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Abstract: Studies have shown that multi-robot mapping has the benefit of faster environment exploration when 
compared to single robot mapping. However, when multiple robots explore the environment simultaneously, 
a new problem arises – how to merge the individual robot maps. While there are many map merging methods 
developed for homogeneous maps, heterogeneous robot map merging is still a new research area. Another 
relatively little researched aspect of map merging is how to deal with an error in the map merging decision. 
This paper proposes a map merging framework for the distributed merging of heterogeneous robot maps and 
offers two approaches for the further mapping with an emphasis on map merging process reversibility.  

1 INTRODUCTION 

The environment mapping is a fundamental problem 
in the mobile robotics. When multiple robots explore 
the environment simultaneously, it is possible to 
speed up the mapping process by sharing the maps 
between the robots. If the maps are shared, then the 
map merging problem must be solved: the match 
between the maps must be found and the maps must 
be fused together.   

Many researchers have dealt with the map 
merging problem from the perspective of the map 
matching – the search of transformation between the 
two source maps. Some examples of such research are 
occupancy grid matching (Ko et al, 2003; Carpin, 
2008; Li et al, 2012; Liu et al, 2013), feature map 
matching (Lakaemper et al, 2005; Dinnissen et al, 
2012), and grid-based map matching (Dedeoglu and 
Sukhatme, 2000; Bonanni et al, 2017).  

However, only few have addressed the problem 
of merging heterogeneous maps, which are defined in 
(Andersone, 2019) as “two maps are considered to be 
heterogeneous in respect to one another, if their 
representations of the same environment part are 
different, and the differences are caused at least 
partially by the robot mapping system (such as map 
format, map scale or used sensors)”.  
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Mostly the heterogeneous map merging research 
considers the matching of different resolution 
occupancy grid maps (Topal et al, 2010; Park et al, 
2016). Besides heterogeneous occupancy grid 
matching, most other research addresses the fusion of 
sparse/dense 3D point clouds, or fusion of a robot 
map with prior CAD map (Andersone, 2019).  

However, these methods only address specific 
map merging steps, but do not consider the 
heterogeneous map merging problem as a whole. 
Besides the necessity for the appropriate matching 
and fusion algorithms there are several additional 
aspects that should be considered when merging 
heterogeneous maps: such as distributed merging, 
decision making about merging attempt, choice of the 
map merging method and map quality considerations. 
These are addressed in the development of the 
proposed map merging framework. 

Another little researched aspect of map merging 
is the map merging reversibility – a process that 
includes dealing with errors in map merging decision. 
Some proposed solutions are multi-level map storage 
where multiple maps are maintained simultaneously 
(Huang and Beevers, 2005, Andersone and 
Nikitenko, 2014) or arranging robot meetings to 
confirm map merging decisions (Ko et al, 2003). 
These are valid solutions, but multiple map 
maintenance can be computationally costly, and the 
relative position determination is impossible if the 
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necessary sensors are unavailable. Therefore, a way 
to discard the data integrated from the other robot 
without maintenance of multiple maps can be 
beneficial, if it is possible without losing significant 
data acquired after the map merging. 

This paper proposes a map merging framework 
for distributed and reversible merging of 
heterogeneous robot maps. The most important 
contributions of this paper are the following two: 
 This paper proposes a general map merging 

framework for distributed and reversible 
merging of heterogeneous robot maps.  

 A special emphasis is put on the reversibility of 
the map merging decision. To address this 
problem, two approaches how to proceed with 
the mapping are offered. For each approach, 
both the way to recognize the merging failure 
and the approach to exclude the other robot 
map’s data is proposed.  

The rest of the paper is organized in the following 
way. Section 2 gives an overview of the proposed 
framework and its main components. Section 3 
describes the proposed approaches for further 
mapping along with similarity metrics for map 
merging error detection. Section 4 is dedicated to the 
presentation of the experimental results. Section 5 
contains Discussion about the findings, and Section 6 
concludes the work and outlines the future work. 

