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Abstract: Head motion critically hampers the quality of functional magnetic resonance imaging (fMRI) data, with 
several methods for its correction being already available in the literature. Head shifts are usually corrected 
by realigning all functional volumes with relation to a reference volume using affine transformations, from 
which the estimated motion parameters (MPs) can be additionally regressed out from fMRI data. However, a 
consensus regarding the number of MPs to regress has not been achieved yet. More critically, abrupt head 
motion induces the so-called motion outliers in the data, which cannot be accounted for by affine 
transformations. Two common approaches are widely used to tackle this type of motion, namely modelling 
strategies such as censoring, and volume interpolation. However, a direct comparison between strategies to 
tackle motion outliers has not been performed so far. Importantly, to our knowledge no study has focused on 
determining the extent at which the effects of different head motion correction methods differ between groups 
in clinical studies. This is particularly relevant in task-related functional connectivity fMRI studies, which are 
rapidly increasing in clinical research. In this study, we started by determining the optimal number of MPs 
(between 6 and 24) to be regressed out from fMRI data collected from 8 participants (4 patients with Multiple 
Sclerosis and 4 healthy controls) performing a perceptual decision-making task. Then we tested motion 
censoring and volume interpolation for correcting motion outliers, using FD and DVARS metrics to detect 
the outlier volumes. We found that task-specific activated brain regions were detected with higher sensitivity 
when using 6 MPs relatively to using 24 MPs. As for the correction of motion outliers, our results suggest 
that volume interpolation is the best method to use, however more data and external validation is needed to 
achieve a definite conclusion. Importantly, the performance of motion correction algorithms was irrespective 
of the subject group (patients and healthy participants). Our results pave the way towards finding an optimal 
motion correction strategy, which is required to improve the accuracy of fMRI analyses in healthy and patient 
populations and are an encouragement to test comprehensively different approaches.

1 INTRODUCTION 

The blood oxygen-level-dependent (BOLD) signal 
measured with functional magnetic resonance 
imaging (fMRI) in the brain is a mixture of 
fluctuations from both neuronal and non-neuronal 
origins, the latter being responsible for inducing 
BOLD signal changes that account for a substantial 
amount of its variance (Caballero-Gaudes and 
Reynolds 2017). 
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One of the most problematic sources of noise is head 
motion. Because fMRI volumes are acquired over 
multiple slices, the movement of the head causes 
excitation of different slices at subsequent time points 
relative to previous ones. These so-called ‘spin 
history’ effects lead to motion-related changes in 
BOLD signal intensity that obfuscate the 
measurement of localized haemodynamic responses 
(Parkes et al. 2018). This will cause distortions and 
signal dropouts in brain regions prone to these effects. 
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In general, the effect of head motion is predominantly 
seen in voxels at the edges of the brain and in voxels 
lying close to tissue boundaries due to the differences 
in proton density and relaxation parameters across 
brain tissues (Liu 2016). Nonetheless, any brain 
region might suffer from detrimental effects of head 
motion.  

