
Deployment Service for Scalable Distributed Deep Learning Training on
Multiple Clouds

Javier Jorge1 a, Germán Moltó1 b, Damian Segrelles1 c, João Pedro Fontes2

and Miguel Angel Guevara2

1Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politècnica de València,
Camino de Vera s/n, 46022, Valencia, Spain

2Computer Graphics Center, University of Minho, Campus de Azurém, Guimarães, Portugal

Keywords: Cloud Computing, Deep Learning, Multi-cloud.

Abstract: This paper introduces a platform based on open-source tools to automatically deploy and provision a dis-
tributed set of nodes that conduct the training of a deep learning model. To this end, the deep learning frame-
work TensorFlow will be used, as well as the Infrastructure Manager service to deploy complex infrastructures
programmatically. The provisioned infrastructure addresses: data handling, model training using these data,
and the persistence of the trained model. For this purpose, public Cloud platforms such as Amazon Web
Services (AWS) and General-Purpose Computing on Graphics Processing Units (GPGPU) are employed to
dynamically and efficiently perform the workflow of tasks related to training deep learning models. This ap-
proach has been applied to real-world use cases to compare local training versus distributed training on the
Cloud. The results indicate that the dynamic provisioning of GPU-enabled distributed virtual clusters in the
Cloud introduces great flexibility to cost-effectively train deep learning models.

1 INTRODUCTION

Artificial Intelligence (AI), mainly through Deep
Learning (DL) models, is currently dominating the
field of classification tasks, especially after the disrup-
tive results obtained in 2012 in the most challenging
image classification task at that moment (Krizhevsky
et al., 2012), defeating the SVM (Support Vector Ma-
chine) (Vapnik, 1998) approaches that were leading
those contests previously. DL models are trained us-
ing Backpropagation (Rumelhart et al., 1985), an iter-
ative procedure that could take days or weeks depend-
ing on the volume of the data or the complexity of the
model. Among the options to reduce the computa-
tional cost, the most common technique to parallelize
this process is the data parallelism approach (Dean
et al., 2012) as that is the most straightforward and
easy technique to implement.

Big tech companies and relevant research groups
have open-sourced many of their algorithms and
methods as AI frameworks for the community (i.e:

a https://orcid.org/0000-0002-9279-6768
b https://orcid.org/0000-0002-8049-253X
c https://orcid.org/0000-0001-5698-7965

TensorFlow (TF) (Abadi et al., 2016), PyTorch (Py-
Torch, 2018) or MXNet (MXNet, 2018)) enabling a
quicker and easier evaluation of academic DL mod-
els and the deployment in production environments.
These frameworks provide a uniform set of functions,
such as parallelization on multiple nodes, flexibility
to code using different interfaces, automatic differen-
tiation, similar abstractions regarding the structure of
the network, and “model zoos” to deploy an out-of-
the-box model in production quickly.

Considering the interest of the academia and in-
dustry to use DL models in their pipelines, it is of vital
importance to provide easier, faster and better tools to
deploy their algorithms and applications. To this end,
research groups and companies are using Cloud ser-
vices (such as Google’s Cloud AI (Cloud AI, 2018)
or Amazon SageMaker (Amazon SageMaker, 2018))
to develop their DL solutions, as long as they are
computationally (storage and processing) demanding
and require expensive and dedicated hardware such
as General-Purpose Computing on Graphics Process-
ing Units (GPGPUs), as it is the case of the DL tech-
niques. However, these Cloud solutions result in the
user being locked-in to a particular Cloud and, there-
fore, loosing the ability to perform infrastructure de-

Jorge, J., Moltó, G., Segrelles, D., Fontes, J. and Guevara, M.
Deployment Service for Scalable Distributed Deep Learning Training on Multiple Clouds.
DOI: 10.5220/0010359601350142
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 135-142
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

135



ployment on different or multiple Cloud providers.
This Cloud approach is known as “Infrastructure As
Code” (IaC) (Wittig and Wittig, 2016) and it arises
to overcome these gaps and define instead the cus-
tomized computational environment required with-
out interaction with the Cloud provider’s interfaces
and enabling non-expert users to define, in a Cloud-
agnostic way, the virtual infrastructure as well as the
process of managing and provisioning the computa-
tional resources from multiple Clouds for different
trainings. Notice that a single training is performed
within the boundaries of a single cloud to achieve re-
duced latency.

