
Securing Orchestrated Containers with BSI Module SYS.1.6

Christoph Haar and Erik Buchmann
Hochschule für Telekommunikation Leipzig, Gustav-Freytag-Str. 43-45, 04277 Leipzig, Germany

Keywords: IT-Grundschutz, IT-Security, Container Virtualization, Kubernetes, Orchestration.

Abstract: Orchestrated container virtualization, such as Docker/Kubernetes, is an attractive option to transfer complex IT
ecosystems into the cloud. However, this is associated with new challenges for IT security. A prominent option
to secure IT infrastructures is to use security guidelines from agencies, such as Germany’s Federal Office for
Information Security. In this work, we analyze the module ”SYS.1.6 Container” from this agency. We want
to find out how suitable this module is to secure a typical Kubernetes scenario. Our scenario is a classical
3-tier architecture with front end, business logic and database-back end. We show that with orchestration,
the protection needs for the entire Kubernetes cluster in terms of confidentiality, integrity and availability
automatically become ”high” as soon as a sensitive data object is processed or stored in any container. Our
analysis has shown that the SYS.1.6 module is generally suitable. However, we have identified three additional
threats. Two of them could be exploited automatically, as soon as a respective vulnerability appears.

1 INTRODUCTION

In 2019, a quarter of all company data was stored
in a cloud (Joseph McKendrick, 2018). In this con-
text, container virtualization is frequently used. This
allows planning, operating and maintaining complex
applications, such as database management systems
(DBMS) in an agile and cost-efficient way, which is
also compatible with DevOps approaches. A promi-
nent container virtualization is the open source project
Docker (Docker Inc., 2020b). Docker containers al-
low managing applications, such as DBMS as sepa-
rate building blocks of a large IT Infrastructure. For
example, it is possible to place a preconfigured op-
erating system image together with a preconfigured
image of a database management system in a con-
tainer. This container can be evaluated it in a test
environment, transferred to a productive system and
duplicated on several host computers if the demand
for resources increases.

In this paper, we use DBMS as our running ex-
ample. The Docker repository (Docker Inc., 2020a)
currently lists 6,238 container images with the key-
word ”database”. This includes relational DBMS,
such as Oracle, Postgres or SQL Server, and special
systems, such as Couchbase, MongoDB or MariaDB.
In addition to the operating system image and one or
more application images, a container can also contain
sensitive company data or personal information. To

manage different container instances across multiple
hosts, an orchestration like Kubernetes (The Kuber-
netes Authors, 2020) is frequently used. The orches-
tration monitors and assigns resources, such as stor-
age or computing power, controls network access and
isolates the container instances against each other. It
also allocates containers to virtual machines and vir-
tual machines to physical hosts in a data center.

Due to the orchestration, the security measures
implemented in a DBMS lose their importance as the
first line of defense between sensitive data, users and
public networks. The DBMS cannot control the re-
sources of its tenants, if the orchestration can with-
draw resources from containers (Kanchanadevi et al.,
2019). The orchestration also controls the data ex-
change between containers, i.e., it ignores the settings
stored in the DBMS (Gao et al., 2017). Each con-
tainer imports its own DBMS instance via an image.
Typically, each DBMS instance is only responsible
for one database, and uses only one administrator and
one user account. Therefore, the isolation between
the DBMS clients is forwarded to the container iso-
lation (Mardan and Kono, 2020). Since the container
instances only exist in the main memory, persistent
data must be stored on another host. This means that
the protection needs for the managed data must be
transferred from the DBMS to the container virtual-
ization and orchestration, and consider multiple hosts
in a complex IT ecosystem.

