Word-sized Visualizations for Exploring Discussion Diversity in Social Media

Franziska Huth1a, Tanja Blascheck1b, Steffen Koch1c, Sonja Utz2d and Thomas Ertl1ef

1University of Stuttgart, Germany
2Leibniz-Institut für Wissensmedien Tübingen and University of Tübingen, Germany

Keywords: Word-sized Visualization, Visualization of Categories, Social Media Analysis.

Abstract: In this paper, we explore the design space of word-sized visualizations—small graphics, usually the same size as a word, that visualize data in or related to a text—for displaying and exploring categories in social media feeds such as Twitter streams. Social media contributions are typically microposts, which allow us to attach word-sized visualizations to show category assignment, diversity, or development. We consider and combine word-sized visualizations made up of basic marks and visual variables, existing word-sized visualization concepts, as well as large text visualizations. In an application example we show how word-sized visualizations can evince context changes within a discussion on Twitter and reveal topic diversity.

1 INTRODUCTION

Context change is a common phenomenon in social media—text content, photos, and videos are often torn out of context or changed while sharing. This requires extreme caution when reading or sharing digital content in times of “fake news” and “social bots” (Vosoughi et al., 2018). Especially because the gatekeeping influence of journalists has diminished, content is moderated less and less while it is spreading at an ever increasing rate. To the purpose of helping people investigate context change as well as discussion diversity within (controversial) discussions in social media, usually large visual analytics systems are proposed. Often the target audience of visual analytics systems are experts, as they give a top-down overview of data and involve a learning phase.

Typically, social media feeds compile a number of microposts, e.g., Twitter messages, which are usually short and there is not much space for larger visualizations. Therefore, these microposts can be enriched by placing \textit{word-sized visualizations}, i.e., small visualizations of word size, next to them. We investigate the design space of word-sized visualizations for conveying discussion diversity of a discourse in a social media feed, helping people understand context change and observe how a discourse changes over time.

Our goal is to give an overview about discussion diversity and embed this information into each micropost, to enable a person to place this micropost into a larger context without having to leave the social media feed. Our approach permits a person to investigate the driving factors within a discussion, inspect context change at a glance within a social media feed, observe how diverse the discourse is during a discussion, examine where in that discourse individual contributions are located, as well as follow the development and change of a discussion over time. This can help people realize how easily content on social media is placed out of context or in a different context.

We explore which word-sized visualizations are suitable for social media data. We assume that the individual microposts within a social media feed can be categorized and each micropost can be assigned to one specific category. For example, Twitter messages from a political campaign could be labeled based on the topics discussed (e.g., education, climate change, economy, pandemic). The word-sized visualizations we imagine show the category for each micropost as well as the larger context it is discussed in.

We use a systematic approach by exploring potential word-sized visualizations made from scratch by exploiting the basic marks and visual variables from visualization design. In addition, we look at the exist-
ing collection of word-sized visualizations (Latif and Beck, 2018) and discuss how they can be adapted to our needs. Last, we examine the suitability of large visualizations and visual analytics systems available for text visualizations to investigate if the visual elements used in these visualizations can be scaled to word size. With an application example, we demonstrate how different word-sized visualizations are integrated into a Twitter stream and describe what people can observe about the diversity of the discussion.

2 RELATED WORK

We discuss the related work of the research areas that are most relevant to this paper—how discourse in social media can be analyzed with the help of visualizations and visual analytics systems, as well as design of word-sized visualizations and their applications.

2.1 Visual Analysis of Discourse in Social Media

For visualizing topics, sentiment, or discourse, as well as their development in social media, in contrast to our bottom-up approach usually top-down visual analytics systems are proposed. Several versions of visualizing topic development as streams exist (Cuenca et al., 2018; Havre et al., 2002; Xu et al., 2013), with variations such as adding keywords and glyph markers for critical events (Cui et al., 2011), or grouping by sub-topics (Heimerl et al., 2016a). When geographical data is available or extracted from the text corpus, in addition to the categorical data that we use, spatio-temporal visualizations can be implemented, for example, chart overlays on a map (Bosch et al., 2013; He and Chen, 2016) to show topics in certain regions. Due to their visual complexity, however, those are more difficult to scale to word size and might require some abstraction.

