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Abstract: One of the main problems in analyzing real data is often related to the presence of anomalies. Anomalous cases
may, in fact, spoil the resulting analysis as well as contain valuable information at the same time. In both cases,
the ability to detect these occurrences is very important. Particularly, in biomedical field, a proper identification
of outliers allows to develop novel biological hypotheses not taken into consideration when experimental
biological data are considered. In this paper, we address the problem of detecting outlier samples in gene
expression data. We propose an ensemble approach for anomalies detection in gene expression matrices based
on the use of hierarchical clustering and Robust Principal Component Analysis, that allows to derive a novel
pseudo mathematical classification of anomalies.

1 INTRODUCTION

Real datasets often contain observations which be-
have differently from the majority of data. When an
occurrence is different from the dominant part of the
data or is sufficiently unlikely under the assumed data
probability model, it is considered as an anomaly or
outlier.

Outliers may be caused by errors, but they may
result from exceptional circumstances, or belong to
another data population. On the one hand, anoma-
lies may produce deleterious effect on the conclusions
drawn from the data analysis, on the other hand, they
may contain important information. Hence, the con-
cern of detecting outliers lies on the interest of the
outliers themselves or on the fact that they could con-
taminate the downstream statistical analysis.

In biomedical field, an outlier can be an abnormal
sample that deviates significantly from the other sam-
ples in its class. Typically, this occurs when a sample
of one class is accidentally assigned to another class.
In a context of carcinogenic pathology, this may mean
that such a patient’s disease is a special case.
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Hence, in biological datasets, a proper outlier
identification could be of some interest: in fact, de-
pending on the type of analysis to be performed, this
would allow biologists to consider whether these data
should be removed or not.

In this paper, we address the problem of detecting
outliers in Gene Expression Profiling (GEP) data, that
is microarray data which contain gene expression lev-
els for a given number of samples labeled with a bio-
logical class (tumor type or experimental condition).
In microarrays there are two main types of outliers
referred to the case when instances are genes or sam-
ples, respectively (Shieh and Hung, 2009). The for-
mer is present when a gene has abnormal expression
values in one or more samples from the same class.
Whereas, the latter can be seen dually as samples that
belong to a different class present in the data (often re-
ferred to as mislabeled samples) or as samples that do
not belong to any class present in the data (called ab-
normal samples). The origin of these outliers can be
ambiguous, they can result from an undiscovered bi-
ological class, poor class definitions, experimental er-
rors, or extreme biological variability. Note that when
we say that an anomalous sample does not belong to
its class, we are not necessarily contesting the validity
of its label. In fact, a sample may still be a tumor, but
having expression levels that differ considerably from
those of other tumor samples.
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Applying models to data affected by outliers can
even produce incorrect inferences. In the past, the
influence of outliers was rarely considered when an-
alyzing data from standard microarrays. According
to the new current, outlier detection is used as a pre-
processing on data for their cleaning. However, it is
substantial to emphasize that, in many cases, outliers
may simply be the result of natural variability in the
data.

In this work we propose a novel outlier detection
approach, which combines Hierarchical Clustering
and Robust Principal Component Analysis. This en-
semble mechanism, which joins two techniques gen-
erally not adopted in this context, allows to derive a
pseudo mathematical classification of outlier samples
in GEP data. The obtained classification could be then
used to propose a new decision-making model. The
model is usually chosen based on how it separates the
data into two or more clusters. We propose a data pre-
processing mechanism that, independently of these,
identifies the anomalies and integrates the anomalies
detection tool in the context of microarrays.

The paper is organized as following. Section 2
briefly overviews the two algorithms adopted in our
proposal together with some main methodologies fre-
quently used in gene expression field. Section 3 illus-
trates the experimental results obtained applying the
proposed method on three different datasets (one ar-
tificial and two real medical datasets). Comparisons
with techniques usually used to detect anomalies are
also presented and the advantages of the proposed ap-
proach are discussed. Finally, conclusions and direc-
tions of future research are sketched in Section 4.

2 METHODS FOR OUTLIERS
DETECTION

The approach we propose is based on two important
techniques, which are already independently used for
anomaly detection.

Clustering can be considered the most important
unsupervised learning problem to find a structure in
a collection of unlabeled data. A cluster is therefore
a group of objects which are “similar” between them
and are “dissimilar” to the objects belonging to other
clusters. The outliers are therefore those samples be-
longing to a separate micro cluster, because they are
distant from most of the other data. They are usu-
ally identified by increasing the number of clusters.
In particular, Hierarchical clustering allowing to se-
lect a distance measure is chosen. In gene expression
data analysis, when clusters of observations with the
same overall profiles need to be achieved, correlation-

based distance (used as a dissimilarity measure) has to
be considered the appropriate choice.