2 THE PROPOSED MAP 
MERGING FRAMEWORK 

To address the problem of reversible and distributed 
merging of heterogeneous robot maps, a map merging 
framework is proposed with the main steps listed in 
Figure 1:  

1. Decision making about the map merging 
attempt (described in section 2.1); 

2. Map matching – the search for transformation 
between the maps (described in section 2.2); 

3. Map fusion – the incorporation of the other 
robot’s map data in the current map if the 
matching is successful (described in section 
2.2); 

4. Further mapping with periodic verification – 
the mapping is continued, and it is periodically 
checked whether the similarity of merged 
maps is still high enough (described in section 
2.3); 

5. Discarding of the other robot’s map data 
(implementation of reversibility) – if the error 
in merging is discovered, the other robot’s 

map data or part of it is discarded (described 
briefly in sections 2.3 and Section 3 in more 
detail). 

 

Figure 1: The main steps of the map merging framework. 

2.1 Decision Making about the Map 
Merging 

Depending on the metadata (map types,  relative 
positions, exchanged data) an appropriate procedure 
is chosen for the matching and fusion, or the merge is 
rejected if such procedure is not available.  

To make a merging decision, a decision table can 
be created, where the appropriate procedures for 
various parameters are listed. The priority of the 
chosen procedure can be determined by the order of 
the records in the table, or a priority value may be 
assigned to each record. If there is no record in the 
table that corresponds to the received metadata, then 
the map merging attempt is rejected.  

2.2 Map Matching and Fusion 

To ensure the distributedness of the map matching 
and fusion process, the map matching and fusion must 
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be performed by each robot separately, i.e. the map 
from the other robot is fused in the current robot map, 
assuming that the map matching is successful. The 
robots must be capable of exchanging metadata and 
the map data at least once during the mapping. 

It should be noted that various algorithms can be 
used for both map matching and map fusion 
depending from several factors (identified in 
(Andersone, 2019): representations of both maps, 
mapping algorithm employed by the robot, data and 
knowledge about robot’s relative positions. A 
detailed review of both homogeneous and 
heterogeneous map matching and fusion algorithms 
can be found in (Andersone, 2019). 

In the case of heterogeneous maps, the integration 
of data from lower quality map can decrease the 
quality of the higher quality map. To reduce this 
problem, the map fusion should take into account the 
quality of individual maps by using quality evaluation 
methods such as one in (Andersone, 2020). 

2.3 Further Mapping and Reversibility 

After the map matching and fusion step each robot 
continues the exploration independently. During the 
continued exploration process the robots should be 
able to identify whether the merged maps are still 
consistent, or an erroneous fusion has been 
performed.  

An error the map fusion can happen if a wrong 
match of similar environment areas is found between 
the two maps. Such errors most often happen when 
the environment contains many similar areas (e.g. 
similar length and width corridors).  

There are two approaches proposed for the further 
mapping after the map merging decision is made 
(described in more detail in Section 3): further 
mapping with multiple maps and further mapping 
with a single map. 

3 PROPOSED APPROACHES 
FOR MERGING 
REVERSIBILITY 

To support the map merging reversibility two 
approaches are proposed: 
 Further mapping with multiple maps (multi-

level mapping) similarly to (Huang and 
Beevers, 2005, Andersone and Nikitenko, 
2014). The concept of this approach is 
described in Section 3.1. 

 Further mapping with a single map (described 
in Section 3.2). In this case, algorithms must 
discard the other robot’s data from the merged 
map, if the error in merging is found. 

Additionally, the use of two metrics to detect map 
merging error are proposed in Section 3.3.  

3.1 Mapping with Multiple Maps 

The further mapping with multiple maps maintains 
separate maps for all updates after map fusion both 
for map before merging and after merging (see Figure 
2). Additionally, the other maps can be stored for 
repeated merging if necessity arises. 

 

Figure 2: Multi-level mapping map hierarchy with 3 maps. 
Continuous lines represent updated maps; dashed lines 
represent maps, which are stored but not updated.  

Mapping with multiple maps has the advantage of 
simple recovery from a wrong map merging. If the 
dissimilarity is identified, then the merged map can 
be discarded without losing any data collected after 
the fusion, and only the original map is further 
updated. The main drawback of the multi-level 
mapping is the necessity to maintain multiple maps at 
once, which can be computationally costly.  

3.2 Mapping with Single Map 

The mapping with single map updates only one map, 
which is the fusion of all merged maps. This approach 
has the advantage that only one map is updated, and 
the computational cost remains manageable.  