For the task of analyzing discourse in social media or blogs, Heimerl et al. (2016b) and Kim et al. (2017) use point clouds to show sub-groups of topics in two-dimensional arrangements, while Brandes and Cormon (2016) and Liu et al. (2014) employ node-link diagrams for displaying how topics are connected. El-Assady et al. (2018) contribute a timeline that is connected with arcs to show conversation threads. However, these works all focus on different aspects of data from social media feeds than we do, e.g., connections between individual social media contributions on a topic, or the back-and-forth of a discussion.

To track the progression of a discourse, El-Assady et al. (2016) place speakers of a conversation in one of multiple topic-corners of a circle, with trails across the circle to signal which topic they moved from last. The visualization is interactive and has different small visual elements, again designed as a top-down approach and while effective for their use-case, not transferable to our data. Circular graphs are further used by Liu et al. (2016) and Xu et al. (2017) to visualize opinion in the center and topics arranged around it. However, in general a circular graph is not well suited as a word-sized visualization because of its small aspect ratio. When scaled to word size, it becomes narrow and details are not distinguishable.

Coordinated views combine several of the above visual elements, e.g., by Lu et al. (2018). In contrast, our goal is to show one or two word-sized visualizations instead of multiple visualizations at the same time.

2.2 Word-sized Visualizations

The first versions of word-sized visualizations were introduced by Tufte (2006), who called them sparklines: Building on that, Latif and Beck (2018) as well as Goffin et al. (2014, 2017) discuss design considerations for word-sized visualizations in general, which we expand on in this paper, while Heer et al. (2009) explore options for reducing the height of line charts to fit text size. In addition to defining design aspects, we explore in this paper which of these word-sized visualizations are suitable for visualizing discussion diversity within a larger discussion. Goffin et al. (2015, 2020) investigate how word-sized visualizations affect the reading behavior of people and present various interaction techniques.

Supplementary to those general considerations, several usage scenarios for word-sized visualizations have been proposed, like visualizing eye tracking data (Beck et al., 2017), code understanding and code quality visualization (Hoffswell et al., 2018), and better understanding of scientific texts (Beck and Weiskopf, 2017). VIS author profiles (Latif and Beck, 2019) and sparkClouds (Lee et al., 2010) focus on using word-sized visualizations for development over time. However, none of those employ word-sized visualizations for social media data.

2.3 Applications

Real-world applications of word-sized visualizations include visualizing stock price development with spark lines, as introduced by Tufte (2006) or analyzing soccer matches as in Perin et al. (2013). Word-sized graphics that are not data driven, and thus less interesting for our paper, are widely used. Those
include emoticons 😊, especially in social media contributions, and icons, for example, for showing readers which keys to press when giving software-related instructions [Ctrl]+[Esc].

3 DESIGN SPACE

Before discussing word-sized visualizations embedded into microposts of social media feeds, we describe the data source we consider, the structure of the data, specific design aspects, tasks, and requirements that our word-sized visualizations need to fulfill and to confine our design space.

3.1 Data Source

The underlying data source for the word-sized visualizations are social media feeds with microposts, such as Twitter1 messages, and social news aggregation platforms like Reddit2, Instagram3 stories, or Wikipedia4 articles. We define a corpus as a subset of such a social media feed based on a common connection, for example, a hashtag, a community, an event, a personal feed, or an item that is shared. We refer to this common connection as a digital fragment, that can be a link to an image, a video, or a news article. Each micropost in the social media feed is considered as an individual data item. The word-sized visualization is embedded into this data item, for example, it is placed at the end of a Twitter message (cf. Figure 1).

3.2 Data Structure

A corpus is a collection of data items, with exactly one data item representing the digital fragment. We categorize, i.e., label, the data items to analyze the diversity of a corpus. For example, a categorization can be based on a clustering approach, topic modeling, sentiment analysis, or manual labeling. Therefore, our first dimension is a category. Each data item is assigned to exactly one category. Because we consider microposts, such as Twitter messages, which are short text messages, we assume that each micropost only contains one aspect. Each data item has a time stamp, allowing us to investigate a specific point in time or a time-series with a range of time stamps. Therefore, our second dimension is time. In addition, the word-sized visualizations should show the data item explicitly and potentially also the digital fragment. Thus, these two form the third and fourth dimension.