On the other hand, distance is not the only param-
eter to be set in clustering algorithms, also the method
defining how to separate two different clusters is a
task to be managed. In our experiments we used Pear-
son correlation distance and Average method, accord-
ing to the empirical criterion assessing their stability
described in Section 3.

The second technique involved in the proposed
approach is Robust Principal Component Analysis
(ROBPCA) method (Hubert et al., 2005), which com-
bines the strengths of Projection-Pursuit techniques
(PP) (Croux et al., 2007) and robust covariance es-
timation. The former is used for reducting the initial
dimensionality, whereas the second, in particular the
Minimum Covariance Determinant (MCD) estimator,
is applied to the obtained smaller data space.

Consider an n× p data matrix X = Xn,p, where
n indicates the number of the observations and p the
original number of variables, the ROBPCA method
proceeds in three main steps:
1. the data are pre-processed such that the trans-

formed data are lying in a subspace whose dimen-
sion is at most n−1.

2. a preliminary covariance matrix S0 is constructed
and used for selecting the number of components
k that will be retained in the sequel, yielding a k-
dimensional subspace well fitted to the data.

3. data points are projected on this subspace where
their location and scatter matrix are robustly es-
timated, from which its k nonzero eigenvalues
`1, . . . `k are computed. The corresponding eigen-
vectors are the k robust principal components.

Let Pp,k be the p× k eigenvector matrix (orthogonal
columns), the location estimate is denoted by the p-
variate column vector ν̂ and called the robust center.
The scores are the entries of the n× k matrix

Tn,k = (Xn,p−1nν̂
>) ·Pp,k (1)

The k robust principal components generate a p× p
robust scatter matrix S of rank k given by

S = Pp,kLk,kP>p,k (2)

where Lk,k is the diagonal matrix with the eigenvalues
`1, . . . `k.

Similarly to classical PCA, the ROBPCA method
is location and orthogonal equivariant, these proper-
ties is not trivial for other robust PCA estimators.
It should be noted that dimensionality reduction ap-
proaches are widely used in the context of microarray
data analysis (Esposito et al., 2020) but, for the best
of our knowledge, this is the first time that ROBPCA
is applied for outlier detection in microarray data.
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Figure 1: Outliers Classification, with p = 3 and k = 2.

An advantage of using PCA related techniques lies
on the possibility of classify outlier according to their
position in the projected subspace. An example of
this is depicted in Figure 1, where four type of outliers
according to the location of the observations, can be
distinguished. The regular observations that form one
homogeneous group near the PCA subspace gener-
ated by the principal components. The good leverage
points, which lie on the same plane as the PCA sub-
space but away from the regular observations. The or-
thogonal outliers, which have a large orthogonal dis-
tance to the PCA subspace but their projection is on
the PCA subspace. Finally, the bad leverage points,
which have a large orthogonal distance and whose
projection on the PCA subspace is remote from the
regular observations.

To understand and quantify how far an observation
is from the center of the ellipse, defined by regular
observations (score = 0), two distances are adopted.
The Score Distances SDi,

SDi =

√√√√ k

∑
j=1

t2
i j

` j
,

is a measure of the distance between an observation
belonging to the PCA k-dimensional subspace and
the origin of that subspace. The Orthogonal Distance
ODi,

ODi = ||xi− µ̂−Pp,kt ′i ||,
where ` are the eigenvalues of the dispersion ma-
trix MCD and ti j are the robust scores for each j =
1, . . . ,k, µ̂ is the robust estimate of the center, that
measures the deviation (i.e. the lack of adaptation)
of an observation from the PCA k-dimensional sub-
space.

Based on these measures, a plot, namely diag-
nostic plot or outlier map, can be constructed to dis-
tinguish between regular observations and the three
types of outliers. An example of this plot is depicted
in Figure 2, with the robust score distance SDi and
the orthogonal distance ODi on the horizontal and
vertical axis, respectively. In the diagnostic plot the

Figure 2: Outlier map obtained with ROBPCA (from the
Rospca package available in R).

first quadrant at the top right contains the bad out-
liers, the second quadrant on the left the orthogonal
outliers, the third quadrant the regular observations,
finally the fourth quadrant contains the good leverage
points, based on the previous classification.

