
Layer Modeling and Its Code Generation based on
Context-oriented Programming

Chinatsu Yamamoto1, Ikuta Tanigawa1, Kenji Hisazumi2, Mikiko Sato1, Takeshi Ohkawa1,
Nobuhiko Ogura3 and Harumi Watanabe1

1School of Information and Telecommunication Engineering, Tokai University,
2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan

2Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering,
Kyushu University,744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan

3Graduate School of Environmental and Information Studies,
Tokyo City University, 3-3-1 Ushikubo-nishi, Tsuzuki-ku, Yokohama, Kanagawa 224-8551, Japan

Keywords: Model-driven Development, Context-oriented Programming, Runtime Cross-cutting Concerns.

Abstract: This paper contributes to the runtime cross-cutting concerns problem by a layer structure model based on
UML (Unified-Modeling Language) and code generation to COP (Context-Oriented Programming). For
software development, the cross-cutting concerns problem is well-known to cause complicated models. The
reason is that one cross-cutting concern affects multiple objects. Also, the problems occasionally occur at
runtime. Recently, this problem has become more challenging. Modern software such as IoTs usually connect
with many machines and devices and change context-dependent behavior at runtime. Thus, runtime cross-
cutting problems will occur increasingly. To solve this problem, we focus on the COP. It can gather scattered
cross-cutting concerns in one module called the layer and change the layer at runtime. However, UML lacks
the notation involving COP and also the code generation. Therefore, the first step to solve the runtime cross-
cutting concerns problem is to propose a layer structure model on UML and COP code generation from its
model.

1 INTRODUCTION

Recently, modern software for IoT or Industry 4.0 is
required to change their behavior in contexts
dynamically. In this paper, the context means the
surrounding environments of the system.

For example, we consider that the context of self-
driving cars is the state of the road. On sunny days,
self-driving cars run at usual speeds; on rainy days,
self-driving cars run slower than usual; on snowy
days, self-driving cars must also change wheel
operation and speed from usual. In this example, one
concern about the weather changes behavior. The
behavior is processed by multiple modules: steering,
engine, and brake. Thus, one concern is scattered to
multiple modules. That is the cross-cutting concern.
Also, in this example, the software is expected to
change its behavior according to the situation at
runtime. It means the cross-cutting concern should
change at runtime. We call this problem runtime
cross-cutting concerns. In modern software such as
IoTs, this problem has become more challenging

because they usually connect with many machines
and devices and change context-dependent behavior
at runtime.

COP (Context-Oriented Programming) is well-
known to solve this problem in the surrounding
environment at runtime (Hirschfeld, Costanza and
Nierstrasz, 2008). COP is a programming language
that includes the mechanism of software
reconstruction. The mechanism is to activate or
deactivate the program group according to the
surrounding environment when the program is
executed. To develop practical software, we consider
MDD (Model-Driven Development) a candidate
because MDD will impact the near future, as
mentioned in Ebert (Ebert, 2018). Additionally, MDE
(Model-Driven Engineering) can properly handle the
design of many embedded systems, and MDD is
known for its technology suitable for developing
complex systems (Wehrmeister, Pereira, and
Rammig, 2013). However, UML and MDD function
lacks the runtime cross-cutting concerns of COP. This
paper solves the following problems: lack of (1) a

330
Yamamoto, C., Tanigawa, I., Hisazumi, K., Sato, M., Ohkawa, T., Ogura, N. and Watanabe, H.
Layer Modeling and Its Code Generation based on Context-oriented Programming.
DOI: 10.5220/0010328303300336
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 330-336
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

notation of the runtime cross-cutting concern, (2) its
MDD function. For example, the notation of COP-
specific layers and the MDD function to generate
layer programs have not been established.

To solve these problems, we propose a layer
structure model for applying COP to MDD. The layer
structure model is the expression of the layer for
COP. We also propose a process for generating a
COP program using that model. The process is
generating a COP program that is modeled as a layer.
Finally, a simple example shows the generation from
the layer structure model to the COP program.