3.3 Design Aspects

A category contains a number of data items from the corpus. The number of possible categories can be between two and possibly infinite. If the number of categories becomes too large, however, the representation becomes difficult due to the limited size of the word-sized visualizations as width and height are typically constrained to a few hundred pixels. Therefore, if a large number of categories is represented, the space per category might be limited to one pixel. However, we categorize the data items to decrease the complexity of the corpus and assume that an appropriate number of categories is chosen.

Based on the chosen categorization scheme, the categories can have an inherent order (e.g., political parties are often ordered from left to right based on their political orientation) or not (e.g., if clustering is used the order is arbitrary). If an inherent order is given, the word-sized visualization should represent this order. When the categories have no inherent order, an order should be chosen and should not change to preserve the mental map a person builds.

Table 1 shows the dimensions with example word-sized visualizations for each of them. Representing the size—the number of data items in each category—again requires some consideration. For example, one category can be overly large or small in comparison to the other categories. In either case a minimum or maximum width can be defined, however, this may come with incorrectly representing the exact number of data items. A tooltip showing the exact number or a visual mark indicating this discrepancy (e.g., using a color gradient) can be added. Also, if many categories are small they should not be placed next to each other to avoid them blurring together into one category.

In addition, the corpus can change over time. Therefore, we are both interested in representations for a specific point in time or a representation depicting a time range. If we consider a time range, we can either focus on how the number of data items per cat-

Table 1: Dimensions of our word-sized visualizations. Category can represent the number of data items (size) or not. Time can be a point in time or a range. The data item is shown as a circle or as multiple circles connected by lines.

1 www.twitter.com
2 www.reddit.com
3 www.instagram.com
4 www.wikipedia.org
category changes over time or we can investigate how the category of an individual data item changes over time. Categories changing over time can mean that new categories are added or removed, but also that the number of data items changes (e.g., more/less data items belong to a category). Again, the ordering should remain as stable as possible to not disturb the mental map an analyst has of the categories. New categories should be added at the top and categories that are removed at the bottom, similar to Sankey Diagrams (Kennedy and Sankey, 1898). If the category of an individual data item changes over time, multiple markers need to be added at different time steps. This could lead to overcrowding and using a second encoding such as value to indicate older points in time can reduce this effect.

We assume that each data item can be assigned to a category. In cases for which there is no category that fits, an “other” category could be used. This special type of category should then be highlighted to indicate that something is different about it (e.g., separating the “other” category from the rest by adding some horizontal space). Another option is to not represent the data items marker in the word-sized visualization, or show the closest match and encode it in a specific way to indicate this mismatch.

Last, the digital fragment that defined the corpus can be explicitly shown or not. For example, if the digital fragment is a link to an image that is shared and discussed on Twitter, this digital fragment is also assigned to a category, because it is also a data item in the corpus. Therefore, we need a separate representation for this specific data item to show, for example, where the digital fragment is positioned in comparison to an individually inspected data item (upper and lower marker, respectively).

Other aspects we need to consider when designing word-sized visualizations due to their small form-factor are defined by Latif and Beck (2018). Word-sized visualizations do not show labels, grid lines, axes, or legends. Their size should fit into an aspect ratio that is 45° for the average orientation of a line segment. Latif and Beck (2018) also recommend using a border to enhance interpretability and readability. Another challenge is the use of colors in the context of word-sized visualizations. Using large color or brightness contrasts helps to discern colors for small areas (Latif and Beck, 2018). In addition, we are limited to twelve colors that humans can distinguish (Ware, 2013) and should use color-blind friendly colors. In all our examples, we use the color scheme provided by Harrower and Brewer (2003) for qualitative data.