676
Haar, C. and Buchmann, E.
Securing Orchestrated Containers with BSI Module SYS.1.6.
DOI: 10.5220/0010340406760683
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 676-683
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Standardized compilations of security guidelines
allow to systematically develop security concepts.
Examples are the IT-Grundschutz (BSI, 2011) from
the Federal Office for Information Security (BSI), the
ISO 27001 certification (BSI, 2014), or the Infor-
mation Security Practice Guides (NIST, 2020) from
the National Institute of Standards and Technology
(NIST). In this work, we focus on the IT-Grundschutz
approach from BSI. Currently, the BSI is develop-
ing the module ”SYS.1.6 Container” (BSI, 2020).
We have already shown that SYS.1.6 is applicable
to secure containers, which are executed on a single
host (Haar and Buchmann, 2019). In this work, we
use a typical database scenario to analyze the suitabil-
ity of the 2020 draft of SYS.1.6 to secure an orches-
trated container virtualization.

We have developed a protection concept accord-
ing to IT-Grundschutz for a typical Kubernetes sce-
nario (Vaughan-Nichols S., 2020). This scenario con-
sists of a DBMS with customer data, a business logic
including payment system, and a web application as a
front end. We model the information domain for our
Kubernetes system according to BSI standard 200-
2 (BSI, 2017a). Then we determine the protection
needs and analyze the elementary threats described in
the BSI module SYS.1.6 Container. Because some
data objects in the database in the information do-
main require the protection need ”high”, we will do
a risk analysis according to BSI standard 200-3 (BSI,
2017b) in a second step to identify and evaluate addi-
tional threats to our Kubernetes System.

We have observed that in an orchestrated container
virtualization system, a single data object with the
protection need ”high” for confidentiality, integrity
or availability ensures that the entire system must be
assigned with this protection need. This is, because
the orchestration decides at run-time which instances
of a container are running and where. Our analy-
sis has shown that SYS.1.6 is suitable for securing
such a scenario. However, we have found three ad-
ditional threats that are not considered in SYS.1.6.
Two threats could be used to implement an automated
exploit, as soon as an attacker finds a corresponding
vulnerability. Note that SYS.1.6 from the BSI consid-
ers the same set of security risks as the ”Application
Container Security Guide” (NIST, 2017) from NIST.
Thus, our results can be transferred to the Information
Security Practice Guides.
Structure of the Work. Section 2 describes Docker,
Kubernetes and IT-Grundschutz. In Sections 3 and 4
we perform a risk analysis and compare our findings
with those from BSI. Section 5 concludes.

2 RELATED WORK

In this section, we explain the standard protec-
tion and risk analysis according to BSI, the module
SYS.1.6 (BSI, 2020) and the basics of Docker and
Kubernetes.

2.1 BSI Standard-protection

The BSI standard 200-2 (BSI, 2017a) defines six steps
to secure a typical IT system. We use these steps as
our research method.
1. The scope must be defined first. The scope is the

information domain to be protected.
2. In the structure analysis, the processes, applica-

tions, IT-Systems, infrastructures, etc. within the
scope are defined as target objects.

3. The third step defines protection needs for the
business processes, the information processed and
the information technology used.

4. In the modeling step, the modules of the IT-
Grundschutz-Kompendium (BSI, 2019) are used
to identify security measures for the target objects,
depending on the protection needs.

5. The IT-Grundschutz-Check finds out if the im-
plemented security measures are sufficient to ful-
fill the protection needs.

6. A risk analysis must be implemented if a target
object has protection needs above normal, if if no
BSI module exists for a target object, or if a target
object is operated in an unusual way.
The risk analysis identifies additional threats that

are not considered in the modules. The BSI standard
200-3 (BSI, 2017b) provides a set of questions that
help to perform such a risk analysis. These questions
should be answered by experts, employees, adminis-
trators and users for each target object:
• Which ”force majeure” threats are relevant?
• Are there organizational deficiencies that have an

impact on information security?
• Can the safety be compromised by human errors?
• Do technical failures result in security problems?
• Which threats can arise from external attacks?
• Is it possible for employees to willfully impair the

operation of the target object?
• Is it possible that objects outside of the informa-

tion system cause a risk?
• What information is provided by the manufac-

turer’s documentation and third parties?