The remainder of this paper is as follows. Section
2 compares related work to this study. Section 3
defines the runtime cross-cutting concerns. Section 4
explains the goal of our study. Section 5 explains the
COP briefly. Section 6 proposes a method. Section 7
argues each step of the proposed method in detail.
Section 8 shows the simple example that the source
code is generated using the proposed method
automatically. Section 9 summarizes this paper and
describes future works.

2 RELATED WORKS

This section compares related work to this study.
First, COP is an extension of AOP. Many MDD for
AOP (Aspect-Oriented Programming) has been
proposed (Wimmer, Schauerhuber, Kappel, et al.,
2011). However, there are few studies on MDD for
COP compared to AOP. For example, UML4COP:
UML-based DSML for Context-Aware Systems
proposes to express COP based on UML (Unified-
Modeling Language) proposes to express the COP
model. In this study, the COP code is generated
manually. Thus, there is no work from the COP model
to the automatic generation of the COP code. In this
section, the following mentions MDDs of AOP and
just COP languages.

The most extensive survey of the AOM (Aspect-
Oriented Modeling) approaches is provided by
Chitchyan et al. (Wimmer, Schauerhuber, Kappel, et
al., 2011). Aspect-Oriented Model-Driven
Engineering for Embedded Systems Applied to
Automation Systems (Wehrmeister, Pereira, and
Rammig, 2013) aims to design real-time and
embedded automation systems by combining UML
and AOSD (Aspect-Oriented Software
Development). The proposed method uses a tool that
can perform everything from specifications to
automatic source code generation. Thus, the
transition from implementation can be done
smoothly. Improved encapsulation of non-functional

requirements has increased reusability. Moreover,
cross-cutting concerns were concentrated on a small
number of elements. However, cross-cutting
concerns were improved, and the problem of
scattering was reduced.

A Component Model for Model Transformations
proposes a method for reusing model transformations
between different modeling languages. In this
proposed method, a component model for model
transformation is designed (Cuadrado，Guerra and
Lara., 2014). That is, the related work proposes
component-based development. Transformation
reuse, binding development, and component
development were improved by using this proposed
method.

An Approach for Mapping the Aspect State
Models to Aspect-Oriented Code proposes a mapping
of its constructs to AspectJ language using the state
machine diagrams (Mehmood, Jawawi, and Zeshan.,
2019). This related study uses the Reusable Aspect
Models notation for this study. In this proposed
method, the source code of the modeled structure and
operation is generated using a reusable aspect-
oriented model. The conceptual separation of state
machine diagrams is directly mapped to the code
level. Therefore, the source code obtained from this
approach is the same as the model. Traceability is
high, and maintenance is easy by using this proposed
method.

COP is a language that has evolved around
programming (Salvaneschi, Ghezzib, and Pradellab,
2012): such as ContextJ (Appeltauer, Hirschfeld,
Haupt, et al., 2011), JCOP (Appeltauer, Hirschfeld,
Masuhara, et al., 2010), EventCJ (Kamina, Aotani
and Masuhara, 2011). There are also several studies
on modeling languages (Kamina, Aotani, and
Masuhara, 2011). However, as previously mentioned,
there are no studies on COP that directly connect the
model and the source code than aspect-oriented
technology. Therefore, in this paper, we propose a
layer structure model as the COP model. The layer
structure model is for expressing COP in existing
UML. Moreover, we also propose a method for
generating COP code from the layer structure model.
Thus, our novelties are the notation involving COP on
UML and COP code generation.

3 RUNTIME CROSS-CUTTING
CONCERNS

This section explains the problem of the runtime
cross-cutting concerns. The cross-cutting concerns

Layer Modeling and Its Code Generation based on Context-oriented Programming

331

are to scatter of processing related to one concern
across multiple modules. In this paper, the runtime
cross-cutting concern is defined as cross-cutting
concerns, which changes at runtime.

Figure 1 shows an example of the runtime cross-
cutting concerns. This concern is Sunny, Rainy, and
Snowy. A self-driving car changes its driving
according to the weather. The modules related to
driving include Steering, Engine, and Brake. Each
module must change its behavior for each concern of
Sunny, Rainy, and Snowy. In this paper, this module
is a class, and the behavior is a method of each class.
For example, on a Sunny day, the self-driving car uses
the methods of Steering and Engine class. The
method of each class is changing at runtime because
the weather changes during driving. This change is
the runtime cross-cutting concern.

