Maximum 7.5dB SNR is achieved at 201 Hz with 
5.5  µV
RMS
  LFP  signal  power.  For  EAP  neuro-
potentials, SNR reaches 9 dB with 11.8 µV
RMS
 input 
power, against 22 µV
RMS
 state-of-the-art in Figure 1 
and Figure 2.  
Hence, this demonstrates that the presented setup 
can  be  adopted  for  thousands  of  pixels  resolution 
MEAs  with  the  key  advantadge  of  improving  the 
noise performances and thus decreasing the minimum 
detectable signals power. 
4  CONCLUSIONS 
In this paper a complete electrical model of a single-
pixel  Electrolyte-Oxide  MOS  Field-Effect-
Transistors neural interface has been presented. The 
model  includes  all  biological  and  electrical 
parameters building the interface. Thanks to specific 
noise  and  signal  simulation  results,  the  proposed 
setup allows optimum design and sizing of all MOS 
transistors embedded in the analog signal processing, 
minimizing  noise  power,  and  enabling  ultra-weak 
slow  oscillation  detection.  More  specifically  the 
proposed optimum design features 9 dB SNR at 11.8 
µV
RMS
 extra-cellular Action Potentials power and 7.8 
dB SNR for 5.5 µV
RMS
 Local Field Potentials, at the 
electrode node. 
ACKNOWLEDGEMENTS 
This  work  has  been  supported  by  Brain28  PRIN 
Project  founded  by  the  Italian  Ministry  of  the 
University, Education and Research. 
REFERENCES 
Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. 
J.,  &  Frey,  U.  (2015).  Revealing  neuronal  function 
through  microelectrode  array  recordings.  Frontiers  in 
neuroscience, 8, 423. 
Thomas Jr, C. A., Springer, P. A., Loeb, G. E., Berwald-
Netter,  Y.,  &  Okun,  L.  M.  (1972).  A  miniature 
microelectrode array to monitor the bioelectric activity 
of cultured cells. Experimental cell research, 74(1), 61-
66. 
Pine, J. (1980). Recording action potentials from cultured 
neurons  with  extracellular  microcircuit  electrodes. 
Journal of neuroscience methods, 2(1), 19-31. 
Gross,  G.  W.,  Williams,  A.  N.,  &  Lucas,  J.  H.  (1982). 
Recording  of  spontaneous  activity  with  photoetched 
microelectrode surfaces from mouse spinal neurons in 
culture.  Journal  of  neuroscience  methods,  5(1-2),  13-
22. 
Cianci,  E.,  Lattanzio,  S.,  Seguini,  G.,  Vassanelli,  S.,  & 
Fanciulli, M. (2012). Atomic layer deposited TiO2 for 
implantable brain-chip interfacing devices. Thin  solid 
films, 520(14), 4745-4748. 
Vallicelli, E. A., Reato, M., Maschietto, M., Vassanelli, S., 
Guarrera, D., Rocchi, F., ... & De Matteis, M. (2018). 
Neural  Spike  Digital  Detector on  FPGA.  Electronics, 
7(12), 392. 
Shahid, S., Walker, J., & Smith, L. S. (2009). A new spike 
detection algorithm for extracellular neural recordings. 
IEEE Transactions on Biomedical Engineering, 57(4), 
853-866. 
DeBusschere, B. D., & Kovacs, G. T. (2001). Portable cell-
based  biosensor  system  using  integrated  CMOS  cell-
cartridges.  Biosensors  and  Bioelectronics,  16(7-8), 
543-556. 
Huys, R., Braeken, D., Jans, D., Stassen, A., Collaert, N., 
Wouters,  J.,  ...  &  Verstreken,  K.  (2012).  Single-cell 
recording  and  stimulation  with  a  16k  micro-nail 
electrode  array  integrated  on a  0.18  μm  CMOS  chip. 
Lab on a Chip, 12(7), 1274-1280. 
Frey,  U.,  Sedivy,  J.,  Heer,  F.,  Pedron,  R.,  Ballini,  M., 
Mueller, J., ... & Kirstein, K. U. (2010). Switch-matrix-
based  high-density  microelectrode  array  in  CMOS 
technology. IEEE Journal of Solid-State Circuits, 45(2), 
467-482. 
Maccione, A.,  Simi, A.,  Nieus, T.,  Gandolfo, M.,  Imfeld, 
K.,  Ferrea,  E.,  ...  &  Berdondini,  L.  (2013,  June). 
Sensing and actuating electrophysiological activity on 
brain tissue and neuronal cultures with  a high-density 
CMOS-MEA.  In  2013  Transducers  &  Eurosensors 
XXVII:  The  17th  International  Conference  on  Solid-
State  Sensors,  Actuators  and  Microsystems 
(Transducers  &  Eurosensors  XXVII)  (pp.  752-755). 
IEEE. 
Eversmann,  B.,  Jenkner,  M.,  Hofmann,  F.,  Paulus,  C., 
Brederlow, R.,  Holzapfl, B.,  ... &  Gabl,  R. (2003). A 
128×  128  CMOS  biosensor  array  for  extracellular 
recording  of  neural  activity.  IEEE  Journal  of  Solid-
State Circuits, 38(12), 2306-2317. 
Park, C. H., & Chung, I. Y. (2016). Modeling of Electrolyte 
Thermal  Noise  in  Electrolyte-Oxide-Semiconductor 
Field-Effect  Transistors.  Journal  of  Semiconductor 
Technology and Science, 16(1), 107. 
Wang, S., Garakoui, S. K., Chun, H., Salinas, D. G., Sijbers, 
W., Putzeys, J., ... & Lopez, C. M. (2019). A Compact 
Quad-Shank  CMOS  Neural  Probe  with  5,120 
Addressable Recording Sites and 384 Fully Differential 
Parallel  Channels.  IEEE  transactions  on  biomedical 
circuits and systems, 13(6), 1625-1634. 
Lopez, C. M., Chun, H. S., Wang, S., Berti, L., Putzeys, J., 
Van Den Bulcke, C., ... & Van Helleputte, N. (2018). A 
multimodal  CMOS  MEA  for  high-throughput 
intracellular  action  potential  measurements  and 
impedance  spectroscopy  in  drug-screening 
applications.  IEEE  Journal  of  Solid-State  Circuits, 
53(11), 3076-3086.