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Abstract: In this position paper, we discussed the potential to fit mechanistic mathematical models of acute myeloid 
leukaemia to patient data. The overarching aim was to estimate personalized models. We briefly introduced 
one selected mechanistic ODE model to illustrate the approach. The usually available outcome measures, e.g. 
in clinical datasets, were aligned with the model’s prediction capabilities. Among the most relevant outcomes 
(blast load, complete remission, and survival), only blast load turned out to be well suited to be used in the 
model fitting process. We formulated an optimization problem that, finally, resulted in personalized model 
parameters. The degree of personalization could be chosen by selecting only a subset of parameters within 
the optimization problem. To illustrate the fitness landscape for individual patients we performed a grid search 
and calculated the fitness values for each grid point. The grid search revealed that an optimum exists, but that 
the fitness landscape can be very noisy. In these cases, gradient-based solvers will perform poorly and other 
algorithms needs to be chosen. Finally, we belief that personalized model fitting will be a promising approach 
to integrate mechanistic mathematical models into clinical research.   

1 INTRODUCTION 

Acute myeloid leukaemia (AML) is a haematological 
cancer caused by genetic mutations and cytogenetic 
aberrations in haematological stem cells (O’Donnell 
et al., 2017). AML emerges in the myeloid line, i.e. it 
affects the differentiation cascade that produces the 
specific blood cells (erythrocytes, platelets, 
basophils, neutrophils, eosinophils, monocytes, 
macrophages). Most AML patients show too many 
immature white blood cells, mainly myeloblasts, in 
their bone marrow. These blasts also migrate to the 
peripheral blood. Overall, patients suffer from 
frequent and severe infections (often lethal), 
tiredness, fever, and other symptoms.  

AML is a heterogenous disease and for an 
overview on AML subtypes, outcomes and treatment 
approaches see (Döhner, 2015; Döhner 2017; Estey, 
2020). A number of combination chemotherapy 
protocols are used in clinical practice to treat AML 
patients. Major protocols (like the “7+3”–Schema) 
consists of a combination of cytarabine and an 
anthracycline. Beside the cytotoxic combination 
chemotherapy, newer approaches e.g. based on 
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chimeric antigen receptor T cells (CAR-T) (Gill, 
2019) exist and might be widely introduced into AML 
treatment in near future. 

Therapy protocols for AML treatment still are less 
personalized. Nevertheless, personalization promises 
e.g. reduce treatment doses to a patient specific 
optimal level, or reliably prediction of individual 
disease courses for medical decision-making. 

From the theoretical side, a number of 
mathematical models for AML have been published 
and should be evaluated for their usefulness in 
personalization (Rubinow and Lebowitz, 1975; Röder 
and Glauche, 2006; Stiehl and Marciniak-Czochra, 
2012; Fimmel, 2013; Stiehl et al. 2014; Friedman et 
al. 2016, Banck and Görlich, 2019).  

We belief that mathematical models can qualify to 
be used for personalized predictions in a clinical 
setting. Fitting mathematical models to patient data is 
a prerequisite on the path to personalization. 

The aim of this position paper is to discuss 
relevant aspects of AML models and clinical patient 
data. Especially, we will discuss available outcome 
measures and the model’s capacity to produce 
realistic estimates on these clinical outcomes. Finally, 

170
Görlich, D.
Fitting Personalized Mechanistic Mathematical Models of Acute Myeloid Leukaemia to Clinical Patient Data.
DOI: 10.5220/0010345701700175
In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021) - Volume 3: BIOINFORMATICS, pages 170-175
ISBN: 978-989-758-490-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



an optimization problem will be set up which can be 
applied to fit personalized mechanistic models to 
patient data. First results from a grid search will be 
presented. 

2 THE AML MODEL 

We here briefly introduce the mathematical AML 
model as published in (Görlich and Banck, 2019). 
The model was based on the Stiehl model (Stiehl et 
al., 2014) and extended by a treatment mechanism. 
Many aspects discussed here and later in the paper 
can be applied to other published AML models.  

The AML model is a system of four ordinary 
differential equations (ODE). Two equations (dC1/dt; 
dC2/dt) describe the healthy haematopoiesis while 
the other two equations (dL1/dt; dL2/dt) describe the 
leukaemic compartments. Please see Görlich and 
Banck (2019) for the exact mathematical model. 