There are two main types of head motion: gradual 
head shifts and sudden movements of the head known 
as motion outliers (Liu 2016). To compensate for 
head shifts, it is common practice to realign the data 
(as part of typical fMRI preprocessing) by estimating 
the position of the head in space at each volume 
relatively to a reference volume using rigid body 
transformations. In a rigid body transformation, head 
position is described at each timepoint by six motion 
parameters (MPs): translational displacements along 
X, Y, and Z axes; and rotational displacements of 
pitch, yaw, and roll. In order to exclude the variance 
of the BOLD signal associated with head shifts, these 
6 MPs are commonly included as nuisance regressors 
in a General Linear Model (GLM) analysis of the 
fMRI data. Because residual BOLD variance 
associated with head shifts can still be present, 
additional MP-derived regressors have been 
suggested, namely the temporal derivatives of the 
MPs (Power et al. 2013). Motion outliers induce the 
most critical BOLD signal changes. These can be 
identified as spikes in the data and cause large 
variations in image intensity. Such spikes are not 
accurately estimated using rigid body 
transformations, and thus the motion correction step 
or the regression of the MPs fail to account for them. 
As a solution, several metrics have been proposed for 
the detection of motion outliers, the most common 
being the Framewise Displacement (FD) and the 
Derivative or root mean square VARiance over 
voxelS (DVARS) (Power et al. 2013). Then, motion 
outliers can be corrected through motion censoring 
(or scrubbing), whereby additional scan nulling 
regressors (with 1s at the volumes where motion 
spikes are detected and thus to be censored, and 0s 
elsewhere) are regressed out from the fMRI data 
(Siegel et al. 2014). Alternatively, volumes associated 
with motion outliers can be interpolated based on 
non-corrupted volumes (Rudas et al. 2020; 
Mckechanie et al. 2019; Mazaika et al. 2009; 
Caballero-Gaudes and Reynolds 2017).  

Both task-related activation maps and measures of 
functional connectivity depending on both short- and 
long-range connections might be affected by both 
types of head motion (Power et al. 2014; Seto et al. 
2001). Resting-state fMRI studies have demonstrated 
that head motion can introduce systematic bias to 

connectivity estimates by creating spurious but 
spatially structured patterns in functional 
connectivity (Maknojia et al. 2019; Parkes et al. 2018; 
Power et al. 2014). In task-based fMRI studies, head 
motion is particularly problematic when it correlates 
with the experimental tasks leading to false brain 
activations. If not properly accounted for, head 
motion will bias the statistical results, reducing the 
sensitivity and specificity for detecting task-specific 
BOLD responses (Caballero-Gaudes and Reynolds 
2017; Power et al. 2014; Seto et al. 2001). 

Despite all the known effects of head motion on 
the quality of fMRI data, and several correction 
options, there is still no consensus regarding the 
optimal number of MP-related regressors to consider 
for tackling head shifts, nor the most appropriate 
approach to mitigate motion outliers.  

Also, there is a lack of studies in determining the 
extent at which the effects of head motion differ 
between groups in clinical studies. This is particularly 
relevant in task-related functional connectivity fMRI 
studies, which are rapidly increasing in clinical 
research. 

In this study, we started by testing the number of 
MPs (between 6 and 24) that would improve the 
ability to accurately detect task-specific BOLD 
responses on fMRI data collected from 8 participants 
performing a perceptual decision-making task. Then, 
we tested motion censoring and volume interpolation 
approaches for tackling motion outliers, with the 
volumes to be censored detected with the FD and 
DVARS metrics, whereas volumes to be interpolated 
were identified with FD. The best approach (and 
metric) was also determined based on the quality of 
the data analyses. The effect of different approaches 
for correction of head motion on task-related 
activation maps was also compared between a control 
group of healthy participants and a clinical group of 
patients with Multiple Sclerosis.  

2 METHODS 

2.1 Participants 

This study includes 4 patients with Multiple Sclerosis 
(MS) and 4 healthy controls. Patients were recruited 
at the Coimbra Hospital and Universitary Centre 
(CHUC) and met the criteria for MS diagnosis 
according to McDonald Criteria (Thompson et al. 
2018). All participants gave written informed 
consent. Local ethics committee approved the study. 
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2.2 Data Acquisition 

Imaging was performed on a 3T Siemens 
MAGNETOM Prisma Fit MRI scanner (Siemens, 
Erlangen) using a 64-channel RF receive coil, at the 
Portuguese Brain Imaging Network (Coimbra, 
Portugal). fMRI data was acquired using a 2D 
simultaneous multi-slice (SMS) gradient-echo echo-
planar imaging (GE-EPI) sequence (6× SMS and 2× 
in-plane GRAPPA accelerations), with the following 
parameters: TR/TE = 1000/37 ms, voxel size = 
2.0×2.0×2.0 mm3, 72 axial slices (whole-brain 
coverage), FOV = 200×200 mm2, FA = 68°, and 
phase encoding in the anterior-posterior direction. A 
short EPI acquisition (10 volumes) with reversed 
phase encoding direction (posterior-anterior) was 
also performed prior to each fMRI run, for image 
distortion correction. A 3D anatomical T1-weighted 
MP2RAGE (TR = 5000 ms, TE = 3.11 ms; 192 
interleaved slices with isotropic voxel size of 1 mm) 
was also collected for subsequent image registration. 