This paper introduces a Cloud Service that pro-
vides an automated DL pipeline, from the deployment
and provision of the required infrastructure on Cloud
providers, through an IaC approach, to its execution
in production. It is based on open-source tools to de-
ploy a customised computational environment based
on TF, to perform the distributed DL model training
based on data parallelism, on Cloud infrastructures
involving accelerated hardware (GPUs) for increased
efficiency. As use case to validate the service, it is
presented the deployment, configuration and execu-
tion of a distributed cluster for training deep neural
networks, on a public Cloud provider. This uses re-
sources that the user may not be able to afford oth-
erwise, such as several nodes connected using one or
more expensive GPUs. This approach will be con-
veniently assessed by means of training several DL
models on distributed clusters provisioned on Ama-
zon Web Services (AWS). In addition, an actual re-
search problem has been used to validate the proposed
service in order to test the system in a real use case
documented in the work by Brito at al. (Brito et al.,
2018).

2 RELATED WORK

Recently, approaches for efficient DL have been de-
veloped ad-hoc for specific use cases, such as Deep-
Cell (Bannon et al., 2018), a tool used to perform
large-scale cellular image analysis, tuned for these
particular problems. For a general purpose, the al-
ternative is using proprietary tools that the Cloud
providers offer, tailored for a specific framework that
usually depends on the provider, or a high-level API
to access these services easily. A thorough review of
this can be found in (Luckow et al., 2016), where the
authors studied distributed DL tools to use in the au-
tomotive industry.

There are other approaches related to the use of
multi-GPUs beyond using different nodes or more

than one GPU per node. For instance, GPU virtual-
ization provides the interface to use a variable number
of GPUs, intercepting local calls and sending them to
a GPU server farm to be processed, with thousands
of GPUs working in parallel. An example of these
proposals is shown in rCUDA (Reaño et al., 2015).
However, these approaches are either experimental or
more expensive than public Clouds, and they do not
provide additional services required for this kind of
problems such as storage resources.

The topic of distributed DL has been addressed in
the past, as it is the case of the work by Lee et al.
(Lee et al., 2018) where a framework for DL across
multiple machines using Apache Spark is introduced.
There are also approaches that try to speed up this
distributed computation providing another layer of
abstraction over TF, such as Horovod (Sergeev and
Del Balso, 2018), using MPI1, the commonly used
(M)essage (P)assing (I)nterface to intercommunicate
nodes.

As opposed to previous works, we introduce
an approach for distributed learning that relies ex-
clusively on the capabilities of TF, thus minimiz-
ing external dependencies. Also, these distributed
clusters can be dynamically deployed on different
Cloud back-ends through an Infrastructure-as-Code
approach thus fostering reproducibility of the dis-
tributed learning platform and the ability to easily
profit from GPU resources provided by public Cloud
platforms to accelerate training.

3 DEPLOYMENT SERVICE FOR
DISTRIBUTED TensorFlow

This section identifies the components to design and
implement the proposed service. The goal is to train
a deep neural network in a distributed way, fostering
data parallelism, and considering that the training pro-
cess can be split according to different shards of data.
This scales very easily, and this is how some of the
big companies such as Google achieved the amazing
breakthroughs these last years, such as AlphaGO (Sil-
ver et al., 2017). Among different approaches for do-
ing this, we have followed the scheme from (Dean
et al., 2012), that is reproduced in Figure 1. This ar-
chitecture shows different nodes that can be identified
as follows:

• Parameter server (PS): Node(s) that initializes pa-
rameters, distributes them to the workers, gathers
the modifications of the model’s parameters and

1https://www.mpi-forum.org/docs/

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

136



then applies them, and scatters them back to the
workers.

• Model replicas (MR): Node(s) that stores the
model and that carries out the backpropagation’s
forward and backward steps, and finally sends
back the updates to the PS. There will be a mas-
ter among them in charge of persisting the model.
These nodes are the ones that require more com-
putational power, i.e: GPU units.