In the following, the focus lies mainly on the 
model parametrization. In particular, the model 
catches the stem cell’s proliferation rate (p) and a self-
renewal rate (a). While the proliferation rate 
describes the kinetics of cell growth and division, the 
self-renewal rate describes the production of stem 
cells, capable of replacing itself. Additionally, a 
density term parameterizes the bone marrow’s 
capability to hold stem cells. Finally, two parameters (𝑘௬௧, 𝑘௧) control the treatment 
efficacy/resistance of two main cytotoxic 
chemotherapy components (cytarabine, 
anthracycline). The “differentiated” compartments 
C2 and L2 do not proliferate anymore and, 
additionally, contain an apoptosis term (d).  

Healthy haematopoiesis was calibrated to a 
typical human body (Stiehl et al., 2014). The 
leukaemic compartments have a different set of 
parameter values to respect the major changes in 
cellular behaviour due to the carcinogenic mutations 
within the stem cells. Model analysis (Görlich and 
Banck, 2019) showed that for the leukaemic system 
larger self-renewal and/or larger proliferation rates 
lead to the emergence of a persisting leukaemia in the 
human body. It is unclear which combinations of the 
parameter values are present in actual patients.  

3 ASPECTS OF 
PERSONALIZATION 

Mathematical and statistical models are generated to 
explain real world phenomena for a whole (sub-) 

group of patients. Thus, these models usually 
represent an “averaged” view onto these phenomena. 
Personalized predictions calculated from “average” 
models can work, but also may perform poorly for 
e.g. rare patient characteristics that might have been 
under-represented during model fitting.  

For the AML model, an important assumption is 
that the basic mechanisms are also valid for a single 
patient. The model then can be directly used in a 
personalized setting. This assumption is reasonable, 
since the mathematical form of the kinetics was 
developed from the in-vivo mechanisms. 

The “average” model’s interpretation is caused by 
the calibration of the model parameters. The crucial 
point, to introduce personalized model fitting and 
prediction, thus, is the individual calibration of the 
model to a single patient. Each patient should contain 
his or her own set of parameter values.  

Personalization via the model parametrization can 
be done on different levels of detail. Full 
personalization uses all model parameters. Healthy 
haematopoiesis parameters, bone marrow capacity, 
apoptosis, and treatment susceptibility parameters 
can be considered as functions of general patient 
characteristics. Although, the biological relationship 
between age, gender, height, weight, sex, general 
health status, chronic diseases, genetic mutations, and 
biological variation on the parameters of the healthy 
haematopoiesis is unclear.  

Furthermore, the parameters for the leukaemia 
system are likely influenced by the leukaemic stem 
cell’s genetic setup. The occurrence of mutations 
leading to leukaemic behaviour may act in two 
fashions: (H1) a gradual modification of the healthy 
parameter set is introduced, comparable to a more or 
less homogenous proportionality parameter here. 
(H2) A discrete, complete change of parameters 
might occur. While the first mechanism (H1) suggests 
that, the leukaemia shifts the stem cell’s behaviour to 
an unfavourable region of the parameter space, but 
stays in the neighbourhood of the healthy system, the 
second hypothesis (H2) allows for jumps in the 
parameter space, i.e. also, large steps might be 
possible leading very clinically severe parameter 
combinations. In addition, the healthy 
haematopoiesis is less relevant for the leukaemia’s 
behaviour in H2 compared to H1. Current hypotheses 
about clonal haematopoiesis in leukaemia (Hartmann 
and Metzeler, 2019) are consistent with both 
hypotheses. Under H1, each relevant mutation shifts 
the system to a more severe leukaemic state, while 
under H2 each hit jumps through the parameter space.  

Finally, personalization can now be introduce by 
estimating patient-specific model parameters. 
Depending on the selected subset of parameters, the 
level of personalization is determined. Different 
levels occur if (i) healthy haematopoiesis and 
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leukaemic compartment parameters are personalized; 
or (ii) only leukaemic compartment parameters are 
personalized. A third aspect (iii) here is the estimation 
of personalized treatment parameters. Considering 
the three subgroups of parameters (healthy, 
leukaemic, treatment) eight scenarios with different 
interpretations emerge. A full personalization can 
only be reached when parameters from all three 
subgroups are estimated in a personalized way. 
Leaving one or two parameter subgroups at the 
population parameter values changes the 
interpretation of the resulting predictions.  