2.3 Behavioral Task 

The imaging session contained two functional runs 
for collection of BOLD signals during the 
performance of a perceptual decision-making task on 
biological motion (BM), each consisting of 507 
volumes (approximately 8.37 minutes). This task 
comprised three categories of visual motion stimuli: 
global biological motion; local biological motion; and 
scrambled motion. Biological motion stimuli were 
built based on human motion capture data collected at 
60 Hz, comprising 12 point-lights placed at the main 
joints of a male walker. Each BM perception run 
consisted of 12 blocks of 40 seconds: 4 or 5 blocks 
(depending on the starting block) of the point-light 
walker facing rightwards or leftwards (global 
biological motion), 4 or 5 blocks showing only the 
point-light located at the right ankle and moving 
rightwards of leftwards (local biological motion), and 
3 blocks of point lights randomly positioned across 
the y axis, while maintaining their true trajectory 
across the x axis (scrambled motion). After each 
stimulus presentation, the participants reported the 
direction of motion of the dots (left or right) by 
pressing one of two buttons. Figure 1 is a schematic 
representation of the visual stimuli. 

Figure 1: Schematic representation of the visual stimuli. 

2.4 Data Processing  

2.4.1 Pre-processing Steps 

fMRI data were preprocessed using the MATLAB® 
software, with SPM12  and the PhysIO toolbox 
(Kasper et al. 2017), except for image distortion 
correction which was performed using FMRIB 
Software Library (FSL). The first part of the pre-
processing pipeline included: 1) slice timing 
correction; 2) realignment of all fMRI volumes 
relative to the first volume; 3) correction of geometric 
distortions caused by magnetic field inhomogeneity; 
4) bias field correction. The second part of the 
preprocessing was related to regression of non-
neuronal fluctuations such as cardiac and respiratory 
signals, WM and ventricular CSF average BOLD 
fluctuations and head motion spikes. First, image 
coregistration (anatomical to functional) and 
segmentation of the structural image were done to 
extract WM and ventricular CSF masks. Noise 
fluctuations (cardiac and respiratory signals, WM and 
CSF average BOLD fluctuations) including 6 and 24 
MPs were computed with PhysIO toolbox and then 
regressed out of the BOLD signal. After determining 
the optimal set of MPs, motion outliers were either 
regressed out of the BOLD signal (by adding scan 
nulling regressors consisting of 1 at the volume to be 
censored and 0s elsewhere) or interpolated. These 
were identified with the FD or DVARS metrics. The 
pre-processing was completed with spatial smoothing 
with a 3 mm full-width-at-half-maximum (FWHM) 
isotropic Gaussian kernel and high-pass temporal 
filtering with a cut-off period of 108 s. 
 

BIOSIGNALS 2021 - 14th International Conference on Bio-inspired Systems and Signal Processing

308



2.4.2 Motion Processing 

The first step is to study the number of MPs (between 
6 and 24) needed to correct the effects caused by head 
shifts and consequently which one would improve the 
ability of our models to accurately detect task-specific 
BOLD. Here, we tested 6 and 24 MPs because they 
represent the two extreme cases complexity-wise 
(Maknojia et al. 2019). The 6 MPs were computed as 
part of the volume realignment step and the 24 MPs 
which correspond to squares of the 6 MPs and 
temporal derivatives were computed with PhysIO 
toolbox. Then we regressed out these MPs from the 
BOLD signal.  