Securing Orchestrated Containers with BSI Module SYS.1.6

677



Table 1: Standard-Requirement SYS.1.6.A26.

Requirement Description
SYS.1.6.A26 Service accounts in containers

The accounts used by the processes inside a container application SHOULD not have permissions
on the host that executes the container environment. If this is necessary, these permissions SHOULD
be restricted on the data that is absolutely necessary.

2.2 Module SYS.1.6: Container and
Application Container Security

In the BSI-Grundschutz-Compendium (BSI, 2019),
each module secures a specific target object. A mod-
ule contains a description of the target object, the ob-
jectives of the protection, cross-references to other
objects. The main part of each module is a descrip-
tion of specific threats for the target object, together
with a set of requirements to avoid these threats. Fi-
nally, each module lists standard security measures.

The requirements are divided into (1) basic re-
quirements that must be implemented as quickly as
possible, (2) standard requirements that should be
implemented to achieve basic protection, and (3) re-
quirements that must be implemented when there is
an increased need for protection. With pre-defined
terms like SHOULD or MUST, the module points out
the importance of the requirements. Table 1 shows an
example of the requirement A26 of the SYS.1.6 mod-
ule. A26 belongs to ”standard requirements”.

To secure an orchestrated container virtualization
with Kubernetes, the BSI has published a draft of
module SYS.1.6 ”Container” (BSI, 2020). To pro-
vide an overview, we briefly list the basic require-
ments (Table 2), standard requirements (Table 3) and
the requirements for increased protection (Table 4).

Table 2: Basic requirements.

ID Basic requirements
SYS.1.6.A1 Container use
SYS.1.6.A2 Separation of container apps
SYS.1.6.A3 Administration and orchestration
SYS.1.6.A4 Hardening of the host system
SYS.1.6.A5 Separation of containers
SYS.1.6.A6 Trustworthy images
SYS.1.6.A7 Hardening software in a container
SYS.1.6.A8 Persistence of logging data
SYS.1.6.A9 Persistence of user data
SYS.1.6.A10 Storing login information
SYS.1.6.A11 Administrative remote access

Note that the english translation of the module
”SYS.1.6 Container” is not available at the moment,
because the module has not been finalized yet. How-
ever, the module borrows from the ”Application Con-
tainer Security Guide” of the National Institute of
Standards and Technology (NIST) (NIST, 2017). Be-
cause of this, both approaches handle the same kinds

Table 3: Standard requirements.

ID Standard requirements
SYS.1.6.A11 Policy for operation and images
SYS.1.6.A12 One service per container
SYS.1.6.A13 Image and conf. approval
SYS.1.6.A14 Updating containers
SYS.1.6.A15 Immutability of the container
SYS.1.6.A16 Limiting container resources
SYS.1.6.A17 Mass storage for containers
SYS.1.6.A18 Securing admin. networks
SYS.1.6.A19 Separate in- and output systems
SYS.1.6 A20 Backup of configuration data
SYS.1.6 A21 Unprivileged containers
SYS.1.6 A22 Securing auxiliary processes
SYS.1.6 A23 Administrative remote access
SYS.1.6 A24 Identity and auth. management
SYS.1.6 A25 Service accounts for containers
SYS.1.6 A26 Accounts in containers
SYS.1.6 A27 Monitoring containers
SYS.1.6 A28 Securing the image registry

Table 4: Requirements for high protection needs

ID Requirements for high protection
SYS.1.6.A29 Automated container auditing
SYS.1.6.A30 Private image repositories
SYS.1.6.A31 Strict access policies
SYS.1.6.A32 Host-based intrusion detection
SYS.1.6.A33 Container micro-segmentation
SYS.1.6.A34 Container high availability
SYS.1.6.A35 Encrypted data storage
SYS.1.6.A36 Encrypted communication

of risks. In particular, the basic- and standard require-
ments and requirements for a higher protection needs
from the BSI module correspond to the countermea-
sures in section four of the Application Container Se-
curity Guide. Thus, our findings can be transferred to
the Application Container Security Guide.