4 ALIGNING MODEL 
OUTCOMES WITH CLINICAL 
DATA 

To be able to fit the AML model to patient data an 
analysis of, on the one hand, the availability of 
relevant clinical patient (outcome) data is necessary. 
On the other hand, the mechanistic model, due to the 
introduced abstraction, needs to be capable to predict 
these selected aspects of AML in a sufficiently 
detailed manner. 

4.1 Typical Variables Collected in 
Clinical AML Datasets 

Data, which is e.g. regularly collected within clinical 
research about AML can be structured into four 
domains: (i) patient characteristics at 
diagnosis/baseline; (ii) leukaemia characteristics 
(molecular genetics, cytogenetics) and blood 
laboratory; (iii) treatment related information 
(schemata, dose); and (iv) outcomes (blast load, 
complete remission, blood laboratory, survival). With 
respect to identify a suitable set of clinical variable to 
estimate model parameters, we will focus onto 
outcome data here. 

In the following, the clinical definitions of major 
patient outcomes are briefly summarized.  
 

Blast load 
 

Patients typically undergo blood laboratory analysis 
and bone marrow (BM) aspirations. Peripheral blood 
(pB) can be analysed more often than BM samples, 
since the latter need an invasive biopsy of the bones, 
to be collected. Nevertheless, the BM samples are the 
more reliable source to judge a patient’s leukaemic 
load more accurately (Percival et al. 2017).  Blast load 
is defined as percentage of blast cells in the collected 
sample, either pB or BM.  
 

Survival 
 

Patient survival is one of the main outcomes in 
oncological clinical research.  It can be observed 
directly and plays a major role within therapy 
optimization trials. 
 

Complete remission 
 

Complete remission (CR) is the favourable situation 
that leukaemic cells are sufficiently eradiated from 
the patient’s body. CR is the primary aim of any 
curative AML treatment approach. To identify a CR 
a number of clinical requirements needs to be met 
(Döhner et al., 2017)) : (i) Bone marrow blasts <5%; 
(ii) absence of circulating blasts and blasts with Auer 
rods; (iii) absence of extramedullary disease; (iv) 
ANC ≥1.0 × 109/L (1000/µL); (v) platelet count ≥100 
× 109/L (100 000/µL). More response categories, like 
CR(MRD-), CRi, or partial remission (PR), can be 
reached, representing other system states. 

4.2 Predictability of Clinical Outcomes 
within the Mechanistic Model 

The mechanistic model, as described in section 2, 
aggregates a rather complex biological system into a 
system of only four ODEs. To be able to explain a 
real world system, the mathematical model needs to 
be able to assign model outcomes to entities 
observable in the real world.  

The system’s four state variables can be directly 
interpreted as coarse-grained compartments in the 
differentiation cascades. Thus, there should be a 
direct relation between model predictions (i.e. the 
ODE model’s solution over time) and the observed 
cell number in a patient. In the following, four main 
outcome measures, regularly documented in clinical 
trials (cp 4.1.4), will be discussed. 

4.2.1 Predicting Blast Load 

Blast load is a direct measurement of a cellular 
quantity. It thus can be directly related to the 
respective modelled compartments.  

Both leukaemic compartments (L1, L2) can be 
interpreted to represent blasts cells. Blast load (in 
percent) can then be computed as relative proportion 
of leukaemic cells in all bone marrow cells, i.e. the 
sum of the leukaemic compartments plus the BM 
compartment of the healthy haematopoiesis 
(L1,L2,C1).  
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4.2.2 Predicting Complete Remission 

The definition of CR (4.1) shows a clear problem, 
here. Some criteria, necessary to determine a CR, are 
not represented nor predictable by the model, e.g. 
extramedullary disease, ANC, or platelet count. Thus, 
for a clinically comparable prediction of CR, our 
model is not well suited. Reasons for this, are for 
example that for these criteria a concise mechanistic 
understanding how to include these terms is lacking.  

To produce clinical valid predictions model’s, 
models should allow for an as perfect alignment to 
clinical reality as possible and CR should not be used 
here.  