• Data shards: Nodes that provide data for MRs.

Figure 1: Distributed training scheme: Parameter server and
model replicas, in a master-slave setup (Dean et al., 2012).

This scheme could work either synchronously or
asynchronously, meaning that the MR nodes could
wait for the rest of the MR nodes to finish their itera-
tion to move to the next one (training synchronously
with others) or the node could continue with the
next batch of data when it completes the forward-
backward step (training asynchronously).

Regarding the data shards, we propose the use of
a distributed file system among nodes, in order to
share data and model checkpoints as well. In particu-
lar, we have chosen the Hadoop Distributed File Sys-
tem (HDFS) (Shvachko et al., 2010), a distributed and
scalable file system that is focused on storing massive
amounts of data. It has been used mainly on Java’s
framework Hadoop (Hadoop, 2018) to implement the
MapReduce paradigm (Dean and Ghemawat, 2008).

The proposed service deploys the Hadoop cluster
in charge of data storage (HDFS) and the TF cluster
in charge of processing data, in the same resources
and nodes, coexisting along with each other. Con-
cerning training, each node will run a TF script that
implements the aforementioned training scheme. As
a summary, Figure 2 shows the proposed steps to pre-
pare the architecture required to perform the training.

3.1 Infrastructure Manager

The Cloud service, in order to deploy the nodes
commented above on Cloud uses an IaC approach
relying on the Infrastructure Manager (IM) (Infras-
tructure Manager, 2018; Caballer et al., 2015)2. It

2IM - https://www.grycap.upv.es/im

PS WN1 WN2 WN3

S3
Bucket

1

2

x y = f(x; w)3

Figure 2: Step 1: Getting the data and uploading it to the
HDFS storage. Step 2: Training starts, the PS node and
MR nodes collaborate to train the model, using TF and the
HDFS file system. Step 3: Once training is completed, a PS
node stores the model in a persistent Cloud storage, such as
an S3 bucket.

is an open-source tool to deploy on-demand cus-
tomized virtual computing infrastructures. It allows
the user to deploy complex infrastructures choos-
ing among multiple Cloud providers, such as AWS,
Microsoft Azure or Google Cloud Platform. The
IM is the orchestration tool adopted by the Euro-
pean Grid Infrastructure (EGI) (European Grid Infras-
tructure, 2018) in order to deploy Virtual Machines
through the VMOps Dashboard on the EGI Feder-
ated Cloud that spans across Europe. This paves
the way for easy adoption of the approach described
in this work by the European scientific community.
It uses “Resource and Application Description Lan-
guage” (RADL)(Infrastructure Manager, 2018; Ca-
baller et al., 2015), a high-level language to define
virtual infrastructures and VM requirements.

The IM processes the RADL file and interacts
with the Cloud providers to launch the Master VM
that will orchestrate the deployment and configura-
tion. A specific module called Configuration Man-
ager configures this Master node using Ansible (An-
sible, 2018), providing the contextualization and con-
figuration files and installing the Contextualization
Agent. This module will deploy, configure and pro-
vision main roles, in our case, the PS and MR Nodes,
including TF and the Hadoop cluster.

The following subsections present the tools em-
ployed by the proposed service, in order to prepare
the infrastructure required to support the architecture
shown in Figure 2. After that, it presents how dis-
tributed TF training is achieved through the service.

3.2 Resources’ and Operations’
Definition

The RADL file and the Ansible roles to deploy the
whole infrastructure’s specifics required to achieve
distributed training of a deep neural network describe

Deployment Service for Scalable Distributed Deep Learning Training on Multiple Clouds

137



the node’s characteristics, the operations to perform
upon them and the system architecture.