To test which strategy is best to correct the motion 
outliers’ effects (modelling or interpolation), we start 
by detecting the outlier’s volumes with the two most 
used metrics: FD and DVARS. 

FD is a scalar quantity to express instantaneous 
head motion and it is computed through the time 
series of the six MPs obtained during the motion 
correction step (Power et al. 2013).  

DVARS is a measure computed from the data 
itself and does not depend on the MPs. It represents 
how much the intensity of a volume changes in 
comparison to the previous one (Power et al. 2013).  

After identification of motion outliers, we tested 
modelling strategies through motion censoring (with 
1s at the volumes where motion spikes are detected 
and thus to be censored, and 0s elsewhere) and 
regression and volume interpolation to correct motion 
outliers’ effects in data.  

Modelling strategies were firstly implemented 
with motion outliers being identified with FD and 
secondly with motion outliers being detected by 
DVARS. We used PhysIO toolbox to apply FD metric 
with a threshold of 0.5mm and FSL utility 
fsl_motion_outliers to compute the DVARS for all 
volumes; motion outliers were identified by 
thresholding the DVARS at the 75th percentile plus 
1.5 times the inter-quartile range.  

The last method we used to repair the volumes 
most affected by movement was a linear interpolation 
(INTERP) with the ArtRepair software (Mazaika et 
al. 2009). Motion outliers were identified with FD 
metric with a threshold of 0.5mm.  

2.5 Statistical Analysis 

For the purpose of mapping the regions involved in 
our perceptual task, the GLM framework was used. 
GLM is a common way to analyse fMRI and it is 
basically a linear regression represented by:  

 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 +  𝜀𝜀                              (1) 
 

with y the time series from one voxel, X the design 
matrix, β the model parameters, ε, the normally 
distributed error (or residuals) with zero mean (Pernet 
2014).Onsets and durations of each experimental 
condition were included in the model of the BOLD 
signal as regressors of interest representative of our 
task. We ended up with three regressors representing 
periods showing global biological motion, local 
biological motion, and scrambled motion. These 
regressors were built based on unit boxcar functions 
with ones during the respective periods, and zeros 
elsewhere and convolved with a canonical, double-
gamma hemodynamic response function (HRF). The 
HRF-convolved regressors were then included in a 
GLM (X, the design matrix) that was subsequently 
fitted to the fMRI data. After the fitting, the β’s are 
estimated, weighting the relevance of each regressor 
in explaining the variance of the data. Here, we set to 
study brain regions that are activated when global 
biological motion stimuli are present more than when 
scrambled motion versions appears. Thus, the areas 
associated with this condition were localized 
according to the following contrast: [global biological 
motion – scrambled motion].  

Because many voxels are tested simultaneously, 
the chance of observing false positives (i.e., the 
Family Wise Error (FWE) rate) is very high in the 
absence of any correction. To address this issue, we 
used a FEW correction method based on Random 
Field Theory (RFT), and we only considered 
activations as significant those with a threshold of p 
< 0.05 (the probability that we will observe a false 
positive is only 5%).  

GLMs were estimated for each participant 
containing the two runs of the behavioral task and 
statistical maps with voxels exhibiting significant 
changes specified by the contrast [global biological 
motion – scrambled motion] were identified with a 
cluster threshold of p < 0.05 (FWE corrected).  

After determining the optimal set of MPs (6, see 
Results below), the subsequent analyses regarding 
motion outliers were performed only considering 6 
MPs. In this way, each participant ended up with 5 
GLMs consisting of: 1) only 6 MPs, 2) only 24 MPs, 
3) 6 MPs and motion outliers regressors detected with 
FD, 4) 6 MPs and motion outliers regressors detected 
with DVARS, 5) interpolated volumes. 