In a real system, there are many classes, and many
cross-cutting concerns occur in those classes.
Therefore, the runtime cross-cutting concerns cause
system complexity.

Figure 1: The runtime cross-cutting concerns problem.

4 GOAL

This section explains the goal of this study. The
purpose is to reduce system complications due to the
runtime cross-cutting concerns. We focused on COP
as a way to address the runtime cross-cutting
concerns. COP gathers each environment's operation
as a layer and changes the operation by activating and
deactivating the layer. In this paper, we propose an
approach using COP to treat the runtime cross-cutting
concerns. There are two goals in this paper.

(1) Layer structure model: We propose a layer
structure model for the run time cross-cutting
concerns of COP.

(2) COP code generation: We propose COP Extractor
to generate COP code on an MDD tool
automatically. The source code is automatically
generated from the model of using the layer
structure model as a simple example.
By achieving the goals (1) (2), we show that the

layer structure model can modularize cross-cutting
concerns in one layer and generate from this model to
COP code.

5 CONTEXT-ORIENTED
PROGRAMMING

This section explains the outline of a COP by using
RTCOP (Tanigawa, Hisazumi, Ogura, et al., 2019). COP
can use modules called layers to modularize context-
dependent cross-cutting concerns. The layers consist
of one base layer and others.

The base layer aims to give a structure of classes
and the behavior of multiple methods. The base layer
is overwritten by a different new layer at runtime
when its new layer is activated. Figure 2 shows an
example of RTCOP. In this example, firstly, the
Sunny Layer is activated. At this time, Sunny Layer
overwrites Base Layer and runs the method Run() on
Sunny Layer. Then, Sunny Layer is deactivated and
activated Rain Layer. The method Run() changes to
Run() on the Rainy Layer.

Usually, one layer includes multiple classes.
Thus, COP can change multiple classes at runtime. In
other words, COP can deal with the runtime cross-
cutting concerns.

Figure 2: Outline of COP.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

332

6 LAYER STRUCTURE MODEL

In this section, we propose to extend UML as a layer
structure model. In the layer structure model, we can
gather scattered methods in one module called layer.
To express the layer, we define the stereotype
<<layer>>. This stereotype is attached to the package
of UML. By this stereotype, we can distinguish the
layers from the original packages. Figure 3 shows an
example of the layers. In this example, there is a one-
layer AA_Layer and one package AA. Additionally,
AA_Layer contains one class diagram that holds two
classes.

Figure 3: Layer structure model.

7 COP GENERATION

This section proposes a process of generating the
COP program from the layer structure model. Figure
4(a) shows an overview of the process for generating
the source code. This process consists of two parts:
the original MDD tool xtUML / Bridgepoint
(xtUML.org, 2020)., and the proposing COP
Extractor. xtUML/Bridgepoint is a tool based on
Executable UML. Executable UML is Object-
Oriented technology. Executable, translatable UML
(xtUML) is an extension to UML based upon the
Shlaer-Mellor Method of MDA, which supports a
powerful approach to MDD (xtUML.org, 2020).

The Extractor changes the intermediate code of
xtUML for generating COP code.

Figure 4(b) shows the steps of the code generation
process. The purpose of each is as follows:
(1) Model Editor: Separate a COP model and the

normal model
(2) Verifier: Generate model data from models,
(3) COP Extractor: Preparation for generating COP

program with COP Extractor
(4) Model Compiler: Generate the COP program.

Our original process is (3) COP Extractor. Others are
normal processes of xtUML / Bridgepoint.

The detailed process for generating COP code is
explained in the following subsection. The
mechanism of generation is mentioned in Section 7.

(a) Overview of COP generation.

(b) Steps to generate COP program.

Figure 4: Overview and Steps of COP generation.