3.4 Tasks and Requirements

We assume a lay person as our primary analyst. The main tasks we consider are that the analyst wants to get an overview (T1) about different aspects within a corpus (e.g., inspect the diversity of a discussion); investigate the driving factor within a discussion (T2) (e.g., if the digital fragment drives the discussion); inspect a change of context (T3) from a digital fragment (e.g., is someone drawing attention to a different issue); examine the development and change of a discussion over time (T4) (e.g., which issues are discussed at what point in time and how frequently).

Based on these tasks, the description and the data structure presented above, the following requirements for our word-sized visualizations ensue. First, a limited number of categories are always represented with a stable ordering that is predefined (R1). Next, the current data item is represented and shown at the category it belongs to (R2) and the digital fragment can optionally be shown (R3). The word-sized visualization should either show one specific point in time or a time range (R4). Word-sized visualization specific design considerations need to be followed (R5) (e.g., width, height, etc.), and perception issues should be considered (R6) (e.g., color-blind friendly).

4 WORD-SIZED VISUALIZATION DESIGNS

Based on the design aspects and requirements, we designed and collected word-sized visualizations that would represent our different dimensions (category, time, data item, and digital fragment). Our first step is to use the basic marks and visual variables for designing novel visualizations and explore how to use them to represent the dimensions. Next, we look at existing word-sized visualizations (Latif and Beck, 2018) and how we can adapt them to our needs. Last, we inspect state-of-the-art text visualizations (Kucher and Kerren, 2015) fitting for our dimensions and discuss if and how we can shrink them to word size.

Our main dimension is category, therefore, the focus is to find a representation of the categories first, since we always want to represent our complete corpus to set the data item into this larger scope instead of only depicting the data item with its category (R1). Therefore, after finding a suitable representation for the categories, we add a reference to the specific data item (R2). Optionally, the digital fragment is shown together with the data item (R3). In a first iteration, we focus on a specific point in time. Later, we look at...
word-sized visualizations that could be used to represent our data depicting changes over time (R4).

4.1 Visual Variables

Table 2 shows examples of different visual variables (Bertin, 1967) suitable for representing multiple categories and a data item using the area mark. All marks can represent categories in the word-sized visualizations. However, at word scale we need to ensure that the point is large enough, e.g., at least the size of the letter “o”. Lines too close together lead to blurring effects, therefore, enough space between the lines needs to be added. Area can be a square, a horizontal bar, or vertical bar. Since word-sized visualizations are most often elongated, squares or vertical bars use space better than horizontal bars. A more compact representation can be used if the order of the categories is not relevant.

For representing categories, the chosen visual variable needs to be selective, i.e., easy to distinguish from the others, and have a certain length, i.e., the number of values that can be differentiated. Possible visual variables are position, color, texture, and shape (Carpendale, 2003). Each of them has some drawbacks: position is ordered, which is only a slight drawback in this case because some order needs to be chosen. Color, although theoretically infinite, is limited in its length to about 12 colors, which is the number of colors a human can distinguish. Texture is not well suited to be scaled to word size. Shape, although potentially infinite in length, in practice is limited when scaled to word size because similar shapes, for example, a pentagon and a circle, can be hard to distinguish when too small. If order is of relevance for the category, then position is the most effective visual variable to represent this. Even though value and size are also visual variables that can depict order, they are less suited for categorical data (Wolfe and Horowitz, 2004). If the number of data items in a category is to be encoded as well, the most effective visual variables are position, value, and size as they show which category has more or less data items (Wolfe and Horowitz, 2004). The benefit of value over size is that we are less limited in the categories becoming small (=1px).

For an appropriate representation of the data item, selectiveness is particularly important, which all visual variables (partially) fulfill (Carpendale, 2003). However, some combinations are less suited than others. For example, if using the area mark for the data item, position (on the y-axis) leads to vertically squeezed word-sized visualizations. If color is not used for the categories, this is a good choice for the data item. Changing the x-position of a line, point, or also shape based on a data item’s category are good choices as well.

As an addition, the digital fragment can also be explicitly shown. If we extend the word-sized visualizations we need another visual variable to represent the digital fragment. This could be, for example, position—the digital fragment is always shown at the upper half and the data item in the lower half of the word-sized visualization using a line marker for both. We can also use two distinct colors, textures, shapes, values, or sizes for each item. One challenge to consider when choosing a visual variable is the case in which the data item and the digital fragment are shown together. Either we need a double encoding, for example, position and color, or we need a visual variable that is easily distinguishable, for example, shape.