2.3 Orchestration and Kubernetes

Orchestration (TechnologyAdvice, 2020) allows to
efficiently control complex IT-Service landscapes in
the company. The most commonly used platform
for orchestrating containers is Kubernetes (Vaughan-
Nichols S., 2020). Other platforms for orchestrat-
ing containers use similar concepts, e.,g., Apache
Mesos (Foundation, 2020), AWS Fargate (Services,
2020) or Cloudify (Ltd., 2006). See (A., 2019) for a
detailed description.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

678



Docker Engine

 Docker
Daemon
Docker
Client

Linux Kernel

Server Hardware

Container 1
- Web Application (Frontend)
- Web Server

POD 1

Worker Node 1

Docker Engine

 Docker
Daemon
Docker
Client

Linux Kernel

Server Hardware

Container 2
- Microservice
  (Business-
  logic)

POD 2

Worker Node 2

Container 3
- DBMS
  (Backend)

POD 3

Client

Storage
Node

Master
Node

   Linux Operating System   Linux Operating System

Figure 1: Example-System Web-Shop.

Kubernetes is an open source platform developed
by Google, whose primary task is to monitor and con-
trol the resource utilization of individual containers
on the respective hosts. Kubernetes can start, shut
down or move container instances over multiple hosts
depending on the workload of the system and free re-
sources of the hosts. Furthermore, Kubernetes can
monitor the state of containers, it allows to configure
authorizations or migrate containers (Sayfan, 2018).

Kubernetes consists of several components. A
worker node is a physical host or a virtual machine
on which containers are operated. Themaster node
is the host that is responsible for controlling and
monitoring the resources on the worker nodes. The
etcd (The etcd authors, 2020) on the master node is a
key-value store for the configuration data of all con-
tainers and services. The Kubectl tool transmits com-
mands for administration to the master node (Oliveira
et al., 2016). A kubelet is an execution environ-
ment for PODs on a worker node. PODs are a set
of one or more container instances that are managed
together (Sayfan, 2018) and use resources of the same
host. The system of worker and master nodes, as
well as other storage and network resources is a Ku-
bernetes cluster. Each worker node has a proxy
that forwards TCP/UDP packets to/from PODs. The
REST API server enables the user to establish com-
munication between master and worker nodes (Say-
fan, 2018). The scheduler monitors and plans indi-
vidual PODs, which is communicated via the REST
API server (Baier, 2017).

3 SECURING KUBERNETES

In this section, we describe a typical Kubernetes sce-
nario. For this scenario, we develop the security needs
of the BSI level ”Standard Protection”.

3.1 Information Domain

Szenario: A retailer stores a relational database with
data from a web shop. The data include customer
data, orders and payment transactions. The web shop
is also equipped with an Internet payment system that
securely processes payment transactions through var-
ious channels via a service provider. For this purpose,
the retailer has divided a classical 3-tier architecture
into three Docker containers, as shown in Figure 1:
The first container contains the front end. This in-
cludes a web server with a PHP-based web applica-
tion. The second container contains the business logic
and the payment system as a set of REST-based mi-
croservices written in Java. A Postgres DBMS with
the database is housed in the third container. All
containers are managed by Kubernetes. Kubernetes
does not use further add-ons. Each host in the Kuber-
netes cluster contains a POD that can run multiple in-
stances of the containers. The Kubernetes scheduler
decides, depending on the workload, how many in-
stances of which container are executed within which
POD. Only the database is executed in a single in-
stance, so that there is no need to synchronize multi-
ple databases. The Kubernetes cluster runs in an on-
premise environment, i.e., the retailer is responsible

Securing Orchestrated Containers with BSI Module SYS.1.6

679



for the containers and the data-center infrastructure.
According to BSI standard 200-2 (BSI, 2017a),

the information domain must be modeled before the
protection needs are determined. Table 5 contains all
categories of data objects from our scenario. Table 6
contains all applications that are required to operate
the web shop. The software used is summarized in
table 7. Table 8 shows all host systems within the Ku-
bernetes cluster. All hosts belong to the same data
center (DC1). The master node (S0) and the worker
nodes (S1, S2) controlled by it are housed on their
own hosts. Instances of the containers (C1 - C3) with
web applications, microservices and DBMS run on
the worker nodes.