4.2.3 Predicting Survival 

Similarly, survival is hard to predict from dynamic 
models. The only possibility to predict survival is to 
define a set of system states to be interpreted as 
“patient death”. E.g. a situation where the healthy 
haematopoiesis is completed eradicated by the 
leukaemic cells. Of course, this might be still a 
severe, but manageable situation, if the patient is 
hospitalized. Thus, this surrogate definition only 
partly covers clinical reality. Calibrating mechanistic 
models to accurately predict patient death would be a 
strong advantage, since it opens the possibility to 
access clinical survival data. 

4.2.4 Predicting Relapse 

Prediction of relapse can be realized by identifying a 
system state where blast load rises again, after a CR 
was reached. Relapse occurs when leukaemic cells 
remain in the patient after chemotherapy. These cells 
can still reproduced and overtake the bone marrow, 
again, after some time. To simulate relapse a 
mechanistic model, thus, needs to be able to reach a 
CR state with a residual disease. A prerequisite for 
relapse is a CR and since CR cannot be predicted in a 
sufficient level of detail compared to the clinically 
defined criteria, relapse prediction will be not 
completely reliable.  

5 FORMULATION OF THE 
OPTIMIZATION PROBLEM 

Summarizing the considerations from 4.2.1 to 4.2.4 
the only remaining, reliable variable is blast load (or 
percentage). It is a variable that is frequently observed 
in patients and blast load can be directly calculated 
from the system state at each point of time. Although, 

the model is abstract and course-grained, the level of 
detail should be sufficient to produce a valid blast 
load estimation. All other outcomes would be more 
interesting from a clinical point of view, but cannot 
be reproduced from the model with sufficient detail 
and validity. Thus, blast load will be used as main 
observable to link model prediction with patient data. 

In the following section, an optimization problem 
for fitting the AML model to clinical data is proposed. 

At first, a dataset 𝔻 of individual patient data is 
defined as  𝔻 = {𝑑 |𝑖 = 1, … , 𝑁}, (1)
with  
 𝑑 = ൛൫𝑡,ଵ, 𝑏,ଵ൯, … , ൫𝑡,ఛ , 𝑏,ఛ൯ൟ (2)
as a set of ordered tuples ൫ti,j,bi,j൯. Each tuple ൫ti,j,bi,j൯ 
represents the blast load 𝑏, of patient i at time 𝑡,. 
Each patient can have 1 to 𝜏  assessments. This 
formulation allows that different patients had their 
blast assessment at different time points ti,j and that 
the number of assessments 𝜏  may be different 
between patients.   

Predicted blast load at time ti,j is denoted as 𝐵 ቀℳ൫𝛽; 𝑡,൯ቁ 𝑤𝑖𝑡ℎ  𝛽 = ൫𝑝, 𝑎, 𝑝, 𝑎, 𝑘௬௧, 𝑘௧൯. (3)𝛽 is the personalized vector of model parameters.  
Given a data set 𝔻  and the model ℳ  the 

goodness-of-fit measure ℱ(𝑑, ℳ, 𝛽)  assesses the 
model with respect to the patient’s observations 𝑑 
with parametrization 𝛽 . Goodness-of-fit ℱ  is 
defined as  ℱ(𝑑, ℳ, 𝛽) = 𝑐 ⋅  ൬𝑏, − 𝐵 ቀℳ൫𝛽; 𝑡,൯ቁ൰ଶ

  (4)

over all 𝑗 ∈ {1, … , 𝜏} time points of patient i.  
The factor c is introduced to shift the fitness 

measure to a range of values that are beneficial for the 
optimization procedure. The solution of the 
optimization problem is a vector of optimal model 
parameters 𝛽∗ , which minimize  𝛽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ఉ (ℱ(𝑑, ℳ, 𝛽)) (5)

One optimization problem per patient needs to 
be solved. 

Due to the structure of the ODE system a closed 
solution to this optimization problem cannot be given.  