If we consider a time range, we can either focus on how the number of data items per category changes over time or we can investigate how the category of an individual data item changes over time. Time is represented either on the x- or y-axis. The other axis can then be used to encode the categories with size or without size changes, in this case the change of the data item is of relevance. Another option is to use value to indicate a change over time. This is both suitable for representing the change of categories for an individual data item or the size of the categories for multiple time steps.

4.2 Existing Word-sized Visualizations

Latif and Beck (2018) discuss word-sized visualizations for different data types: univariate, multivariate, spatial, as well as relational data. We inspect each of the word-sized visualizations they propose for these data types and discuss if and how they could be applied to our data. We refer to the visual variables and word-sized visualizations mentioned in Section 4.1 when appropriate.

A simple quantity chart has limited options, only color and area, for showing the data. It cannot visualize multiple categories and might, at best, be used to show the total number of categories found or the number of data items within a category in comparison to the number of data items in the corpus. Much better suited is the subdivided area chart with which we can display multiple categories. This can be done either with fixed-width elements to show which categories there are, or with elements whose width is data-driven to show, for example, the size (the
Table 2: Word-sized visualizations representing multiple categories and one data item using different visual variables (Bertin, 1967) (except orientation) for a specific point in time.

<table>
<thead>
<tr>
<th>data item</th>
<th>position</th>
<th>color</th>
<th>texture</th>
<th>shape</th>
<th>value</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>color</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>texture</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of data items) of the categories in relation to each other. If color is used for the different categories, then shape, value, or texture markers can be added to show which categories the data item and digital fragment belong to. Similarly, this holds if any of the other visual variables are used for the categories. However, if a category is small, it is hard to see. This can be remedied by enforcing a minimum width in the visualization, although this either leads to a distortion of the relations of the categories to each other, or makes the whole visualization wider.

Line and area charts can be used to show the development of the size of one category over time. For showing multiple categories, line comparison and stacked area charts can be useful and allow marking the categories of both data item and digital fragment with texture, value, shape, or size (line width). Due to the added time component, they are, however, slightly harder to read than the subdivided area chart. Similarly, small categories can become barely visible. Enforcing a minimum category size in the visualization, however, leads to more distortion than for the subdivided area chart.

When using a bar chart, the underlying data can either be the size of the categories or one category over time in time intervals, which makes it a histogram. For a bar comparison chart, the data is the size of multiple categories over time, for which color value is used to depict time. However, for a medium or large number of categories, it becomes prone to visual overcrowding. If there are small categories, the same problem arises as with line charts, as word-sized bar charts cannot extend in the y-direction. As for markers, for the bar chart, texture, value, shape and size (border around the bar) and for the bar comparison chart, texture, shape and size are possible and reasonably selective.

A table can represent the number of data items per time step, encoded using grayscale or color values—the darker, the more data items belong to a category. The row or individual cells can be highlighted (using texture, shape, or border size) to show which category the data item belongs to. If the digital fragment is represented as well, texture or shape are in our opinion the best options. However, the individual cells are not distinguishable well and a heatmap effect occurs, yet a data overview might still be possible.

Finally, some of the existing word-sized visualizations do not fit our data types, such as scatter plots, maps, and trajectories. In a box plot, data on the y-axis is the category, but plotting the data for category size on the x-axis would be a point rather than a box. It could be more suitable, however, when there is uncertainty in the data, e.g., from clustering of the categories.

4.3 Large Visualizations

With the help of the Text Visualization Browser (Kucher and Kerren, 2015) we categorized visual elements of existing visualizations and visual analytics systems whose goal it is to show discussion diversity. We surveyed publications that focus on discourse analysis in online forums, blogs, or social media.

Some of the visualizations and visual analytics systems mentioned in Section 2.1 use visual elements already discussed in the previous section, like subdivided area charts by Hoque and Carenini (2014). However, most either have a different underlying data structure than our categorical data, e.g., geographical data or network data, different tasks that focus on a top-down approach, or are too complex to scale well to word size.