7.1 Layer Structure Model on
XtUML/ Bridgepoint

This subsection explains (1) Model Editor: separate a
COP model and the normal model. The developer
draws a layer structure model based on UML. The
developer needs to include at least the component
diagram, package diagram, class diagram, and state

Layer Modeling and Its Code Generation based on Context-oriented Programming

333

machine diagram. There are restrictions on package
diagrams and class diagrams.

First, the restrictions on the package diagram will
be explained. In the package diagram, it is necessary
to separate the standard model and the COP model.
The layer structure model creates a layer in the
package diagram. Moreover, the layer structure
model creates a layer using the stereotype <<layer>>.
The layer name as a layer structure model needs to
include _Layer to the name of the package diagram.
Next, the restrictions of the class diagram will be
explained. Class Key Letters is one of the properties
of the class diagram notation in BridgePoint. For the
class included in the layer, it is necessary to write the
included layer name in the Class Key Letters. For
example, AA_class1 needs to write AA_Layer1 in
Class Key Letters because AA_class1 is included in
AA_Layer. Figure 5 shows to summarize the
restrictions of each diagram.

Figure 5: Creating Layer Structure Model.

7.2 Model Data Generation

This subsection explains (2) Verifier: generate model
data from models. The model data is generated by
SQL from the function of xtUML / BridgePoint. The
model data is stored as a database. The model data is
a construct of the created model. This model data is
necessary to generate a COP program. Using the
model data stored as the database, COP Extractor
searches for the classes contained in the layer. COP
Extractor is explained in the next subsection. Table 1
shows an example of the model data construct. This
model data is the construct of a layer. All models are
generated as model data by following the metamodel
of xtUML / BridgePoint. COP Extractor uses Name

and Descrip in Table 1. The ID of the class that has
the layer ID is searched and extracted.

Table 1: Model data by SQL.

Create Table Insert Data
Package_ID 0ab5d488-bd73-4805-

9403-0cfd63d85c24
Sys_ID 00000000-0000-0000-

0000-000000000000
Direct_Sys e8d942bb-de5e-48da-

b726-4635f3a3e2c8
Name AA_Layer
Descrip <<layer>>
Num_Rng 0

7.3 COP Extractor

This subsection explains (3) COP Extractor:
Preparation for generating COP program with COP
Extractor. This part is our original. A COP program
is generated using the model data explained in the
previous subsection. The COP program is generated
in C++. Programs such as components and classes
generate C++ source code using the Model Compiler
specific to xtUML / Bridgepoint. COP Extractor
creates the necessary parts for the layer program.
COP Extractor modifies and adds the arc file, which
is the source code generation rules for xtUML /
Bridgepoint. COP Extractor is described by RSL
(Rule Specification Language). COP Extractor
accesses the model data stored in the database and
extracts the elements for generating a COP program.
Figure 6 below shows the step for generating the
source code of COP Extractor.

Figure 6: COP Extractor.

7.4 COP Program Generation

This subsection explains (4) Model Compiler:
generate the COP program. COP Extractor first

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

334

extracts the layer name from model data. The
stereotype <<layer>> is used for extracting as an
extraction method. Next, the classes related to the
layer are extracted using a layer name. The layer
name of the class is described in Class Key Letters.
The proposed process uses Class Key Letters to
extract the necessary classes for layer structure. After
extracting the information about all layers, the class
is described in each layer. Besides, the layer program
is output as a COP program. Moreover, the necessary
information is described before generating source
code that information is for activating and
deactivating the layer in COP. Therefore, it adds
detailed information about the layer. Figure 7 shows
an example of the created model and the generated
COP program.

Figure 7: Model and source code.

8 EXAMPLE OF COP
GENERATION

This section shows the example that is to generate an
RTCOP program from a layer structure model. As
this example, we create two layers, Sun_Layer and
Rain_Layer. Each layer includes two classes. For
example, Sun_Layer includes two classes,
Steering_class and Engine_class. COP Extractor
generates the source code from each model using the
proposed method. The purpose of this example is to
confirm that each class is properly described in the
source code.