The execution of the RADL through the IM pre-
pares the whole environment (PS and MR nodes) to
execute the training script. The complete version of
the resource allocation configuration files and code
are available on GitHub3, and thoroughly described
in (Jorge Cano, 2019). We have relied on an An-
sible role to deploy the Hadoop cluster in order to
use HDFS as a shared data storage among the nodes.
Once this step is completed, the Hadoop cluster is
completely deployed, and then we can proceed with
data handling, as well as configuring and installing
TF. Amazon S3 is used as the initial storage for the
data, and the dataset is retrieved from S3 and staged
into HDFS upon deployment of the Hadoop cluster,
but the data can come from any external source. Af-
ter deploying the Hadoop cluster, the distributed TF
script is prepared, installed and executed using an-
other Ansible role. The set of parameters for the PS
node is similar to the MR nodes, with some changes
accordingly to their function, such as the node type
or whether a GPU is used or not. The role involves
four parts: first, some environment preparation with
paths and additional variables. Second, the condi-
tional installation of a specific TF version depending
on whether the node has a GPU or not. Third, cloning
the actual training scripts and running them, depend-
ing on the role of the node in the cluster. Finally, we
have included the code to upload the resulting model
to an S3 bucket to persist it beyond the lifecycle of
the dynamically provisioned Hadoop cluster, but we
can select any external platform or service to store the
model.

3.3 Distributed TensorFlow Training

This section shows how we performed the adaptation
of the distributed TF code to be used in our pipeline.
TF distributed training implements a scheme where
one or more nodes act as PS nodes and the rest as MR
nodes. The code is available in Github4.

This work uses the Estimator API in TF, which
provides high-level functions that encapsulate the dif-
ferent parts of the machine learning pipeline: model,
input, training, validation and evaluation. Provid-
ing common headers for these steps they can manage
training and inference better, as the whole pipeline
is decomposed into isolated functions. By defining
the pipeline in these terms, it is entirely managed by

3https://github.com/JJorgeDSIC/Master-Thesis-
Scalable-Distributed-Deep-Learning/

4https://github.com/JJorgeDSIC/
DistributedTensorFlowCodeForIM

TF, without worrying about running iterations, evalu-
ation steps, logs or saving the model manually. An-
other significant advantage is to have a program that
can run in a single node with CPU or GPU, with
multiple GPUs or in a distributed way, just indicat-
ing these variations as an environment variable called
TF CONFIG.

4 EXPERIMENTATION

In this section, we will use the configuration files,
codes and scripts that we have presented in previous
sections in order to evaluate our deployment and ex-
ecution in terms of flexibility and timing. For do-
ing this, we have selected a public Cloud provider
to deploy our infrastructure and perform the evalua-
tion. First, we consider executing the training using
single nodes, in physical and virtual machines, to get
the baseline that we can achieve with the resources at
reach. Second, we study the use of a Cloud provider
to deploy Virtual Machines with and without special-
ized hardware, to compare the results to both single
and multiple node configurations.

To perform the local experimentation, we used a
physical node with Ubuntu 16.04, NVIDIA CUDA 9
- CUDNN 7, TF r1.10. Regarding the hardware, the
node includes an Intel(R) Xeon(R) CPU E5-1620 v3
4 cores @ 3.50GHz with 128 GB of RAM along with
the GPU GeForce GTX 1080Ti (11GB, 3.5K cores @
1.6Ghz).

We selected AWS as the public Cloud provider
to use during the evaluation. An analysis of the in-
stance types and pricing was carried out, in terms
of choosing cost-effective computing resources. To
reduce costs, we have selected an Amazon Machine
Image (AMI) to accelerate the deployment and avoid
some time-consuming tasks such as update packages
when we use a fresh Ubuntu 16.04 VM. The AMI
used is called Deep Learning Base AMI (Ubuntu)
Version 10.0 AMI5, and it is available in most AWS
regions. This AMI comes with NVIDIA CUDA 9 and
NVIDIA cuDNN 7 and can be used with several in-
stance types, from a small CPU-only instance to the
latest high-powered multi-GPU instances. The infor-
mation of these instances’ families is available on the
AWS website6. We have selected p2 instances, the
p2.xlarge in particular, that are composed of an In-
tel Xeon E5-2686 v4 (Broadwell) CPU and NVIDIA
K80 GPUs (12GiB, 2.5K cores). It is important to
remark the years of development between the vir-

5https://aws.amazon.com/marketplace/pp/
B077GCZ4GR

6https://aws.amazon.com/ec2/instance-types/

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

138



tualized GPU (K80, year 2014) the physical GPU
(RTX1080, year 2017), as the performance is not di-
rectly comparable.