Table 5: Data of the Information Domain.

Nr. Data Object Description
D1 Personal Data Data from a natural per-

son
D2 Payload Data from applications

and service operations
D3 Account Data Login data and autho-

rization data
D4 Configuration

Data
Data that controls the
system behavior

D5 Log Data Data on past operations
and transactions

Table 6: Applications of the Information Domain.

Nr. Descript. Data Software Con
A1 Web

App.
D1, D2,
D3, D4,
D5

App. logic
in PHP

C1

A2 Web
Server

D1, D2,
D4, D5

Apache C1

A3 Micro-
service

D2, D3,
D4, D5

REST ser-
vice

C2

A4 Database D1, D2,
D3, D4,
D5

Postgres
database

C3

Table 7: Software of the Information Domain.

Nr. Description Data IT Sys-
tem

SSW1 Docker Soft-
ware

D4, D5 S1, S2

SSW2 Kubernetes
Software

D4, D5 S0

Since we focus on the orchestration, we have sum-
marized the hardware and the operating system under
S0 to S2 ”Host system”. In the following, we assume
that these objects are already protected according to
IT-Grundschutz.

Table 8: Host-Systems of the Information Domain.

Nr. Descript. Data Platform Loc.
S0 Host1 D1, D2,

D3, D4,
D5

x86
Linux

DC1

S1 Host2 D1, D2,
D3, D4,
D5

x86
Linux

DC1

S2 Host3 D1, D2,
D3, D4,
D5

x86
Linux

DC1

3.2 Protection Needs

The aim of defining protection needs is to find out
which protective measures are appropriate for the re-
spective objects in the information system. According
to the standard 200-2 (BSI, 2017a), the BSI defines
three protection need categories ”normal”, ”high” and
”very high”. In the following we will define the pro-
tection needs for our Kubernetes cluster. We use the
protection need categories proposed by the BSI.

We start defining the protection needs by deter-
mining the protection needs of the individual data ob-
jects (D1-D4), which are stored, processed and trans-
ferred between the containers within our Kubernetes
cluster. In the next step, the data protection needs
are passed on to the applications (A1-A4) that use the
corresponding data, and from there to the individual
worker nodes (S1 and S2) and the master node (S0).
This means that the protection needs of the data stored
in the database are transferred to the container with
the database application and to all other containers
that work on this database. The protection needs are
then transferred to the Kubernetes cluster and from
there to the physical hosts.

If data with different protection needs is stored in
the same Kubernetes cluster, the highest of these pro-
tection need is assigned to the entire Kubernetes clus-
ter. This results in a special case for an orchestrated
container virtualization:

The individual worker nodes are all connected to
each other via a central master node. This master node
can access all data of the individual worker nodes.
E.g. on the customer data in the database, as well as
on the configuration data and the applications loaded
via image. Depending on its configuration at runtime,
the orchestration controls which containers are started
in which POD.

For this reason, the protection needs of each in-
dividual worker node are passed on to the entire Ku-
bernetes cluster and finally to the entire information
domain. In addition, continuous availability of the
Kubernetes cluster is only guaranteed if at least one

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

680



worker node and the master node are operational.
Therefore, only the highest protection need with re-
gard to confidentiality, integrity and availability of the
data have to be analyzed to determine the protection
needs. From there, the protection needs are passed on
to all containers, all PODs that manage these contain-
ers, and all worker nodes that execute the PODs.

This means for our application scenario:

• Confidentiality. D1 and D3 store personal data,
which always have at least the protection need
”high”. The orchestration determines at runtime
on which worker node container instances with
DBMS and the other applications are executed.
For this reason, confidentiality must be ”high” for
every worker node. The same applies to the mas-
ter node, as it is controls the worker nodes. This is
why the entire information system has a high need
for protection with regard to confidentiality.