One of the most popular visualizations for displaying discussion development in social media or blogs are stream graphs. Widely used are glyphs and text overlays of events or category characteristics, which when scaled to word size become unreadable. Without those overlays, however, stream graphs are suitable word-sized visualizations for our data. They are similar to stacked area charts that we discussed in Section 4.2, except that their y-
baseline typically is not at the bottom, but at the mid line of the chart area. Stream graphs suffer from the same limitations as stacked area charts, i.e., it is difficult to display small category sizes or a large number of categories while maintaining readability, though they otherwise fulfill our requirements defined in Section 3.4 and are a suitable candidate.

4.4 Summary

Based on the different word-sized visualizations discussed in the previous sections, we suggest the word-sized visualizations we think represent our data the best as well as fulfill the requirements. For representing categories without depicting size together with the data item and digital fragment for one point in time, our suggested word-sized visualization is a subdivided area chart with fixed-width elements. We choose a subdivided area chart with variable-width elements or a bar chart for best representing categories with size information together with the data item and digital fragment for one point in time. For representing categories without depicting size information together with the data item and digital fragment for a time range, our suggested word-sized visualization is a stacked area chart with fixed-sizes and an overlay for the category of the data item or digital fragment. For representing categories with size information together with the data item and digital fragment for a time range, we advise using a stacked area chart or a stream graph.

5 USAGE EXAMPLE

There are multiple scenarios in which a person might want to see word-sized visualizations integrated into a social media feed. First, a social media feed for a hashtag or a feed compiled based on a specific search result. Then, there is one digital fragment which is the hashtag or search term. Second, their personal social media feed, in which case there are multiple digital fragments. Third, a social media feed of a specific group or organization. Then multiple digital fragments are relevant again. In the following we focus on the first scenario.

To illustrate how word-sized visualizations can be integrated into a social media feed, we collected 251.146 Twitter messages for a digital fragment—a video about the explosion in Beirut in August 2020 (cf. Figure 1). For demonstration purposes, we use the tf-idf features of the corpus to cluster the tweets with a simple k-means++ algorithm, with a data-adaptive number of clusters (Davies–Bouldin index (Davies and Bouldin, 1979) and elbow method (Thorndike, 1953)), yielding $k = 3$. We create the word-sized approaches that show temporal evolution by binning the tweets of each cluster into intervals according to their timestamp.

The intention of the word-sized visualizations is that they are placed within an individual data item, i.e., Twitter message. Where to place the word-sized visualization exactly within a text has been thoroughly discussed by Goffin et al. (2014), hence we follow their recommendations and suggestions. In a social media feed, the word-sized visualization should always be at the same position in all data items to enable comparison. For our demonstration, we decided to place the word-sized visualization next to the link of the digital fragment, because the categories are related to it. We show the Twitter stream similar to the way it would appear online and place the digital fragment tweet as well as a permanently visible legend with color coding and the most salient words for each category at the top of the stream of Twitter messages with integrated word-sized visualizations.

To showcase visualization variants, we chose the subdivided area chart as well as a stream graph. For comparison of suitability of the word-sized visualizations in our example, we added one of the tweets with a pie chart and a stacked area chart at the bottom of Figure 1, each separated by a horizontal line. The subdivided area chart shows variable-width elements representing the size (number of data items) of the category. We set a minimum width of 5 pixels for the categories to ensure readability as well as a maximum total width of 75 pixels for the word-sized visualization. The pie chart represents category size as arc length, its diameter is set to 1.5 times the height of the surrounding text. The stream graph shows the amount of data items in each category over time through variable-height streams, while the ratio of category sizes over time becomes visible with the height of the areas in the stacked area chart.