For the CPU-based resources, we chose instance
types t2.micro and t2.small, These are very low-
cost computing instances that support burstable CPU
performance. Concerning software, we have used the
same versions as the aforementioned physical equip-
ment in all the VM.

4.1 Datasets

To perform the experiments we selected two tasks:
a well-known benchmark and a real research prob-
lem. As benchmark dataset, we selected the CIFAR-
10 (Krizhevsky, 2009) dataset that comprises 60k
32x32 colour images, with 10 different categories (6k
images per category). The official split defines 50k
samples to train the model and 10K to evaluate its ac-
curacy predicting the correct category among the 10
possible. Figure 3 shows some examples from this
dataset with their categories.

Figure 3: Images from CIFAR-10 with their cate-
gories (Krizhevsky, 2009).

We have selected this dataset since it is handy
and complicated enough to require a non-trivial neu-
ral network model. As this is a dataset of images, we
can use a convolutional neural network where GPUs,
with their specialized hardware to process graphics,
can take full advantage of the accelerated hardware.

Along with this well-known dataset, we have
used an internal dataset provided by the “Centro de
Computação Gráfica (CCG)”7 from Portugal, in or-
der to evaluate our software approach with an ac-
tual research problem. Our proposed deployment
service was tested in a real use case documented
in (Brito et al., 2018). This work is part of the
AGATHA project8 that consists of a solution pro-
viding image/video analysis for crime control and
surveillance. For this collaboration, we have used a
proprietary dataset provided by CCG, composed of
pictures of faces, labelled with child, young, adult or

7http://www.ccg.pt
8http://www.agatha-osi.com/

elder classes, aiming to identify this features in a se-
curity surveillance system. Regarding the dataset, it
is composed of around 65k RGB images with a res-
olution of 224x224. We train the model to predict
the label among the set {child,young,adult,elder}.
Some examples of these pictures are shown in Fig-
ure 4. It is composed of different sources, the subset
that is shown was extracted from the website Internet
Movie Database (IMDB)9. The 4.5GB dataset takes
an average of 13 minutes to be retrieved from S3 to
HDFS inside the Hadoop cluster.

Figure 4: Images from the provided dataset.

4.2 TensorFlow Code

We chosen an implementation provided in the TF of-
ficial repository10, using the version r1.10. We exe-
cuted it without any change thanks to the Estimator
API, introduced in the previous section, to illustrate
that the code that follows this scheme can be trained
inside this infrastructure with ease. For the same rea-
son, we only included the required changes, just mod-
ifying the input pipeline, to adapt the age recogni-
tion model to be trained under this API. The model
that these codes use is the convolutional neural net-
work model known as Inception-Resnet-V1 (He et al.,
2016). This model has 44 layers, millions of parame-
ters, and it is based on one of the first huge deep learn-
ing models called Inception (Szegedy et al., 2015).

4.3 Results with CIFAR-10

First, we evaluated to decide whether to conduct asyn-
chronous or synchronous training. Using a configura-
tion with three GPU nodes, one parameter server and
three worker nodes. We carried out both experiments
and we show the results in Table 1, evaluating several
iterations of the process. Regarding measuring, for
these and the following experiments we have evalu-
ated the number of global steps per second, that is, the
number of batches processed per second and the av-
erage examples per second: number of instances that
the model can process per second.

9https://www.imdb.com
10https://github.com/tensorflow/models/tree/master/

tutorials/image/cifar10\ estimator

Deployment Service for Scalable Distributed Deep Learning Training on Multiple Clouds

139



Table 1: Comparison of both training schemes: syn-
chronous and asynchronous.

Training G.step/sec Avg.ex/sec
Synchronous 3,26±1,14 485±67

Asynchronous 10,04±5,59 2755±765

After getting better results with the asynchronous
training, we have chosen it for the following exper-
iments. We have performed 60k steps globally over
the training partition, with batches of 128 images to
carry out a fair comparison among different architec-
tures. With this training on a physical machine with
one GPU, we have obtained a classification accuracy
of 92,27%, that we used to measure the convergence
of the other models. Therefore, we will use this value
to compare timing measures during 60k or the equiv-
alent in a distributed configuration, that is, 30-30 if
there are two worker nodes or 20-20-20 if there are
three.