• Integrity. A central service in our scenario is
the processing of customer payment transactions.
Payment data (D1, D2) must not be changed with-
out authorization. Because it is also not known in
advance on which worker node the payment ser-
vice is running, the protection needs of the infor-
mation system with regard to integrity are ”high”.

• Availability. If one of the applications (A1-A4) is
discontinued, the web shop is out of service. For
this reason, the availability must be ”high” for any
target object in the entire information domain.

4 KUBERNETES THREATS

In the previous section, we have learned that the se-
curity demand for the entire system is ”high” for in-
tegrity, confidentiality and availability. This is due to
the fact that the orchestration decides at run-time on
which host sensible data objects are managed. For any
risk level above ”normal”, BSI standard 200-3 (BSI,
2017b) requires us to do a risk analysis to (i) identify
and (ii) assess additional threats.

4.1 Identifying Additional Threats

We performed a risk analysis as described in Sec-
tion 2.1. Our experts were part-time students and em-
ployees of the IT-Departments of Deutsche Telekom
AG and T-Systems GmbH, with many years of pro-
fessional experience. Our experts have identified 10
different additional threats for our scenario (see Ta-
ble 9). Seven of them are identical to the threats
which we have already identified for container vir-
tualization without orchestration, i.e., we were able

to confirm our previous work (Haar and Buchmann,
2019). By now, those threats are also part of the BSI
module (BSI, 2020).

Table 9: Additional Threats for the Kubernetes-System.

Identified in SYS.1.6
Vulnerabilities in images
Insecure administrative access
Orchestration with insecure tools
Container breakout
Data loss due to lack of persistence
Loss of confidentiality of login information
Unauthorized modification of configuration data
Not identified in SYS.1.6
Bad planning of etcd
Compromising the nodes
Unauthorized access to the etcd

4.2 Risk Assessment

For each additional threat, the BSI standard (BSI,
2017b) requires a qualitative risk assessment to quan-
tify the potential danger. In the following, we per-
form this risk assessment for the three risks the mod-
ule SYS.1.6 does not consider so far.

The risk is the product of the frequency of occur-
rence and the extent of the damage (BSI, 2017b). We
have used a categorization of occurrences and dam-
ages, which is in line with the BSI recommendation.
A detailed categorization can be found in (Haar and
Buchmann, 2019).

Tables 10 to 12 contain our risk assessment. Each
table lists the object from the information system to
which the threat relates, the threat itself, the impaired
basic values, frequency of occurrence, extent of dam-
age, risk and an intuitive description.

We already knew from preliminary work (Haar
and Buchmann, 2019) that executing database sys-
tems in a container virtualization leads to new secu-
rity challenges. If the DBMS is operated on its own
host, the operator can directly control which database
and system rights exist, when which security patches
are imported, and when the DBMS is started or shut
down. This becomes more difficult with container vir-
tualization. The orchestration increases these chal-
lenges. Due to the orchestration, a large number of
containers can be started, stopped, modified, recon-
figured or relocated at once. Therefore, the orches-
tration is an attractive target for an attacker. The
SYS.1.6 module offers a valuable support when pro-
tecting such a system. However, our risk analysis has
shown that three kubernetes-specific threats are not
included in the module. ”Compromising the nodes”
and ”Unauthorized access to the etcd” are even suit-

Securing Orchestrated Containers with BSI Module SYS.1.6

681



Table 10: Risk: Bad Planning of the etcd.

