtain a better per-
formance in neural machine translation problems. If
we compare the number of parameters between the
Linformer convolutional encoder model and the In-
former model, we can point out that the Informer has
around 9 million parameters less than the Linformer
convolutional encoder, which also makes it a more ef-
ficient model. (See Table 6).

Table 6: Total model parameters comparison.

Model Total Parameters
Conv. Linformer 135,368,888

Informer 126,613,016

Figure 7: Validation Perplexity comparison.

Figure 8: Validation Inference BLEU-1 comparison.

We can see that if we allow more training time (from
40 epochs to 120 epochs), the SOTA of this dataset is
obtained, 35.1119 BLEU-1. Both the perplexity and
the BLEU improve as the epochs increase.

We can also observe that the performance had sta-
bilized before the one hundredth epoch. It is from this
epoch that we can see a slight improvement in the be-

Informer, an Information Organization Transformer Architecture

387



havior of the network. We can indicate that there is no
overfitting, either. Complete scores in (Table 7). We
present the final results in (Figures 9, 10).

Figure 9: Validation Perplexity.

Figure 10: Validation Inference BLEU-1.

Table 7: Encoder Informer long execution results.

Encoder Informer Value
Validation Perplexity 20.2263

Validation Inference BLEU-1 34.1775
Test Inference BLEU-1 35.1119

6 FUTURE WORK

Models based on techniques such as the Linformer
and Informer provide the basis for other areas of nat-
ural language processing. This is the case of the Ques-
tion Answering task, where alternatives that use this
type of techniques can be proposed when generating
the representations of contexts and questions. We will
take advantage of the Linformer or Informer when it
comes to obtaining context interpretations of higher
sequence sizes.

7 CONCLUSIONS

In this work we propose an architecture, Informer,
with a computational cost O(n · r), and compare it
with different models in the literature that have the ob-
jective of reducing the complexity of the critical parts
of the transformer. Specifically, it has been applied to
the neural machine translation task with the English-
Vietnamese dataset. This lays the foundation for the
use of more efficient transformer models that can be
computed by low resource workstations, as well as fa-
cilitating a better reproducibility of experiments.

The Informer new architecture introduces a new
concept in transformers (Information Organization)
that allows the network to reorganize the features ob-
tained by the self-attention layer and reduce the learn-
able parameters. We have managed to improve SOTA
with the English-Vietnamese dataset, with a BLEU-1
score of 35.11. It is a sub-module that could be ap-
plied in new transformer architectures and could po-
tentially achieve better results, while decreasing the
memory usage and training costs.

ACKNOWLEDGEMENTS

We are grateful to Cayetano Guerra Artal and Mario
Hernández Tejera for their active support.

REFERENCES

Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher,
Z., Pham, P., Ravula, A., Sanghai, S., Wang, Q., and
Yang, L. (2020). Etc: Encoding long and structured
inputs in transformers.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Long-
former: The long-document transformer.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners.

Child, R., Gray, S., Radford, A., and Sutskever, I. (2019).
Generating long sequences with sparse transformers.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Belanger,
D., Colwell, L., and Weller, A. (2020). Masked
language modeling for proteins via linearly scalable
long-context transformers.

Clark, K., Luong, M.-T., Manning, C. D., and Le, Q. V.
(2018). Semi-supervised sequence modeling with
cross-view training.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

388



Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. (2019). Transformer-xl: Attentive
language models beyond a fixed-length context.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Ho, J., Kalchbrenner, N., Weissenborn, D., and Salimans,
T. (2019). Axial attention in multidimensional trans-
formers.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
(2020). Transformers are rnns: Fast autoregressive
transformers with linear attention.

Kitaev, N., Łukasz Kaiser, and Levskaya, A. (2020). Re-
former: The efficient transformer.

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and
Teh, Y. W. (2019). Set transformer: A framework
for attention-based permutation-invariant neural net-
works.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., and Chen, Z. (2020).
Gshard: Scaling giant models with conditional com-
putation and automatic sharding.

Lin, J., Sun, X., Ren, X., Li, M., and Su, Q. (2018a).
Learning when to concentrate or divert attention: Self-
adaptive attention temperature for neural machine
translation.

Lin, J., Sun, X., Ren, X., Ma, S., Su, J., and Su, Q. (2018b).
Deconvolution-based global decoding for neural ma-
chine translation.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi,
R., Kaiser, L., and Shazeer, N. (2018). Generating
wikipedia by summarizing long sequences.

Luong, M.-T. and Manning, C. D. (2015). Stanford neu-
ral machine translation systems for spoken language
domains. In Stanford.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev,
O., Venkatesh, G., and Wu, H. (2017). Mixed preci-
sion training.

Nguyen, T. Q. and Salazar, J. (2019). Transformers without
tears: Improving the normalization of self-attention.
CoRR.

Ott, M., Edunov, S., Grangier, D., and Auli, M. (2018).
Scaling neural machine translation.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Parmar, N., Vaswani, A., Uszkoreit, J., Łukasz Kaiser,
Shazeer, N., Ku, A., and Tran, D. (2018). Image trans-
former.

Pennington, J., Socher, R., and Manning, C. (2014). Glove:

Global vectors for word representation. In EMNLP,
volume 14, pages 1532–1543.

Phan-Vu, H.-H., Tran, V.-T., Nguyen, V.-N., Dang, H.-V.,
and Do, P.-T. (2018). Machine translation between
vietnamese and english: an empirical study.

Provilkov, I., Emelianenko, D., and Voita, E. (2020). BPE-
dropout: Simple and effective subword regularization.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1882–
1892, Online. Association for Computational Linguis-
tics.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. (2020). Compressive transformers
for long-range sequence modelling. In International
Conference on Learning Representations.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. (2020).
Efficient content-based sparse attention with routing
transformers.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural ma-
chine translation of rare words with subword units. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, Berlin, Germany. Associ-
ation for Computational Linguistics.

Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., and
Zheng, C. (2020a). Synthesizer: Rethinking self-
attention in transformer models.

Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C.
(2020b). Sparse sinkhorn attention.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. (2020c).
Efficient transformers: A survey.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. ArXiv.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
(2020). Linformer: Self-attention with linear com-
plexity.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-
sequence learning as beam-search optimization.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. (2019).
Understanding and improving layer normalization.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang,
Q., Yang, L., and Ahmed, A. (2020). Big bird: Trans-
formers for longer sequences.

Zhang, M., Li, Z., Fu, G., and Zhang, M. (2019). Syntax-
enhanced neural machine translation with syntax-
aware word representations.

APPENDIX

Code, dataset and results are available to download
through the following link: (Informer Project).

Informer, an Information Organization Transformer Architecture

389