Regarding the single node experiment, we exe-
cuted the training with different hardware configura-
tions. We refer to the physical machines with the pre-
fix phys, and virt to the virtual ones, while denoting
the use of CPU/GPU adding the suffix cpu or gpu,
respectively. In addition to global steps and average
samples per second, we evaluated also the total time,
that is, how long the training takes to converge. This
is not always plausible considering that CPU based
nodes can take a considerable amount of time. Ta-
ble 2 shows the results for the comparison among sin-
gle nodes. The * means that training did not fully con-
verge and then an estimation of time to convergence is
provided. We noticed the obvious performance boost
that GPU provides with this kind of data. These prob-
lems are extremely resource-consuming for CPUs,
discouraging any possible training using this hard-
ware. It is important to remark again the difference
between the physical GPU and the virtual one. In the
next experiment we explore the options to parallelize
the problem.

Next experiments involve the use of a distributed
configuration. For doing this, we have deployed the
infrastructure in AWS and run the experiments, taking
the same measures than before. Table 3 summarizes
the results. We divided accordingly the number of

Table 2: Single node results with different hardware (G =
G.step/sec, A = Avg.ex/sec., T = T.time (min)).

Machine G A T
phys cpu 0,44±0,02 54,94±2,78 2200 (*)
virt cpu 0,18±0,02 25,12±0,92 4860 (*)

phys gpu 22±1 2804±22 ˜45
virt gpu 7±0,56 850±15 ˜142

Table 3: Multiple node results with different hardware (G =
G.step/sec, A = Avg.ex/sec., T = T.time (min)).

Machine G A T
virt cpu +

virt gpu x 2
(1 PS - 2 WN)

7,68±2,95 1259±395 ˜92

virt gpu x 3
(1 PS - 2 WN) 13,04±0,48 1687±80 ˜41

virt cpu +
virt gpu x 3

(1 PS - 3 WN)
10,04±5,59 2755±965 ˜43

steps among the workers to add up to 60k, and values
shown are related to the architecture as a whole.

Some results show very high variance, this was the
side-effect of using a lower-end instance type for the
PS, such as t2.small. During the experiments with
this kind of node, the global steps per second were
decreasing gradually along iterations until they reach
lower values than in the virt gpu single training.
Even if it seems counter-intuitive, using this fourth
node as PS caused a bottleneck in the system. Fig-
ure 5 illustrates this fact, that we discovered after sus-
pecting and discarding that HDFS latency to access
to the data or the model was the cause. It seems that
at a certain point, the resources of the CPU-based PS
were exhausted, and then the performance got worse.
Changing the type of instance solved the problem, as
it can be seen in the improvement in the results us-
ing virt gpu x 3, providing a stable global step/sec
rate, at the expense of losing a GPU node to do the
computationally intensive work.

Steps

Figure 5: TensorBoard screenshot, showing the bottleneck
in the middle of the training due to the use of low CPU-
based instance.

Regarding flexibility, we performed the previous
experiments again with the distributed configuration,
using our deployment system with the IM and Ansi-
ble, changing parameters easily and interacting just
with the RADL file, that define the architecture. Con-
sidering this, we found that the best combination is

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

140



the use of three nodes (a PS and two WNs) that are
GPU-based. In the following section we explore some
of these setups with the computer vision research
problem provided by the CCG.

4.4 Results with Age Recognition Task

Table 4 shows the results of the best systems after the
evaluation considering phys gpu, virt gpu x 3 and
virt cpu + virt gpu x 3, the setups that provided
the best result among virtualization systems.

Table 4: Single physical node and multiple node results on
the Age dataset, with different hardware.