Kubernetes-System (Confidentiality: high, Integrity: high, Availability: high)
Threat: Bad Planning of etcd Impaired Core Values: Availability
Frequency of Occurrence with-
out add. Measures: medium

Extent of Damage without add.
Measures: considerable

Risk without add. Mea-
sures: high

Description: A bad planning of the key-value-store, which serves as persistent storage for all data of
all clusters (etcd) can be caused by inattentive or untrained personnel. Because the etcd is the central
backup storage for the entire Kubernetes cluster, bad planning means that there is no backup available
in case of data loss due to e.g. Power outages.
Rating: A bad planning of the etcd could occur that entire memory for configuration data of the Ku-
bernetes cluster is not available. In case of a system failure, access to the backup memory would not
be possible. The result would be a permanent loss of the data. Such a loss of all data would have
catastrophic consequences for business continuity. Accordingly, this risk is to be classified as high.

Table 11: Risk: Compromising the Nodes.

Kubernetes-System (Confidentiality: high, Integrity: high, Availability: high)
Threat: Compromising the
Nodes

Impaired Core Values: Confidentiality, Integrity, Availability

Frequency of Occurrence with-
out add. Measures: frequently

Extent of Damage without add.
Measures: considerable

Risk without add. Mea-
sures: high

Description: An attacker who gains access to one or more worker nodes could view the data processed
by the containers, manipulate them or shut down entire containers.
Rating: A compromise of the worker nodes would affect all three core values. If an attacker compro-
mises the worker node that includes a customer database, the attacker would have access to all customer
data and he would also be able to change or even delete it. Such an attack would be existence-threatening.

Table 12: Risk: Unauthorized Access to the etcd.

Kubernetes-System (Confidentiality: high, Integrity: high, Availability: high)
Threat: Unauthorized Access to
the etcd

Impaired Core Values: Confidentiality, Integrity, Availability

Frequency of Occurrence with-
out add. Measures: frequently

Extent of Damage without add.
Measures: considerable

Risk without add. Mea-
sures: high

Description: Unauthorized access to the etcd can cause considerable damage to all three core values.
The master node represents an attractive target for attackers, because the etcd is located in it. The etcd
represents the backup storage for the entire Kubernetes cluster. Therefore, the security of the etcd is
decisive for the confidentiality, integrity or availability of all objects in the Kubernetes cluster.
Rating: Unauthorized access to the etcd would enable the attacker to view, manipulate or delete all data
in the Kubernetes cluster. Such an attack would be existence-threatening.

able for automatable attacks on the system as soon as
a corresponding vulnerability becomes known.

Furthermore, the risks described are also not in-
cluded in the NIST guideline ”Application Container
Security Guide” from which the BSI module bor-
rows. Thus, our findings from the IT-Grundschutz can
be directly transferred to the cyber security Frame-
work (NIST, 2017).

5 CONCLUSION

Orchestrated container virtualization environments
such as Kubernetes/Docker offer a flexible, modern
approach to build complex applications. Contain-
ers can be quickly assembled from preconfigured im-
ages, and the orchestration automates the manage-
ment of large numbers of container instances across
many hosts. However, this approach brings new chal-
lenges for the protection of database applications.

In this work, we analyzed the BSI module
SYS.1.6 ”Container”, which was extended for orches-

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

682



tration in March 2020. For this purpose, we modeled
a complex Kubernetes/Docker scenario. This sce-
nario consisted of three containers with (i) a Postgres
DBMS, (ii) the business logic and a payment system,
and (iii) a web application on an Apache web server.
For this scenario we derived a standard protection and
a risk analysis according to BSI IT-Grundschutz.

Our analysis has shown that the module is suit-
able to secure a complex 3-tier business application in
an orchestrated container environment. However, we
were able to identify three technology-independent,
additional threats that are not considered in SYS.1.6.

REFERENCES

A., C. (2019). 9 Best Kubernetes Alternatives For
DevOps Engineers. https://analyticsindiamag.com/9-
best-kubernetes-alternatives-for-devops-engineers/,
accessed Nov. 2020.

Baier, J. (2017). Getting Started with Kubernetes. Packt
Publishing.

BSI (2011). Taking advantage of opportunities – avoid-
ing risks. https://www.bsi.bund.de/EN. Bundesamt für
Sicherheit in der Informationstechnik.