To classify the observations, two cutoff lines are
then drawn according to the data. The cutoff value on
the horizontal axis is obtained from the 0.975 quan-
tile of the χ-square distribution with k degrees of free-
dom:

SD >
√

χ2
k,.975.

The cutoff values for orthogonal distances are ob-
tained using the Wilson-Hilferty approximation for
a Chi-Squared distribution, i.e. the orthogonal dis-
tances, raised to 2/3, are distributed approximately
normally. Therefore, the cutoff values for anomalous
observations are given by

OD > (µ̂+ σ̂z.975)
3
2

where µ̂ and σ̂ are the MCD estimates of µ and σ of
the above normal distribution. As for standard PCA
approaches, also its robust variants need a criterion to
choose the number of its components. An example of
this is proposed in (Hubert et al., 2005) and selects

k components according to
k
∑
j=1

`i/
r
∑
j=1

`i ≈ 90 or, for

instance, such that `k
`1
≥ 10−3, where ` j are the eigen-

values of S0, the robust covariance matrix of the data
and r its rank. In the experimentation carried out, k
was always chosen using this criterion.

In gene expression matrix analysis, anomaly de-
tection is commonly performed using Bioconductor
package arrayQuality (Paquet and Yang, 2010). This
performs the univariate analysis based on two inde-
pendent methods that assign a rank for each column.
The first technique, taking one sample at time, com-
pares its probability distribution to the one from the
whole dataset with a Kolmogorov-Smirnov statistics.
Instead, the other technique simply ranks each sam-
ple according the sum across all genes. At the end,
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the outlier samples is chosen according to the stan-
dard univariate detection approach applied on the the
rank score.

3 PROPOSED APPROACH

To detect anomalous samples, we use the combined
approach of Hierarchical Clustering and Robust PCA
for our data typology performed sequentially. The
first technique provides a preliminary view of the
dataset, the choice of distance is validated by the
Cophenetic Correlation Coefficient (CCC) and the
adaptation to clustering by the Silhouette coefficient.
The second technique characterizes the type of outlier
found previously, based on where it is placed on the
plot.

From the experimentation carried out (performed
on a i7 octa core machine with 16Gb of RAM in R
enviroment (R-Team, 2015)), outliers that are of ”low
quality” are found to be very extreme bad outliers,
above a certain threshold. On the contrary, the ”mis-
labeled” type outliers are on the border between the
orthogonal type outliers and the bad leverage points.

3.1 Synthetic Dataset

As a first step for our study, we simulated a typi-
cal cancer dataset with known outliers as proposed
in (Barghash et al., 2016). Each dataset contains
two clearly distinguishable sample classes. Abnormal
samples do not belong to either class or that are sim-
ply mislabeled.
On the rows we have 1000 genes and on the columns
100 samples (50 for each class). The first 900 lines
are drawn from the same normal distribution for both
classes, the remaining 100 were drawn from differ-
ent distributions for samples of classes C1 and C2, re-
spectively. In addition, samples 10, 15 and 20 of the
C1 class were exchanged with samples 60, 65 and 70
of the C2 class. Finally the last sample of each class
was replaced by one with a different distribution (for
example the Poisson distribution). As previously dis-
cussed, to detect outliers, samples are hierarchically
clustered using Pearson distance and different linkage
methods. Subsequently, the CCC and the Silhoette in-
dex are used to validate the quality of clustering. The
CCC expresses the correlation between the original
dissimilarity matrix and the one inferred based on the
classification, CCC ≥ 0.8 denotes a good agreement,
whereas CCC < 0.8 indicates that the dendrogram is
not a good representation of the relationships between
objects. Table 1 shows the CCCs corresponding to the

Figure 3: Heatmap of the synthetic dataset.

various methods, selecting as average linkage the best
method for this clustering.

Table 1: CCC corresponding to the various methods.
Linkage Method CCC

average 0.92
ward.D2 0.35
complete 0.58

single 0.9
centroid 0.64

Based on the clustering vector and on the set of
distances, the algorithm calculates the average dis-
similarity of a point xi to its current class and the
lowest dissimilarity of the point to other classes, in-
dicated as a(xi) and b(xi), respectively. Formally, for
all xi ∈Ci the above dissimilarities are defined as fol-
low:

a(xi) =
1

|Ci|−1 ∑
j∈Ci,i6= j

d(xi,x j) and

b(xi) = min
k 6=i

1
|Ck| ∑

j∈Ck

d(xi,x j).