Machine G.step/sec Avg.ex/sec
phys gpu 18,53±1,82 2217±190

virt gpu x 3
(1 PS - 2 WN) 10,06±0,78 1353±47

virt cpu +
virt gpu x 3

(1 PS - 3 WN)
12,45±2,78 1498±317

Concerning the storage, we did not perceive any
important latency caused by the HDFS system nei-
ther in CIFAR-10 nor in the faces dataset. Once the
dataset is uploaded, we have performed experiments
with and without distributing data and model and not
noticing any remarkable difference. This may happen
with massive datasets since they require more com-
plicated management. In terms of the introduced la-
tency, the dynamic deployment’s latency of the virtual
infrastructure, although unavoidable, will be absorbed
by the training when a real time-consuming task is
carried out, that could imply hours or days of train-
ing. The advantages of performing all the steps with-
out human intervention represent a significant step
forward. It usually took between 15-20 minutes to
deploy the configuration with a t2.small and three
p2.xlarge. In summary, the results indicate that us-
ing automated deployment on the Cloud to take ad-
vantage of GPU-based nodes is a convenient approach
for cost-effective training, as you can easily match
your needs with your budget, enabling the access to
both basic units and high performance GPUs.

4.5 Discussion

Increasing the throughput of the training of deep neu-
ral networks have become mandatory to solve the
challenging tasks nowadays. Parallelizing training us-
ing GPUs seems the way to go, since the proposal in
(Krizhevsky et al., 2012), where the process of shar-
ing a model between GPUs in order to accelerate the
training was done manually with a lot of human effort.

This has changed and now it is very easy, as shown in
this work, to code the training using TF to distribute
the training effort among different distributed GPUs.
Regarding this, we have shown how to deploy the re-
quired infrastructure in a public Cloud provider to get
the most out of the functionality that this framework
provides.

The parallel training scheme suits well in several
problems, as it is shown in (Dean et al., 2012), but
there are more approaches, such as Elastic Averag-
ing SGD (Zhang et al., 2015). This work proposes
a distributed optimization scheme designed to reduce
communication overhead with the parameter server.
Ideas in that direction are concerned with the func-
tion that the parameter server computes in order to
favour the convergence of the training. This work
aimed to develop the architecture and the deployment,
as well as implementing a generic distributed training,
so these kind of evaluations regarding training conver-
gence are out of the scope of this work.

We have decided to focus on data parallelism as
our motivation was to provide the DL pipeline for
problems that leverage this kind of scheme, i.e.: sev-
eral instances that are distributed in a data cluster, but
there are tasks where this is not enough. Among these
tasks, we can consider machine translation where
models, or the composition of them, are huge. This
is the problem that authors faced in (Wu et al., 2016),
where they used model parallelism as well as data par-
allelism. For these kinds of models, there is no alter-
native for training them in a reasonable time.

5 CONCLUSIONS

In this work we provided and evaluated a deploy-
ment system to provision, configure and execute a
distributed TF training pipeline in an unattended way,
based on cluster computing in the Cloud. Using the
IM and Ansible, we can modify our architecture and
train easily just by modifying a configuration file and
being able to deploy on different Cloud providers.

Regarding software, we have used the state-of-
the-art tools, such as TF and CUDA, performing ex-
periments with two different problems, CIFAR-10
and the Age recognition problem. We have shown
that TF scripts can be adapted easily if they are us-
ing the Estimator API, a high-level API that eases the
development of deep learning models.

Concerning the results, we are close to the base-
line with the physical GPU, even considering that it
is two generations ahead of the virtual GPUs that we
used. However, we achieved a good performance ac-
cording to the price of these instances. The present

Deployment Service for Scalable Distributed Deep Learning Training on Multiple Clouds

141



approach democratizes the access to cost-effective
distributed computing based on TF on the Cloud to
perform training of deep learning models.

Future work includes using massive datasets to
identify the bottlenecks of the proposed approach.
Also, more performant instance types were not used
due to budget constraints. This goes inline with using
the p3 family of instances types that feature more than
one GPU per node, to evaluate in-node parallelization
and between-nodes parallelization jointly.