The main problem with this approach is the 
restoration of the original map if the map merging 
error is discovered and the discovery of such errors. 
To address this problem for occupancy grids, the 
author proposes to introduce a local update map (see 
Figure 3), where the cells updated at least once by the 
robot are marked. Together with original merged 
maps, it is easy to determine, which regions have been 
affected exclusively by the map whose data should be 
discarded due to wrong merging.  
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Figure 3: Single-map mapping. Only the merged map and 
local update map is maintained.  

It is not a perfect solution due to some remaining 
data of the wrong merging in areas visited by the 
robot, but most often these traces are relatively 
insignificant, because the merging decision was made 
when the overlap of the maps had high similarity and 
the differences were discovered later in the further 
mapping. 

3.3 Metrics for Map Merging Error 
Detection 

For the detection of map merging error use of two 
metrics is proposed: map similarity metric (SM) and 
map distance metric (DM).  

The similarity metric SM from (Birk and Carpin, 
2006) counts the similar and dissimilar cells in the 
common parts of the maps to calculate the overall 
similarity of the map (Equation 1). 

𝑆𝑀 ൌ
𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑐𝑒𝑙𝑙𝑠

𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑐𝑒𝑙𝑙𝑠  𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑐𝑒𝑙𝑙𝑠
 (1)

The main drawback of the similarity metric is that 
it only considers whether the cells have the same 
value (‘occupied’ or ‘free’), but doesn’t take into 
account the distance to the closest same value cell in 
the other map in the case of dissimilarity. This is 
especially problematic if the maps are heterogeneous 
and have significant local differences even when the 
map merging is performed correctly. Another 
problem is the relatively low impact of occupied cells, 
which are generally much lower in count.  

Another metric in (Birk and Carpin, 2006) based 
on distance maps is proposed to aid in the heuristic 
search process for map transformations. The map 
distance metric DM represents the average Manhattan 
distance to the nearest same value cell in the other 
map. It is calculated by first creating four distance 
maps representing the Manhattan distances to free or 
occupied cells in both maps (Figure 4), and then 
calculating the average distances between the 
significant cells. The occupied cell and free cell 
metrics are calculated separately and then summed, 
which gives the same weight for free and occupied 
cells disregarding their total count.  

The map distance metric allows to distinguish 
between small and large transformation errors, but it 
was created to help in the search process and not to 
evaluate the map similarity (Birk and Carpin, 2006). 
To adapt the metric for similarity evaluation, a new 
step was added – marking of unknown cells (Figure 
4.d). Instead of calculating the distance to the nearest 
same value cell in the other map for all cells, only the 
distances that have significant (not ‘unknown’) value 
in both maps are considered.  

 

Figure 4: The main steps of the modified distance map 
calculation. 

4 EXPERIMENTAL RESULTS 

To demonstrate the heterogeneous map merging 
process and the merging reversibility, an example 
was implemented with the following assumptions: 
 The robot maps are occupancy grid maps of the 

same environment, and these occupancy grids 
have different resolutions. Occupancy grids 
represent the environment as an array, where 
each cell represents the probability that the 
corresponding environment area is occupied by 
an obstacle.  

 The environment maps are globally accurate 
(Schwertfeger and Birk, 2013): the features are 
accurately positioned in the global reference 
frame. There may be local inaccuracies in 
individual maps. 

4.1 The Map Matching and Fusion 
Algorithms 

For the map matching the occupancy grid algorithm 
developed by Carpin (Carpin, 2008) was 
implemented and used. It was chosen because it is 
fast, deterministic, and well suited for the matching 
of indoor environment maps. For the maps of 
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different resolution, a map resolution transformation 
was performed before the merging. 

The maps were fused by Binary Bayes filter cell 
update algorithm (Thrun, 2005) with a quality 
evaluation method from (Andersone, 2020). 
Depending on the quality differences of both map 
regions, the Binary Bayes filter update is applied 0-3 
times. An example of one map merging attempt is 
shown in Figure 5. 

 

Figure 5: An example of a map merging result. 

 
 

4.2 Data Generation and Experimental 
Setup 

For the experiments, the map data from the Pre-2014 
Robotics 2D-Laser Dataset was used 
(http://www.ipb.uni-bonn.de/datasets/) (Haehnel, D). 
Maps were updated with a Binary Bayes filter scan 
update (Thrun 2005) (the positions are available in 
the corrected log files).  