The category of the digital fragment is marked with a line from the top of the chart in the subdivided area charts and with a circle in the other charts. The data item is marked with a line from the bottom and a triangle, respectively. It is visible at a glance whether those marks are in the same category, i.e., they touch in case of the subdivided area chart or not. This indicates whether the data item is close to the digital fragment, or if they are in different categories and this specific tweet seems to be discussing a different topic and a change in context may be arising that might be worth investigating. Further, with the number of categories explicitly represented, analysts can get an overview about how many different con-
text categories a digital fragment is discussed in, and through the category sizes how prevalent each context category is (T1). If the category of a digital fragment is the largest, the digital fragment is the driving factor in a discussion (T2). In our example, the digital fragment is in the largest cluster 2 whereas clusters 1 and 3 have less tweets assigned to them. Therefore, the context of the discussion does not seem to have changed into a different direction much, which can be further examined by inspecting individual tweets.

When a data item is in a different category than the digital fragment, it is an indicator that someone is trying to change the discussion and draw attention to a different issue (T3). An analyst can detect those context changes, for example, cluster 3 (prayers, stay, safe). Examining the discourse over time (T4) is possible when time is added as a variable into the word-sized visualizations, as with the stream graph or the stacked area chart. To depict temporal development, without adding time as a variable to the chart directly and to keep the visualization from being overloaded, two charts of the same type could be placed before and after the digital fragment of the data item, that show data that temporally occurred before and after. This way, the data of two time points or time ranges can be observed, and whether the discussion changed. Another option is to place word-sized visualizations showing different kinds of categories, e.g., topics and sentiment, next to each other, with the possibility to filter the data of one through interaction with the other, showing sentiment within a category.

There are several possibilities for interaction, on various elements of the word-sized visualization, i.e., on the categories, markers, legend, single words, or the whole visualization. In Section 4.2 we elaborate on why fulfilling (R6) is often an issue, i.e., maintaining readability of the visualizations at word size, as, for example, with cluster 3 in Figure 1. A possible remedy is through interaction, for example, with a focus lens as a mouse-over interaction, although this hinders an overview at a glance of the social media feed. For a subdivided area chart, a possibility to add temporal data is through interaction by adding a temporal timeline overlay over the surrounding text, with time on the y-axis and the top of the visualization depicting the latest state, which resembles the ordering of items in a social media feed. A way to omit the legend is showing the characteristics of each category on mouse-over. Mouse interaction, maybe altered by pressing a key, e.g., Ctrl, while hovering or clicking, can further be used to lead a person to a visual analytics system that enables a more detailed review, to
switch from the text-centric view to a visualization-centric view. In general, interaction with the word-sized-visualizations should show additional data and further enable navigation through the corpus, to allow finding ways out of a potential filter bubble and understanding details about the different categories.

6 CONCLUSION

In this paper, we discussed the design aspects of word-sized visualizations for discourse analysis in social media, showed which word-sized visualizations are suitable for this task, and suggested word-sized visualizations for several example applications. Further, we described an example Twitter stream with integrated word-sized visualizations.

One of the main challenges of word-sized visualizations is that their visual elements should be recognizable at word scale. In our example with real-world data this is evident for several visualization types. While the font size of this paper is 11 pixels, social media sites often use larger font sizes. Twitter messages, for example, have a font size of 15 pixels, which slightly helps overcome this challenge.

We see the main advantage of word-sized visualizations in a social media feed in their possibility to give an overview of discussion diversity directly in a data item, without leaving the environment of the feed. Further, through interaction, word-sized visualizations can lead analysts to a visual analytics system for a more detailed analysis of the discourse.

In addition to social media feeds, word-sized visualizations can similarly be embedded in news articles, e.g., for showing topics throughout the article.

To supplement our discussion, we are planning evaluations with lay people as well as experts, comparing different word-sized visualizations on discussion diversity analysis tasks. Though we expect multiple versions to be equally effective, studies will be helpful in validating this assumption.

ACKNOWLEDGEMENTS

This work has been funded by the University of Stuttgart as part of the project Context Changes In Social Media Contributions in cooperation with the Leibniz-Institut für Wissensmedien as part of the Leibniz Wissenschaftscampus “Cognitive Interfaces”. Tanja Blascheck is indebted to the European Social Fund and the Ministry of Science, Research, and Arts Baden-Württemberg.

REFERENCES

Word-sized Visualizations for Exploring Discussion Diversity in Social Media