ACKNOWLEDGEMENTS

The authors would like to thank the Spanish “Ministe-
rio de Economı́a, Industria y Competitividad” for the
project “BigCLOE” with reference number TIN2016-
79951-R. The development of this work has been par-
tially supported by the project “AGATHA: Intelligent
Analysis System for surveillance/crime control on
open information sources” (project No. 010822), fi-
nanced by the European Regional Development Fund
(ERDF) through COMPETE 2020 - Operational Pro-
gram for Competitiveness and Internationalisation
and Lisbon 2020 - Lisbon Regional Operational Pro-
gram 2014-2020.

REFERENCES

Abadi, M. et al. (2016). Tensorflow: a system for large-
scale machine learning. In Proc. of OSDI, 2016, pages
265–283.

Amazon SageMaker (2018). [online-Feb.2021] https://aws.
amazon.com/sagemaker/.

Ansible (2018). [online-Feb.2021] https://www.ansible.
com/.

Bannon, D. et al. (2018). Deepcell 2.0: Automated cloud
deployment of deep learning models for large-scale
cellular image analysis. bioRxiv, page 505032.

Brito, P. et al. (2018). Agatha: Face benchmarking dataset
for exploring criminal surveillance methods on open
source data. In Proc. of ICGI, 2018, pages 1–8. IEEE.

Caballer, M. et al. (2015). Dynamic management of virtual
infrastructures. Journal of Grid Computing, 13(1):53–
70.

Cloud AI (2018). [online-Feb.2021] https://cloud.google.
com/products/ai/.

Dean, J. et al. (2012). Large scale distributed deep net-
works. In Proc. of NIPS, 2012, pages 1223–1231.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

European Grid Infrastructure (2018). [online-Feb.2021]
https://www.egi.eu.

Hadoop (2018). [online-Feb.2021] http://hadoop.apache.
org.

He, K. et al. (2016). Deep residual learning for image recog-
nition. In Proc. of CVPR, 2016, pages 770–778.

Infrastructure Manager (2018). [online-Feb.2021] http://
www.grycap.upv.es/im/.

Jorge Cano, J. (2019). Entrenamiento escalable de modelos
de deep learning sobre infraestructuras cloud. [online-
Feb.2021] https://riunet.upv.es/handle/10251/115454.

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical report, Citeseer.

Krizhevsky, A. et al. (2012). Imagenet classification with
deep convolutional neural networks. In Proc. of NIPS,
2012, pages 1097–1105.

Lee, S. et al. (2018). TensorLightning: A Traffic-
Efficient Distributed Deep Learning on Commodity
Spark Clusters. IEEE Access, 6:27671–27680.

Luckow, A. et al. (2016). Deep learning in the automo-
tive industry: Applications and tools. In Proc. of Big
Data2016, 2016, pages 3759–3768. IEEE.

MXNet (2018). [online-Feb.2021] https://mxnet.apache.
org.

PyTorch (2018). [online-Feb.2021] https://pytorch.org.
Reaño, C. et al. (2015). Local and remote gpus perform

similar with edr 100g infiniband. In Proceedings of the
Industrial Track of the 16th International Middleware
Conference, page 4. ACM.

Rumelhart, D. E. et al. (1985). Learning internal representa-
tions by error propagation. Technical report, Institute
for Cognitive Science, California.

Sergeev, A. and Del Balso, M. (2018). Horovod: fast and
easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799.

Shvachko, K. et al. (2010). The hadoop distributed file sys-
tem. In Proc. of MSST, 2010, pages 1–10. Ieee.

Silver, D. et al. (2017). Mastering the game of go without
human knowledge. Nature, 550(7676):354.

Szegedy, C. et al. (2015). Going deeper with convolutions.
In Proc. of CVPR, 2015, pages 1–9.

Vapnik, V. N. (1998). Statistical learning theory, volume 1.
J. Wiley & Sons.

Wittig, M. and Wittig, A. (2016). Amazon web services in
action. Manning.

Wu, Y. et al. (2016). Google’s neural machine translation
system: Bridging the gap between human and ma-
chine translation. CoRR, abs/1609.08144.

Zhang, S. et al. (2015). Deep learning with elastic averag-
ing sgd. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R., editors, Proc. of NIPS,
2015, pages 685–693. Curran Associates, Inc.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

142