From the resulting activation maps, the maximum 
(Z-max) and mean (Z-mean) Z-score values were 
extracted. Also, we quantified the amount of variance 
of the average BOLD signal 
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across each activation map that was explained by the 
MPs 𝑅𝑅2( BOLD/Motion). Despite the MPs are 
regressed out from the data and motion outliers 
corrected, head motion may not be fully corrected, 
thus leaving residual contributions in the BOLD 
signal (Abreu 2017). The 𝑅𝑅2( BOLD/Motion) 
measure was estimated by the coefficient of 
determination adjusted for the degrees of freedom, 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  which is defined according to (Montgomery, 
Peck, and Vining 2012): 
 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 −
𝑁𝑁 − 1

𝑁𝑁 − 𝑃𝑃 − 1
 

∑ 𝜀𝜀𝑖𝑖2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

              (2) 

 
where 𝑦𝑦� is the average BOLD signal, N is the number 
of volumes and P the number of motion regressors; ε 
denotes the residual of the model under analysis, 
which is described by 𝜀𝜀 = 𝑦𝑦 − 𝑋𝑋𝑋𝑋 , where 𝑋𝑋  is the 
matrix containing the MPs, and β the associated 
weights estimated using a GLM framework. 

These were the metrics we compared to assess the 
quality of each method. The Z values indicate the 
sensitivity of the model in detecting brain regions that 
are associated with our behavioral task. The higher 
the values of Z the higher is the quality of the method. 
The lower the values of  𝑅𝑅2(BOLD/Motion) the less 
variance of the BOLD signal is explained by motion 
so the better is the method. 

In order to statistically compare the performance 
of the methods tested here, a two-way mixed 
ANOVA (one between-subjects and one within-
subjects factors) was performed. Prior to these 
analyses, the requirements of the statistical tests 
described next were verified. For the two 
comparisons the between-subjects factor is “Group”, 
which has two nominal unrelated or independent 
categories: Multiple Sclerosis (MSC) and control 
(CNT) participants. The within-subjects factors are 
the “MPs” (number of motion parameters) and 
“Correction Method” for the first and second 
comparison respectively.  

3 RESULTS 

3.1 6 MPs vs 24 MPs 

Group mean Z-max, Z-mean and 𝑅𝑅2(BOLD/Motion) 
values of the models with 6 MPs and 24 MPs are 
represented in Table 1. As evidenced, the Z-max and 
Z-mean values are systematically higher when using 
6 MPs. No differences were found in the 

𝑅𝑅2( BOLD/Motion) values. The two-way mixed 
ANOVA showed that the comparison between these 
values concerning the main effect “MPs” was 
statistically significant (p<0.05). The “Group” main 
effect proved to be non-significant (p>0.05) for this 
𝑅𝑅2( BOLD/Motion) values. The two-way mixed 
ANOVA showed that the comparison between these 
values concerning the main effect “MPs” was 
statistically significant (p<0.05). The “Group” main 
effect proved to be non-significant (p>0.05) for this 
comparison. There was also no statistically 
significant interaction between “Group” and “MPs” 
(p>0.05). Figure 2 shows the activation maps of one 
participant when using 6 vs 24 MPs.  

Table 1: Metrics to assess the quality of the models using 6 
MPs and 24 MPs. Values are presented as mean ± standard 
deviation in each group of participants. 

  Metrics 

MPs Group Z-max Z-mean 𝑅𝑅2 
(BOLD/Motion) 