On the other hand, the Silhouette coefficient of a point
xi is defined as

s(xi) =
b(xi)−a(xi)

max{a(xi),b(xi)}
,

s(xi) ranges between ]−1,1[ where 1 indicates a bet-
ter fit to the current cluster and -1 means that the point
actually belongs to the other class or a so called neigh-
boring cluster. In fact by definition follows:

• s(xi) = 0 if |Ci|= 1,

• −1≤ s(xi)≤ 1.

It can be observed that the two techniques return the
same results, in particular the hierarchical clustering
repositions the mislabel outliers in the right cluster,
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Figure 4: Silhoutette.

Figure 5: Circular dendrogram.

the abnormal type outliers form a separate cluster, as
depicted in Figures 4 and 5.

Using RobPCA for finding outlier in this data, al-
lows to detect more information, as described in Sec-
tion 2. These results are depicted in Figure 6: in this
case, the ”mislabeled” samples are configured as good
outliers.

3.2 Real Dataset

The experimentation on real data was carried out on
two particular cancer datasets. The first dataset, here-
after denoted as A, is characterized by 21120 genes
and 593 samples, divided as follows: 591 samples
with a Diffuse Large Cell B Lymphoma, a particular

Figure 6: Robust PCA.

Figure 7: Silhouette Coefficient of Dataset A.

type of blood cancer, (DLBCL) and 2 samples with a
solid ovarian tumor.

Dataset B, instead, is composed by 21120 genes
and 597 samples, where 591 are from the same DL-
BCL dataset and the remaining are equally divided
between Follicular Lymphoma (FL), Mantle Cell
Lymphoma (MCL) and Burkitt’s Lymphoma (BL).

Raw data 1 are downloaded from Gene Expression
Omnibus databases, pre-processed removing back-
groud, normalizing and batch effect correction pro-
cedures.

The aim of experimental session is twofold: firstly
we want to detect if the proposed approach is able to
find ovarian outliers from the whole of blood cancer
samples giving more robust and detailed results re-
spect to the existing methods in literature. Secondly,
we want to stress more the approach proposed when
the samples are biologically similar.

3.2.1 Dataset A

The proposed approach provides the following re-
sults. Through the Hierarchical Clustering technique
we obtain the division of the dataset into 3 clusters.
This results in a large cluster with 589 samples and
two smaller clusters of cardinality 2, as we can see in
the Table 2 and in the Silhouette plot in Figure 7. The
first, as expected, containing the two samples with
ovarian cancer and the second containing two outliers
that the domain experts did not expect.

Table 2: Silhouette Coefficient of Dataset A.

cluster size ave.sil.width
1 589 0.47
2 2 0.90
3 2 0.56

Flanking these results by the outcome from Ro-
bust PCA we confirm the results obtained from clus-
tering but also we are able to provide information on
the classification of the outliers. Figure 8 illustrates

1In particular, samples related to DLBCL are associ-
ated to GSE10846, GSE132929, GSE23501, GSE34171,
GSE87371 and GSE98588; samples of ovarian cancer
to GSE9891; whereas the other six samples in Dataset
B were randomly choosen from GSE12195, GSE55267,
GSE93261, GSE26673 and GSE21452.
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Figure 8: ROBPCA plot of Dataset A.

Figure 9: Density Plot per cluster.

the location of outliers: the 4 outliers of clusters 2
and 3 are located in the Bad leverage points quadrant.
To investigate better these samples which are differed
from most of the data an analysis on the degradation
of RNA was performed. This analysis confirms that
the 4 outliers correspond to a degradation of the sam-
ple, as described below.

On the border with Good Leverage there are ob-
servations with a lower silhouette, they indicate that
although they are not strictly anomalous samples, they
do not fit very well with the data. Only one sample is
an orthogonal outlier.

The results produced adopting the proposed ap-
proach can be assessed also by using density plots.
Particularly, Figure 9 evidences the different distri-
bution between samples labeled according to cluster
membership.

On the other hand, Figure 10 illustrates the den-
sity of the outliers obtained using RobPCA accord-
ing to their classification. Mislabeled Samples are de-
picted in black and red. Abnormal Samples are the
samples in blue and gray. In light blue, yellow and

Figure 10: Outliers DensityPlot for each abnormal sample.
(GSM is the standard acronym for samples in GEO-Gene
Expression Omnibus).