Figure 8 shows an example of a layer structure
model and a part of the RTCOP program. Figure 8(a)
shows an example of the generated layer and class
model. Figure 8(b) shows that a COP program is

generated using COP Extractor and a part of
programs of each class generated using xtUML /
Bridgepoint. COP Extractor generates a program file
with each layer name as a program for each one. From
these figures, it can be confirmed that each layer is
modularized.

(a) Example of Layer Structure Model.

(b) Sample Generation of COP.

Figure 8: Example of Layer Structure Model and source
code.

Layer Modeling and Its Code Generation based on Context-oriented Programming

335

9 CONCLUSIONS

This paper proposed (1) the layer structure model on
UML and (2) COP code generation from its model.
Those aim to solve the runtime cross-cutting concerns
problem. COP is well-known to solve this problem;
however, we cannot easily represent the runtime
cross-cutting concern in UML. Also, MDD has never
generated COP code. We showed that the layer
structure model could modularize cross-cutting
concerns in one layer and generate from this model to
COP code.

In future work, we will challenge the following:
(1) describe Activate and Deactivate at appropriate
timings; (2) measure the degree of coupling and
module cohesion of each class and layer; (3) apply
metamodels to source code generation function on
MDD (4) define how to verify the created layer
structure model. Moreover, we consider the
performance of the code generated by this method as
future work.

REFERENCES

Hirschfeld, R., Costanza, P., Nierstrasz, O., 2008. Context-
Oriented Programming, Journal of Object Technology,
7(3).

Ebert, C., 2018. 50 Years of Software Engineering:
Progress and Perils, IEEE Software, p. 94-101.

Wehrmeister, M., Pereira, C., Rammig, F., 2013. Aspect-
Oriented Model-Driven Engineering for Embedded
Systems Applied to Automation Systems., IEEE
Transactions on Industrial Informatics, p. 2373-2386.

Wimmer, M., Schauerhuber, A., Kappel, G.,
Retschitzegger, W., Schwinger, W., Kapsammer, E.,
2011. A Survey on UML-Based Aspect-Oriented Design
Modeling, ACM Computing Surveys, p.1-59.

Ubayashi, N., Kamei, Y., 2012. UML4COP: UML-based
DSML for Context-Aware Systems. Proceedings of the
2012 workshop on Domain-specific modeling, p.33-38.

Cuadrado, J.，Guerra, E.， Lara, J., 2014. A Component
Model for Model Transformations. IEEE Transactions
on Software Engineering, p. 1042-1060.

Mehmood, A., Jawawi, D., Zeshan, F., 2019. An Approach
for Mapping the Aspect State Models to Aspect-
Oriented Code. International Conference on
Engineering and Emerging Technologies, p. 1-6.

Salvaneschi, G., Ghezzib, C., Pradellab, M., 2012. Context-
oriented programming: A software engineering
perspective, The Journal of Systems and Software, p.
1801-1817.

Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.,
2011. ContextJ: Context-oriented Programming with
Java, Information and Media Technologies, p.399-419.

Appeltauer, M., Hirschfeld, R., Masuhara, H., Haupt, M.,
Kawauchi, K., 2010. Event-Specific Software

Composition in Context-Oriented Programming, SC
2010: Software Composition, p. 50-65.

Kamina, T., Aotani, T., Masuhara, H., 2011. EventCJ: a
context-oriented programming language with
declarative event-based context transition, AOSD’11:
Proceedings of the tenth international conference on
Aspect-oriented software development, p. 253-264.

Lincke, J., Appeltauer, M., Steinert, B., Hirschfeld, R.,
2011. An open implementation for context-oriented
layer composition in ContextJS, Science of Computer
Programming, p.1194-1209.

Tanigawa, I., Hisazumi, K., Ogura, N., Sugaya, M.,
Watanabe, H., Fukuda, A., 2019. RTCOP: Context-
Oriented Programming Framework based on C++ for
Application in Embedded Software, Proceedings of the
2019 2nd International Conference on Information
Science and Systems (ICISS 2019), p. 65-72,

xtUML.org. xtUML | eXecutable Translatable UML with
Bridgepoint,September 9, 2020, from "
https://xtuml.org/".

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

336