6 

MSC 
8.015 

± 
0.500 

5.974 
± 

0.317 

-0.012 
 ± 

 0.000 

CNT 
7.094 

± 
1.050 

5.631 
± 

0.300 

-0.011 
 ± 

 0.001 

24 

MSC 
7.648 

± 
0.766 

5.814 
± 

0.283 

-0.012 
 ± 

 0.000 

CNT 
6.875 

± 
1.264 

5.536 
± 

0.365 

-0.011 
 ± 

 0.001 
 

3.2 FD vs DVARS vs INTERP 

Table 2 depicts group mean Z-max, Z-mean and 
𝑅𝑅2(BOLD/Motion) values of the models used to test 
the different methods for correction of motion 
outliers. Despite Z-max and Z-mean values are higher 
for the interpolation method, the two-way mixed 
ANOVA showed that the comparison between these 
values was not statistically significant (p>0.05) 
considering both “Correction Method” and “Group” 
main effects. No statistically significant differences 
were found to the 𝑅𝑅2(BOLD/Motion) values. There 
was also no statistically significant interaction 
between “Group” and “Correction Method” (p>0.05). 
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Table 2: Metrics to assess the quality of the models using 
FD, DVARS and INTERP methods to correct motion 
outliers’ effects. Values are present Values are presented as 
mean ± standard deviation in each group of participants. 

 Metrics 
Correction 

Method Group Z-max Z-mean 𝑅𝑅2 (BOLD/ 
Motion) 

FD MSC 8.015 
 ± 0.496 

5.971  
± 0.311 

-0.012 
 ± 0.000 

FD CNT 7.070 
 ± 1.213 

5.632 
 ± 0.310 

-0.011 
 ± 0.001 

DVARS MSC 8.015 
 ± 0.500 

5.974 
 ± 0.317 

-0.012 
 ± 0.000 

DVARS CNT 6.983 
 ± 1.234 

5.603 
 ± 0.336 

-0.005 
 ± 0.017 

INTERP MSC 8.035 
 ± 0.505 

6.022 
 ± 0.321 

-0.012 
 ± 0.000 

INTERP CNT 7.105 
 ± 1.054 

5.641 
 ± 0.288 

-0.006 
 ± 0.011 

 
Figure 2: Activation maps of one participant, resulting from 
the contrast [global biological motion – scrambled motion]. 
On the left is represented an activation map resulting from 
a model with 6 MPs. On the right is represented an 
activation map resulting from a model with 24 MPs. The 
model with 6 MPs (left side) shows that task-specific brain 
regions are detected with higher sensitivity relatively to 
using 24 MPs (right side). Results are presented at a voxel 
p-value < 0.05, FWE corrected for multiple comparisons. 
Color bar scale represents t-values. The t-value is the result 
of the statistical test (t-test) in each voxel and measures the 
size of the difference calculated between the BOLD signal 
in the presence of biological motion stimulus and the 
BOLD signal during the presence of scrambled motion 
stimulus. The higher the t-value the most correlated is the 
BOLD signal with the task condition or the specified 
contrast in a given brain region, thus more sensitive is that 
(group of) voxel(s). 

4 DISCUSSION 

Due to the lack of consensus on how to deal with the 
head motion effects in fMRI data analysis, in this 
study we compared different strategies to compensate 
for head motion, in the context of a perceptual 
decision task performance between MS patients and 
controls. We started by testing if including temporal 
derivatives of MPs would improve the results of our 
analyses. Next, we compared three methods to correct 
the effects of motion outliers. Two of them were 
modelling approaches (censoring) based on two 
different motion outliers detection algorithms: FD 
and DVARS. The third strategy used was 
interpolation of volumes affected by motion, 
INTERP.  

The first comparison, 6 vs 24 MPs, revealed that 
higher Z-score values are obtained when considering 
6 MPs, suggesting that task-specific brain regions are 
detected with higher sensitivity relatively to using 24 
MPs. This is further supported by the activation maps 
resultant from both models. Head shifts are usually 
corrected through regression of MPs, but there is still 
no consensus regarding the optimal number of MPs 
to include. Our results using just 6 MPs are consistent 
with literature reporting that adding temporal 
derivatives can result in loss of degrees of freedom 
and therefore loss of valuable information. (Yang et 
al. 2019).  

Regarding the second comparison, the Z-max and 
Z-mean values are higher for the interpolation 
method. Although the two-way mixed ANOVA 
showed that the comparison between the values 
obtained with the different methods was not 
statistically significant (p>0.05), we suggest the use 
of the interpolation method. However, further studies 
with more data are needed to reach a definite 
conclusion about which method is best to correct the 
effects of motion outliers.  Furthermore, it is 
important to discuss the impact of modelling motion 
outliers and interpolation in the data.   