BSI (2014). BSI Standards and Certification.
https://www.bsi.bund.de/EN/Topics/ ITGrundschutz/
itgrundschutz node.html. Bundesamt für Sicherheit
in der Informationstechnik.

BSI (2017a). BSI-Standard 200-2: IT-Grundschutz-
Methodology. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Grundschutz/ International/
bsi-standard-2002 en pdf.html. Bundesamt für
Sicherheit in der Informationstechnik.

BSI (2017b). BSI-Standard 200-3: Risk Analysis
based on IT-Grundschutz. https://www.bsi.bund.
de/SharedDocs/Downloads/DE/BSI/Grundschutz/
International/bsi-standard-2003 en pdf.html. Bun-
desamt für Sicherheit in der Informationstechnik.

BSI (2019). BSI IT-Grundschutz-Compendium Edi-
tion 2019. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Grundschutz/ International/
bsi-it-gs-comp-2019.html. Bundesamt für Sicherheit
in der Informationstechnik.

BSI (2020). SYS.1.6 Container.
Docker Inc. (2020a). Docker Hub. https://hub.docker.com,

accessedNov.2020.
Docker Inc. (2020b). Docker Overview. https:

//docs.docker.com/engine/docker-overview,
accessedNov.2020.

Foundation, T. A. S. (2020). Apache Mesos.
http://mesos.apache.org/.

Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., and Wang,
H. (2017). Containerleaks: Emerging security threats
of information leakages in container clouds. In
2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN),
pages 237–248. IEEE.

Haar, C. and Buchmann, E. (2019). It-grundschutz für die
container-virtualisierung mit dem neuen bsi-baustein
sys. 1.6. In David, K., Geihs, K., Lange, M.,
and Stumme, G., editors, INFORMATIK 2019: 50
Jahre Gesellschaft für Informatik – Informatik für
Gesellschaft, pages 479–492, Bonn. Gesellschaft für
Informatik e.V.

Joseph McKendrick (2018). 2019 IOUG Databases in the
Cloud Survey. Unisphere Research.

Kanchanadevi, P., Kumar, V. A., and Kumar, G. A. (2019).
Optimal resource allocation and load balancing for a
container as a service in a cloud computing. Journal
of Critical Reviews, 7(4):2020.

Ltd., C. P. (2006). Cloudify Cutting Edge Orchestration.
https://cloudify.co/.

Mardan, A. A. A. and Kono, K. (2020). When the virtual
machine wins over the container: Dbms performance
and isolation in virtualized environments. Journal of
Information Processing, 28:369–377.

NIST (2017). Application Container Security Guide. https:
//doi.org/10.6028/NIST.SP.800-190. National Insti-
tute of Standards and Technology.

NIST (2020). SP 800 series on Information Security and
Cybersecurity Practice Guides. https://csrc.nist.gov/
publications/sp800. National Institute of Standards
and Technology.

Oliveira, C., Lung, L. C., Netto, H., and Rech, L. (2016).
Evaluating raft in docker on kubernetes. In Inter-
national Conference on Systems Science, pages 123–
130. Springer.

Sayfan, G. (2018). Mastering Kubernetes: Master the art
of container management by using the power of Ku-
bernetes, 2nd Edition. Packt Publishing.

Services, A. W. (2020). AWS Fargate.
https://aws.amazon.com/fargate/.

TechnologyAdvice (2020). What is Orchestration?
https://www.webopedia.com/TERM/O/orchestration.
html,accessedNov.2020.

The etcd authors (2020). etcd. https://etcd.io/, accessed
Nov. 2020.

The Kubernetes Authors (2020). Kubernetes Overview.
https://kubernetes.io/de/docs/concepts/overview/
what-is-kubernetes/,accessedNov.2020.

Vaughan-Nichols S. (2020). Kubernetes jumps
in popularity. https://www.zdnet.com/article/
kubernetes-jumps-in-popularity/,accessedNov.2020.

Securing Orchestrated Containers with BSI Module SYS.1.6

683