From the log files partial maps of two different 
resolutions were generated: 7x7cm and 10x10cm 
resolutions (further referred to as 0.07 and 0.1 
resolutions). Each individual partial map was 
generated from 30 consecutive scans with a random 
starting point. The map data from (Haehnel, 2003) 
contains places that are visited several times, so the 
same area with slight differences can be generated 
from different scans contributing to heterogeneity of 
the maps.  

Map merging attempts with three different 
resolution combinations were performed: 0.07-0.07, 
0.07-0.1 and 0.1-0.07. For each resolution 
combination, 20 map mergings were performed with 
successful results (correct transformation) and 20 
mergings with failed results (wrong transformation). 
All mergings had map similarity metric threshold of 
0.9 (only results with higher than 90% similar cells 
were accepted).  

After the map merging, the mapping was 
continued by integrating the next 10 scans in either 
the merged map (case of further mapping with one 
map) or both merged and original map (case of further 
mapping with multiple maps). 

For each map merging attempt, the similarity 
metric (SM) and distance metric (DM) was calculated 
both before and after the integration of  the additional 
10 scans that represent the further mapping: 
 In the case of further mapping with multiple 

maps both metrics are calculated between the 
original map and the other robot’s map.  

 In the case of further mapping with single map 
both metrics are calculated between the merged 
map and the other robot’s map (as the updated 
original map is not available).  

The goal of similarity metric calculations is to 
determine whether failed merging cases can be 
correctly identified and reversed. 

4.3 Map Merging Results 

The acquired map merging results are summarized in 
the Tables 1-3. Each value in all tables represents the 
average value from 20 merging attempts. The average 
metric values both for mapping with single map (1M) 
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and two (multiple) maps (2M) are given. The same 
partial map sets are used for both cases, so that the 
results of map update times are comparable. 

Table 1: The similarity metric (SM) and distance metric 
(DM) evaluations for 0.07-0.07 resolution maps. 

 Correct 
(1M) 

Correct 
(2M) 

Wrong 
(1M) 

 Wrong 
(2M)

Initial SM  0,995 0,979 0,990 0,923
End SM  0,986 0,977 0,974 0,910

Initial DM 0,419 1,251 2,485 14,950
End DM 0,883 1,462 5,006 14,570

Upd. time 6,816 10,516 9,512 12,289

Table 2: The similarity metric (SM) and distance metric 
(DM) evaluations for 0.07-0.1 resolution maps. 

 Correct 
(1M) 

Correct 
(2M) 

Wrong 
(1M) 

 Wrong 
(2M)

Initial SM  0,992 0,970 0,991 0,913
End SM  0,982 0,968 0,970 0,896

Initial DM 0,329 1,229 2,202 14,604
End DM 0,754 1,702 4,532 14,656

Upd. time 7,384 10,709 9,221 12,600

Table 3: The similarity metric (SM) and distance metric 
(DM) evaluations for 0.1-0.07 resolution maps. 

 Correct 
(1M) 

Correct 
(2M) 

Wrong 
(1M) 

 Wrong 
(2M)

Initial SM  0,989 0,966 0,994 0,909
End SM  0,973 0,956 0,976 0,864

Initial DM 0,518 1,313 2,055 9,979
End DM 1,094 1,678 3,298 10,249

Upd. time 3,395 5,106 4,757 6,321

It can be observed in Tables 1-3 that the average 
values of the similarity metric are higher (better) for 
the mapping with single map, and the average 
distance metrics are higher (worse) for the mapping 
with two maps. These results were expected and show 
higher similarity for the mapping with single map, 
because the metrics are calculated for the other 
robot’s map and the merged map, in which the other 
robot’s map is already integrated. These differences 
demonstrate that the similarity and distance metrics 
should be evaluated in the context of the chosen 
further mapping approach – single map approach 
requires higher similarity values.  

The update time comparison in Tables 1-3 show 
that the map updates with two maps on average take 
longer than the map updates with one map, which 
illustrates the point that multi-level map maintenance 
is more computationally costly than single map.  

Table 4 represents the ranges of similarity and 
distance metrics at the end of the further mapping for 
both mapping approaches.   

Table 4: Similarity and Distance metric ranges for 0.07-
0.07 maps after the further mapping. 

 Correct 
(1M)

Wrong 
(1M) 

Correct 
(2M) 

 Wrong 
(2M)

End SM  0,964-
0,999

0,945-
0,996 

0,954-
0,999 

0,853-
0,956

End DM 0,248-
2,382

0,784-
9,029 

0,270-
4,545 

3,874-
20,946

It can be seen in Table 4 that both similarity (SM) 
and distance metric (DM) ranges for correct and 
wrong merges have low overlap for the mapping with 
multiple maps (2M), and both metrics can be used for 
map merging error detection. 