Modelling motion outliers is a widely used 
technique to correct sudden movements of the head, 
however it creates temporal discontinuities. 
Interpolation overcomes this problem and avoids side 
effects in the high-pass filter (Michielsen et al. 2011). 
However, volume interpolation induces synthetic 
data, and the duration of the censored segment, as 
well as the type of interpolation (linear, Fourier, 
wavelets or splines), may produce different effects 
that  depend on the choice of these parameters 
(Caballero-Gaudes and Reynolds 2017). To our 
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knowledge these effects and the negative impacts of 
using interpolation are still largely unknown. 
Although the two approaches are widely used, to our 
knowledge there are no studies that contemplate the 
question, with a direct comparison on the same data, 
about which strategy is best to correct motion 
outliers: modelling or interpolation. Because there are 
no negative effects reported when using interpolation 
and that it appears as an alternative to solve the data 
loss caused by censoring, we further suggest that this 
method may be the best one to adopt to mitigate the 
effects of motion outliers. Nevertheless, we believe 
further studies with a higher number of participants 
will allow to derive conclusive results and to a greater 
consensus on which strategy to use. Thus, our study 
paves the way towards finding an optimal motion 
correction strategy. 

In both comparisons, the main effect of group and 
also the interaction of correction approach with group 
proved to be not significant, which means that there 
are no differences provoked by head motion 
correction effects between groups. So, the quality of 
head motion correction is mainly due to the method. 
This is an important issue to consider in fMRI studies 
in clinical context, as previous reports show group 
differences in head motion between control and 
patient groups (Seto et al. 2001). This is particularly 
relevant in task-related and resting-state (RS) 
functional connectivity fMRI studies, which are 
rapidly increasing in clinical research (Goto et al. 
2016). Previous studies show that group differences 
in head motion between control and patient groups 
cause group differences in the resting-state network 
with RS-fMRI (Lee, Smyser, and Shimony 2014; 
Song et al. 2012; Maknojia et al. 2019). To our 
knowledge there is a lack of this kind of studies in the 
MS context. Furthermore, our study raises the 
importance of this processing step in functional 
connectivity studies, where one wants to study 
functionally connected networks throughout the brain 
that are correlated only due to the stimulation or 
cognitive processing, in task-based fMRI, or due their 
intrinsic functional organization, not because of head 
motion.  

We decided to compare these approaches, 
however there are other techniques that can be 
implemented. External optical tracking systems that 
constantly measure the position of the head or the use 
of dedicated sequences with navigators echoes or 
active markers (Maknojia et al. 2019; Caballero-
Gaudes and Reynolds 2017) are such examples. Data 
driven approaches can also be used, namely 
algorithms such as Principal Component Analysis 

(PCA) or Independent Components Analysis (ICA), 
which first decompose the data into a set of 
components, then the corrected fMRI data is obtained 
by removing the contribution of motion-related 
components (Caballero-Gaudes and Reynolds 2017; 
Liu 2016). Yet, we focused on study the number of 
MPs that would better characterize the head shifts to 
be regressed out from fMRI data and on comparing 
modelling vs interpolation methods to tackle the 
motion outliers’ effects since these are the most used 
in the literature, and as such, are of greater relevance. 

5 CONCLUSIONS 

In this paper, we aimed at applying different 
techniques to tackle head motion in fMRI data in 
order to reach a consensus on the best strategies to 
use. We compared common approaches to correct 
head motion effects such as motion regression, 
motion censoring and data interpolation. Our results 
pave the way towards finding an optimal motion 
correction strategy, which is required to improve the 
accuracy of fMRI analyses, crucially in clinical 
studies with patient populations, and are an 
encouragement to test comprehensively different 
approaches. 
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