Figure 11: Degradation Plot.

purple we have the samples with low silhouette and
in green the sample identified as an orthogonal out-
lier by the Robust PCA. In particular, note the distri-
bution of the sample identified as orthogonal outlier,
in green. While all the other have a lower number
of genes very expressed than the unexpressed, in this
sample the two parts are almost equivalent.

According to this classification, it can be as-
sert that the ovarian samples are correctly detected,
whereas the remaining six samples need to be further
investigated. To this aim, the quality of the RNA has
been examined using a RNA degradation plot.
It can be observed in Figure 11 that the two non-
mislabeled outliers are degraded, in fact, the observed
trend differs from that of the others and it is not nearly
constant. This implies that their information power
can be neglected.

Finally, we compared the results provided by the
proposed approach with those obtained from the stan-
dard ”KS” and ”sum” techniques. Figure 12 reports
(as a mechanism of comparison) the Euler-Venn di-
agram drawn with an on-line tool 2 (Hulsen et al.,
2008).

In the first case, our results coincide with those of

2web application for the comparison and visualization
of biological lists using area-proportional Venn diagrams
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Figure 12: Comparison of approaches for dataset A.

Figure 13: Degradation Plot of anomalous samples found
through the KS and SUM techniques.

the ”KS” technique, but are fewer in number. How-
ever we believe that our results have more relevance
because with ”KS” 34 samples are considered out-
liers, a high number compared to the nature of the out-
liers. Normally the number of outliers is very small.
The cause probably lies in the origin of the technique
which is based on a distance in terms of probability
distributions. The second technique, instead, finds
different outliers compared to our approach, only one
outlier is in common. In Figure13 we show the de-
gradetion plot of all the outliers found with the alter-
native techniques, with some control samples. We can
observe that not all anomalous samples found with
these technologies are degraded. This makes us be-
lieve our approach is the most reliable.

3.2.2 Dataset B

Differently from previous case, for this dataset the
choice of the Pearson distance was necessary because
the inserted samples differ little. The Cophenetic co-
efficient is still high, equal to 0.8647102, then we can
consider a good agreement. In this case, through the
hierarchical clustering technique we obtain 3 clusters,
too. Table 3 reports the obtained results, while Figure
14 draws the related Silhouette plot.

Since the experimental dataset is that of the pre-
vious case in which the ovarian tumor samples were
replaced with the samples with FL, MCL and BL tu-

Figure 14: Silhouette Dataset B.

Table 3: Silhouette Coefficient of Dataset B.

cluster size ave.sil.width
1 589 0.55
2 2 0.98
3 6 0.42

mors, the results for the equal part of the dataset are
the same. Instead, as it can be observed from the Ro-
bust PCA in Figure 15, the samples of type MCL, FL
and BL tumors are outliers. In particular, these are
Bad Leverage Outliers since they lie in the first quad-
rant. A different distribution of the FL, MCL and
BL tumors samples depicted in red can be observed
when compared to the other samples depicted in yel-
low in Figure 16. The outliers find before are depicted
in blue. As it can be observed in Figure 17 and in
Figure18, also in this case comparing the results with
those of standard techniques, the same consideration
as before can be drawn.

4 CONCLUSIONS AND FUTURE
WORKS

An ensemble mechanism combining Robust PCA and
Hierarchical Clustering with opportune distances was
proposed to search for abnormalities in gene expres-
sion matrices in a more reasonable way. It is con-
figured as an additional tool and allows to derive a
pseudo mathematical classification of outlier samples
in GEP data focusing on microarray. Moreover since
recent works focus only on RNA-seq data (Chen et al.,
2020), we will extend our approach to be interchange-
able between different platforms such as RNA-seq
and GEP derived from Nanostring Technologies. The
preliminary experimental results performed using the
proposed approach showed that it is possible to make
a pseudo-classification of the outliers based on their
nature. Future works should be performed to identify
the thresholds within which it is possible to associate
the mathematically defined outlier to the biological
outlier. The obtained results are quite promising and
suggest the usefulness of the proposed mechanism as
pre-processing for the analysis of datasets that need to
be further studied. For example, the proposed mech-
anism demonstrates to be able to eliminate degraded
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Figure 15: DD-plot Dataset B.

Figure 16: DensityPlot per cluster.

samples, carrying out analyzes on particular samples
and possibly reclassifying mislabeled type outliers.

Future research should be devoted to construct a
new decision-making model which incorporates the
proposed ensemble mechanism as data pre-processing
method to identify the anomalies and integrate the
anomalies detection tool in the context of microarrays
to searching and classifying samples that can generate
new biological hypotheses.
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