The model was explicitly solved for each 
parameter vector in a grid search approach. The grid 
was defined by a selection of four relevant model 
parameters, i.e. 𝑝, 𝑎, 𝑘௬௧, 𝑘௧. Table 1 shows 
the applied grid step sizes. 
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Figure 1: Heatmap panel-plot of all fitness values 𝐹 computed for the whole parameter grid for one patient. A single panel 
represent (𝑘௬௧, 𝑘௧) combinations. Within each panel the (𝑎, 𝑝)-plane (selfrenewal, proliferation) is plotted. Colour was 
assigned to fitness values between 0 and 300. Within each panel, the local minimum is marked by a filled circle. Black 
coordinate lines indicate the position of the minimum for better orientation. The global minimum is marked by a filled red 
circle. Here, the global minimum is located in panel (2,8). 

 
Figure 2: Exemplary results of the fitness landscape for two individual patient datasets (left side vs right side). For each 
patient the upper left shows 𝑑 and the fitted 𝐵 over time; the upper right shows a subplot of the fitness landscape of the 
combination of 𝑘௬௧  and 𝑘௧  where the global optimum for this patient is located. Color represents 𝐹 . Only values 
between 0 and 300 have been plotted. The two lower panels on each side show slice plots along the proliferation (p) and self-
renewal (a) axes. While the patient shown on the left side has a rather smooth fitness landscape along the relevant axes, the 
other patient shows a noisy fitness landscape. This is a frequent observation. 

Table 1: Definition of the grid search step sizes. 

Parameter Minimum Maximum Step size𝑝 0.5 2 0.005𝑎 0.9 1 0.005𝑘௬௧ 0 10 1 𝑘௧ 0 10 1 

For the healthy haematopoiesis, an averaged 
(and not individualized) behaviour was assumed, 
thus, the respective parameters were not included in 
the grid search.  

For each combination in the grid a fitness value 
was computed by solving the ODE system 
numerically (using the deSolve package (Karline et 
al. 2010) in R (R Core Team, 2020)). Figure 1 shows 
the fitness values ℱ in the expanded parameter grid 
for one exemplary AML patient. The plot shows 
nicely that for the treatment related parameters (𝑘௬௧, 𝑘௧) a compact region with (near) optimal 

values exist. Within each therapy combination, the 
(a,p)-fitness landscape has a specific form showing a 
band of very good solutions ranging from low self-
renewal proliferations to combinations with increased 
self-renewal and proliferation. The finally identified 
global optimum can be found uniquely as Figure 2 
illustrates. If the step size is decreased the optimum 
can be identified with more accuracy. 

Figure 2 also shows that the fitness landscape 
can be very noisy. This should be considered when a 
numerical optimization algorithm is chosen. While 
smooth fitness landscapes can be easily handled with 
usual gradient-descent techniques, the noisy 
situations needs special consideration. We propose 
e.g. to apply the differential evolution (DE) algorithm 
(Kenneth et al., 2006) which can overcome the local 
minimal in the fitness landscape. A first attempt to 
apply the DE algorithm for this task showed 
promising results (data not shown). 
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6 SUMMARY AND CONCLUSION 

With this position paper, we aimed to explain the 
challenges to align mechanistic mathematical models 
of AML and patient datasets.  

A point to consider is the selection of 
personalization parameters. A full personalization, 
i.e. including all model parameters in the personalized 
optimization problem, might be hard to solve. 
Nevertheless, the full personalization is the most 
stringent approach.  

We, here, demonstrated that the numerical 
solution identified by grid search for a reduced set of 
personalization parameters lead already to usable 
results. Furthermore, we implicitly introduced an 
assumption about the parameters, namely that healthy 
haematopoiesis equates to the population average. 
This may be reasonable in certain situations. E.g. 
within clinical trials, or standardized treatment 
regimens, the dose of chemotherapy is fixed. 
Assuming non-personalized treatment parameters for 
an analysis of a trial cohort might be justifiable. 
Overall, the degree of personalization should be 
selected according to the intended analysis. 

Future research in the field of AML models should 
focus on a qualitative and quantitative validation 
strategy. A more stringent validation will lead to 
greater acceptance of modelling results in the clinical 
practice. Furthermore, the sensitivity analysis of 
personalized parameters will give valuable insights for 
the quality and interpretability of model predictions. 

The integration of mechanistic modelling into the 
clinical practice can have a great impact, e.g. to 
provide personalized prediction of treatment success, 
and thus should be a major aim. 
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