 

Figure 6: Distance metric histograms for 0.07-0.07 maps 
after the further mapping with single map. 

On the other hand, similarity metric ranges are 
very similar for single map mapping (1M) and 
therefore are not useful for the identification of wrong 
merges. Instead, the distance metric should be used 
for the merging error detection (histograms of 
distance metric distribution are shown in Figure 6. 

While some false positives and/or false negatives 
are present no matter the distance metric threshold, 
wrong mergings can be identified relatively 
accurately when compared to the use of similarity 
metric. 

To show the differences between the single and 
multi-level mapping reversibility, illustrative 
example is given in Figures 7-9. Figure 7 shows the 
original maps and their merging result, which is 
wrong but exceeds the acceptance threshold of 95% 
same value cells. The resolution of the maps M1 and 
M2 are 0.07 and 0.1. 
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Figure 7: Example of the original maps and the merging 
result. Top: Map1 and Map2; Bottom left: The merging. 

Figure 8 shows the two maps maintained by both 
mapping approaches after the updates: multi-level 
mapping updates both original and merged map while 
single map approach only updates the merged map 
(top map in Figure 8).  

 

Figure 8: Example of the maintained maps for multi-level 
mapping after the updates. Top: The original Map1 with 
updates after the merging; Bottom: The Map1 and Map2 
merging result with updates after the merging. 

Figure 9 shows the resulting maps after the data 
of M2 is discarded from the original map M1.  

For multi-level approach (Figure 9 top part) that 
means that the merged map is discarded and only 
original map with updates is kept. For single map 
approach (Figure 9 bottom part) the data of M2 is 
discarded from the merged map – value of all the cells 
not updated locally are reset to ‘unknown’. 

It can be seen that the results are quite similar with 
only some areas of the single mapping approach 
containing corrupted data. This shows that the single 
 

 

Figure 9: Comparison of the resulting maps without 
merging (top) and after single map mapping and reversing 
the merging (bottom). 

map mapping approach is a valid alternative to the 
maintenance of multiple maps if the latter is not 
possible due to computational restrictions. 

5 DISCUSSION 

The experiments and case study shows that it is 
possible to implement distributed and reversible 
merging of heterogeneous robot maps within the 
proposed framework.  

While there is no universal solution for 
heterogeneous map merging and the experiments 
were performed with different resolution occupancy 
grid maps, the framework can be used for any type of 
heterogeneous map merging as long as the following 
requirements are met:  
 It must be possible to match the chosen types 

of maps. For that, map type-specific matching 
algorithms are required, or the match may be 
acquired by estimating the robot relative 
positions. 

 It must be possible to fuse the chosen types of 
maps. Specific algorithms must be developed 
to fuse different types of heterogeneous maps. 
If possible, then the quality evaluation of each 
map should be considered when performing the 
fusion. For occupancy grid map quality 
evaluation and comparison an approach 
proposed in (Andersone, 2019) can be used.  

 A method to discard the other robot’s data 
without significant loss of data collected after 
the merging should be available. If such a 
method does not exist for the particular map 
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type and mapping algorithm, then the map 
merging should only be performed when there 
is a high certainty about its correctness. This is 
especially important with heterogeneous maps, 
where the chance of an incorrect match is 
higher than for homogeneous maps.  

6 CONCLUSIONS 

In this paper a map merging framework for 
distributed merging of heterogeneous robot maps and 
a method for reversible map merging are proposed. 
The experimental results with different resolution 
occupancy grid maps demonstrate that the framework 
can be successfully used for distributed and reversible 
heterogeneous map merging. 

The research can be continued by developing new 
algorithms for the merging of other robot map types, 
such as feature maps. For the heterogeneous 
occupancy grid map merging the next research 
direction is the adaptation of the proposed approach 
for various mapping algorithms, such as particle filter 
algorithms and graph-based algorithms.  

Another area of further research is how to reliably 
determine the thresholds for similarity and distance 
metrics for both single and multiple map mapping 
approaches so that minimal count of false positives 
and false negatives is achieved. The main problem is 
that these thresholds may vary as they depend on 
resolutions and quality of the merged maps.  
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